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ABSTRACT This paper proposes a Convolutional Neural Network—-Block Development Mechanism
(CNN-BDM) enabling the development of a lightweight deep learning architecture for the detection of
damaged pallet-racking, within the manufacturing/warehousing environment. The developed CNN archi-
tecture consisted of only 6.5 Million learnable parameters, making it the first custom designed CNN
architecture for the pallet racking domain. Architectural training was based on a real dataset collected from
various warehouses after implementation of several data modelling strategies for scaling and increasing the
variance within the dataset, in a representative manner. Additionally, after achieving a baseline accuracy
of greater than 90%, various regularization strategies were applied for further enhancing the performance
and generalizability of the network. Dropout at a drop rate of 50% provided the highest performance during
training, achieving 99% precision, recall and F1 score. The effectiveness of the proposed methodology was
manifested by the fact that the architecture was able to maintain high performance on the test data achieving
an overall F1 score of 96%.

INDEX TERMS Architectural complexities, image modelling, damage detection, lightweight footprint,

convolutional neural network.

I. INTRODUCTION

Warehouses, distribution and logistics centers are viewed
as an integral component within supply chain management
(SCM). One of the key functions of these critical entities is for
depositing and holding inventory unless and until, shipping is
prescribed [1]. The rise of the digital age coupled with recent
events such as Covid-19 have shifted consumer behaviors,
manifested in the form of increased demand for a variety
of products, product information and level of service. As a
result, warehousing operations have increased in complexity
with the expectation of storing multiple inventories whilst
responding effectively to volatile consumer demands [2].
Businesses are striving to meet increased demand and chal-
lenges by utilizing technological advancements with the aim
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to transform their existing industrial locations into smart
manufacturing/storage hubs such as the adoption of Artificial
Intelligence (AI) [3] and Internet of Things (IoT) [4].
Increased demand within warehousing, implies higher
interaction between pallet-racking, forklifts and employees.
Each of these entities carries high importance within a ware-
house setting. Pallet-racking is used for temporarily holding
stock, forklifts are utilized for depositing and picking stock
from racking, driven by employees. Hence, a risk arises, that
is related to the structural integrity of the pallet racking. The
structural integrity of the racking is at risk each time stock is
loaded or picked from it. In the case of damage to pallet rack-
ing, depending on the severity of the damage or due to damage
accumulation over time, racking can collapse, resulting in
multiple losses such as loss of lives, financial, operational
and reputational. According to [5], 90% of racking failure is
aresult of an impact administrated by a forklift. The dynamic
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movement coupled with heavy weight of these powered vehi-
cles, means any unwarranted contact with racking can lead to
instant damage or damage accumulation over time leading to
racking collapse.

To address the issue of racking damage detection and
prevention, several methods have been introduced from
conventional quality inspection to mechanical-based column
protectors. Quality inspection services are provided by com-
panies such as SEMA [6] and DAMOTECH [7], involving
human inspection of racking. This however can be a costly
and time-consuming option depending on the amount of rack-
ing that is to be inspected. Another option is the use of column
protectors [8], although this approach can help to dampen the
impact, it lacks intelligence to conceive damage and report
it. To address the issue of real-time damage detection, A-safe
introduced Rackeye [9]. Whilst this sensor-based solution can
detect damage in real-time, it’s detection range is limited.
Also, the sensor must be mounted on the racking legs, hence
resulting in significant deployment cost for warehouses with
high number of pallet racking.

To address the limitations of the above solutions, deep
learning can be utilized in particular computer vision for
defect detection [10], [11], [12]. The development of rack
damage detection algorithms, coupled with strategic place-
ment of the detection device can lead to an optimized solution
in terms of cost, coverage and Realtime detection.

A. LITERATURE

There is a shortage of literature investigating the imple-
mentation of Machine Vision for pallet racking inspection.
In order to provide a sufficient and systematic review we have
widened the scope of the examined literature to include a sim-
ilar domain known as structural health monitoring (SHM).

Starting with conventional methods, Hong-Hu Zhu et al.
[13] examined image processing methodologies for computer
vision based structural health monitoring (CV-SHM) applica-
tions. Advantages of the evaluated techniques are presented
as non-invasive, increased detection distance, electromag-
netic inferences and simultaneous classification of multiple
targets. With regards to the constraints, authors highlight
lack of integration into existing production applications as a
major drawback, preventing researchers from validating their
architectural performance against ground realities. Whilst
approving of the fact, that production-based testing can be
difficult due to factors such as resultant down-time, depend-
ing on the nature of the business, we address this issue by
procuring an real-term dataset from the production floor for
our architecture development.

Dong et al. [14] presents and evaluation of CV methodolo-
gies for various domains within SHM. The authors segment
SHM into one of two categories; local and global. Local
category consists of defects such as delamination, loose bolts
and crack detection. Whilst the global category compro-
mises of measuring location, structural analysis, vibration
and modal identification. Authors agree for CV-SHM to be
successful in defect assertion, a large amount of quality data
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representative of the target application is required. However,
the procurement of high quantity, high quality data, that so,
from within a production site can be a difficult task. Hence,
this paper demonstrates, through our proposed methodology,
how a small dataset consisting of less than 100 samples can
be domain-modeled via selective augmentations to achieve
sufficient samples to train a high performant classifier.

Focusing on the internal architectural infrastructure of
computer vision models, it is clear that convolutional neural
networks (CNN) is the de facto architecture when dealing
with image data. Almost a decade back, Hinton along with
his team of researchers presented AlexNet [15], in 2012,
along with a graphics processing unit (GPU) for accelerating
calculation time. To decrease the time for model convergence,
a rectified linear activation (ReLU) function, was proposed.
In the subsequent years, a multitude of architectures have
been introduced such as GoogleNet [16], VGGNet [17],
R-CNN [18], Fast R-CNN [19], Faster R-CNN [20], with the
aim to enhance accuracy, decrease inference time and reduce
power consumption.

State-of-the-art models such as those mentioned above
are deployed across various domains including healthcare,
autonomous vehicles and renewable energy [21]. However,
due to the high computational demand of these architectures,
deployment infrastructure is usually facilitated via a cloud
architecture [22]. Although this is suitable for applications
where computational requirements is not the top priority,
domains such as manufacturing can have stringent data secu-
rity and power consumption requirements, hence demanding
edge device inference close to the data source. The lack of
device deployment within production is due to the fact that
all algorithms mentioned above demand a significant number
of computational resources [22].

Focusing on the limited literature specific to the rack-
ing domain, Farahnakian et al. [23], propose a segmentation-
based process for automated racking defect detection. The
authors propose Mask-RCNN coupled with ResNet-101
backbone for feature extraction. The authors prepare the
dataset i.e., ground truth annotations for assisting with the
training process. The reported mean average precision based
on an intersection-over-union (IoU) of 50% was respectable
at 93.45%. looking deeper at the dataset, it was observed
that the racking images were taken within a laboratory or
other external environments rather than from the production
floor. This raises questions on the representativeness of the
dataset and the true generalizability of the model. To counter
this, our research is based on an actual dataset procured from
within manufacturing facilities followed by representative
data scaling.

Hussain et al. [24] presented the first edge-based
automated pallet racking inspection framework based on
MobileNetV2. The authors claimed the architecture to be
computationally lightweight and hence deployable onto a
constrained edge device such as a raspberry pi [25], achiev-
ing a mean average precision of 92.7%. Additionally, the
authors claimed the strategic positioning of the edge device
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i.e., onto the Forklift cage, enabled wider coverage of the
racking.

Further focusing on the optimization of automated pallet
racking inspection, Hussain et al. [26], proposed a feature
mapping mechanism for addressing the issue of data scarcity,
during the procurement process of racking images. The pro-
posed mechanism enabled representative data augmentations
modelling the production floor variations at various sites.
staying with the theme of edge-based deployment, authors
subscribed to the object detection domain, selecting Yolov7
as the deployment architecture. The mean average precision
for the proposed framework was respectable at 91.1%.

A similar domain to pallet-racking damage detection is
steel defect detection. Authors in [27] on Metal casting
defects based on the development of custom CNN architec-
tures and comparing the performance against SOTA archi-
tectures [ResNet, MobileNet, Inception]. The research takes
an interesting approach by borrowing the depth wise convo-
lutional process from MobilNet and implementing it within
the custom architectures along with various other optimiza-
tion strategies including Blurpool, Stochastic Weight averag-
ing, MixUp, Label smoothing and squeeze-excitation. The
authors claim their architecture to be superior based on
reduced number of parameters however, the accuracy stan-
dards at 81.87% whilst Inception achieved 91.48%.

He et al. [28] claim a novel defect detection system,
focused on industrial applications using steel surface defect as
a use case. Experiments showed that developed architecture
achieved 99.67% accuracy for defect classification task and
82.3 mAP for defect detection task. In addition, the system
can run at a detection speed of 20 ft/s while keeping the mAP
at 70%. The authors explain that due to the localization of
faults happening during the end layers of the network, some
locational data would be lost from the initial layers. this is
due to the fact that shallow features contain rich information
but are not discriminative enough, whilst deeper features are
semantically robust but more abstract hence detailed informa-
tion is lost. to address this the authors, propose a Multilevel-
feature fusion network (MFN) combining features from all
stages into a single rich feature.

Summing the literature review, it is clear that there is
a lack of literature focused on automated racking inspec-
tion via deep learning. We can say with a high degree of
confidence, that our initial work [24] was the icebreaker,
presenting a automated racking inspection solution based
on the MobileNetV2 architecture along with the first real
world racking dataset. This was followed by a YoloV7 imple-
mentation [26] focused on real-time performance. However,
both solutions are anchored around the same principal,
that is object detection which mandates additional data
preparation i.e., bounding box generation prior to train-
ing. Although this can be ignored when dealing with small
datasets but can become an issue when bounding box gen-
eration is required for thousands or tens of thousands of
images.
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Feng et al. [29] look at the automation of Hot rolled steel
strip defects due to its impact on various industries including
manufacturing. The authors present a RepVGG architecture
coupled with the spatial attention mechanism. although on
the test data the architecture achieves on average 95.10%,
in some defective categories the accuracy is significantly
lower reaching (78.95%). It is appreciated that the authors
present the computational complexities of their architecture
and accept their architecture is relatively large in terms
of learnable parameters (83.825Million) and computational
complexity (17.892 GMAC’s).

Yang et al. [30] propose the implementation of yolov5 for
production-based weld steel defect detection based on X-ray
images of the weld pipe. The paper is a good example of how
single shot detectors can be effectively trained for industrial
defect detection compared to the two-stage conventional two-
stage detectors such as the once de facto 'Faster-RCNN’.
Authors encounter the argument that two-stage detectors by
default have better performance in-terms of accuracy by
demonstrating how a carefully constructed data augmentation
strategy, can lead to the yolov5 performing better in terms of
the speed and accuracy when compared to the Faster-RCNN.
The authors claim that the trained YoloV5 reached an MAP
of 98.7% (IoU-0.5) whilst meeting the real-time detection
requirements of steel pipe production with a single image
detection rate of 0.12 seconds. However, when looking at the
processing setup, the x-ray data is sent to a PC where the
processing and inferencing is done via a GPU.

B. CONTRIBUTION AND PAPER ORGANIZATION

Since the utilization of computer vision within the pallet
racking domain is at an early stage as evident from the
literature, our first contribution is in the form of present-
ing a development pipeline dubbed as CNN-Block Develop-
ment Mechanism (CNN-BDM). There were several motives
behind the proposal of CNN-BDM. Firstly, it provides a
streamlined pipeline enabling researchers within the ware-
housing domain with limited expertise in CNN development
to develop tailored CNN architectures. The operational envi-
ronment mandates the deployment of the developed archi-
tecture to be compatible for implementation on constrained
edge devices with limited computational power. This require-
ment rules out many state-of-the-art (SOTA) architectures
due to their architectural depth and computational demand.
Hence, CNN-BDM facilitates the development of custom,
lightweight CNN architecture by benchmarking it against a
SOTA ‘look-up table’ referencing the number of learnable
parameters of several SOTA architectures.

Prior to the development of the CNN architecture, various
data modelling strategies are implemented in a streamlined
manner, providing justification of operational representative-
ness as opposed to applying augmentations in an arbitrary
fashion. The former may provide high training performance
but due to the incompatibility with respect to ground realties
may experience detrimental performance post deployment.

58881



IEEE Access

M. Hussain, R. Hill: Custom Lightweight Convolutional Neural Network Architecture

-0 O

INormal

Tileasy I 1

!
0-0 ol —

-\Normal Damage;
Lamteks P ik

FIGURE 1. Data procurement process.

In addition to CNN-BDM, various regularization strategies
are implemented on the constructed architecture aimed at
improving the overall generalization of the architecture by
reducing the distance between the training and validation
accuracies i.e., overfitting suppression.

Il. METHODOLOGY

A. DATASET

To the best of our understanding, there is no open-source
dataset available for pallet racking. Hence, the initial dataset
consisting of less than 100 images of normal and damaged
racking was collected from various manufacturing facilities
including Tile easy and Lamteks.

The procurement process is presented in Figure 1.
An iPhone 8 was used for the capturing of racking images
with a 12MP camera. This particular camera specification
was selected due to its similarity with a raspberry pi cam-
era with respect to mega-pixels. Another key consideration
considered before capturing the images was the operating
environment and device placement. The proposed architec-
ture would be deployed onto an edge device which would be
strategically placed onto the forklift cage. Hence, to model
this scenario, the image would be captured by a person (simu-
lating the forklift), holding out the camera device (simulating
the edge device) towards the racking.

Figure 2 presents sample images belonging to both normal
and defective classes. For the normal class (Figure 2(A)),
the classification can be assumed to be a straightforward
process, as the model would need to focus on determining
the racking from the background. Whilst with the defective
class (Figure 2(B)) it can be observed that the severity of
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(B)

FIGURE 2. Racking data sample internal class inspection (A) normal
(B) damaged racking.

damage can vary significantly from case to case. For exam-
ple, Figure 2 (B) right image, presents major damage easily
detected with the human eye. Whilst the centre image in
Figure 2(B) is also a manifestation of a damaged racking leg,
however this is not easily detectable when compared to the
far right and left images. All images contain a background
context, this would also need to be considered whilst mod-
elling augmentations, to make sure the environmental context
is preserved.

B. DATA MODELING

As mentioned earlier the initial dataset captured directly from
within the manufacturing facilities accumulated to less than
100 samples for both classes. This would simply be consid-
ered too small for training a CNN architecture to achieve
any form of significant generalization. Conventionally, data
augmentations are implemented for data scaling, however,
applying augmentations without any domain criteria does not
guarantee generalization. Hence, our focus was on applying
domain specific augmentations, that were representative of
the manufacturing floor. The first modelling objective was
for the model to be rotationally invariant, as post deployment
the captured images for inferencing would be relative to the
placement of the edge device. For modelling this variance
angle-based rotations were introduced via,

cosd  —sinf
- [sin@ cost ] M
A shift component was introduced (fy, f,) for pixel level

shifting, representative of displacement due to physical con-
tact with loaded pallets,

_| 0 A
=l v %] @
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TABLE 1. Augmented dataset post splitting.

Augmented Dataset Post Splitting

Class Training Validation Test
Normal 562 164 80
Damage 633 188 96

The transformation was implemented post translation on
matrix H into an array, where z, = input image, z, = resultant
image and H = translation matrix,

2y (x,¥) = zx(H11x + Hi2x + Hy3, Hyix + Hpy + Hoz
3)

The second criteria was based on modelling the light inten-
sity variations found within production floor facilities. This
was done via the introduction of pixel darkness/brightness
adjustments, for greater generalization when faced with dis-
similar LUX intensities. LUX modelling was particularly
important for wider deployment prospects, as manufacturing
facilities LUX intensities can vary depending on various
factors such as location, regulations and the nature of the
business.

Global image blurring at various ratios was also introduced
for modelling variance caused by differing hardware specifi-
cations in particular camera quality as presented in Table 1.
Pixel-noise was introduced to cater for extreme cases, where
the nature of the business meant increased blurring due to
external factors such as dust particles. Table 1 presents the
scaled dataset post data augmentations and train, validation
and test splits.

C. PROPOSED CNN ARCHITECTURE
The rationale for deciding to create a custom architecture as
opposed to subscribing to the transfer learning approach i.e.,
riding on the shoulder of SOTA architectures was due to the
domain requirement for a lightweight architecture that could
be deployed onto constrained edge devices, demanding less
power consumption, making battery power a feasible option.
Hence a ‘bottom-up’ approach was taken for the CNN
development starting with a single convolutional block con-
taining 5 filters, followed by a single fully connected layer
containing 25 nodes. Max-pooling was introduced for the
elimination of positional dependencies post convolutional
process. Prior to pooling, ReLLu was applied as the activation
function converting the weighted input sum to the non-linear
output representation. Although various activations functions
exist such as Sigmoid and TanH, ReLu was selected due to its
simplistic computational nature, mathematically represented
as,

J(x) = Max(0, x) “

where x= input, when X is a negative/zero value it is repre-
sented as a zero. When x is greater than zero, the value (v) for
X 18 retrieved,

for x >0

’ _ v,
! (x)—[07 forx <0 )
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During the training process a loss function was required
for calculating the error between the actual (y) and predicted
labels (P(y)). Due to binary output nature of the task i.e.,
normal or damaged, binary cross entropy was implemented,
mathematically represented as,

K = [ylogP (y) + (1 — y)log (1 — p (y))] Q)

Stochastic gradient descent with momentum (SGD-M) was
selected as the optimizer for facilitating the backpropagation
process during the training phase. Plain SGD takes the deriva-
tive of the weights (dW) and the bias (dB) for every training
epoch,

W=W-nxdW, B=B-nxdB (7

Additionally, SGD-M introduces momentum (M) as the
moving mean for the gradients. The moving mean between
0 and 1, when computing dW and dB on the current batch is
represented as,

Maw = B x Mgw + (1 — B)dW,
Mg = B x Mgp+ (1 — B)dB ®

where 8 was utilized as a hyperparameter for controlling the
exponentially weighted means.

The objective was to design a high performant CNN by
iteratively increasing the number of convolutional blocks
and the internal filters within each block, whilst leaving the
supporting infrastructure untouched i.e., activation function,
pooling. After each design iteration, the resultant CNN archi-
tecture was compared against a SOTA lookup table, presented
in Table 2 containing the learnable parameters of SOTA CNN
architectures for image classification such as ResNet. If the
number of parameters of the developed CNN were greater
than those within the lookup table, the internal filters were
sent back to the design stage for filter refinement. In the case,
the parameters of the resultant architecture were less than
those within the lookup table, the architecture was forwarded
for training.

Post training, the validation accuracy was evaluated against
a checkpoint requiring 90% accuracy. In the case of achieving
this, the architecture was forwarded to the regularization stage
for reducing overfitting and enhancing the performance. Con-
versely, if the architecture failed to achieve the 90% bench-
mark on the validation accuracy, the architecture was referred
back to the design stage for internal block development, hence
restarting the process presented in the figure. An arbitrary
value of 5 filters was selected for the initial CNN design
containing a single convolutional block.

D. ARCHITECTURAL REGULARIZATION
Regularization techniques were introduced into the selected
architecture post the CNN design stage. The aim was to
enhance the performance of the architecture whilst suppress-
ing overfitting.

Batch normalization was implemented with the aim to
address internal covariance in particular for the defective
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FIGURE 3. CNN-block development mechanism (CNN-BDM).

TABLE 2. SOTA look-up table.

Architecture Parameters (M)
VGG-16 134.70
VGG-19 143.67
AlexNet 61.0

GoogleNet 13.0
ResNet-18 11.69
ResNet-34 21.50
ResNet-50 23.90

ResNet-101 42.8

ResNet-152 58.5

class, as evident from the data inspection, the location
and severity of the damage can vary significantly between
images. The concept is mathematically presented in [equa-
tion number], where o represents neuron outputs, 0" equals
normalized output for neuron, m, equates to the mean of the
neurons and s, refers to the standard deviation of the neurons
output.

0o—m,

) €))

o' = (
So
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Devoid of batch normalization, input layer, al/~!! passes
through a reserved transform prior to passing through an
activation function (g[l]), the activation function (a[l]) is then
presented as,

alll —g[l](w -1 +b[l] (10)

Post batch normalization via a transform (BN), the output
is presented as (14),

all (BN( P 1])) (11)

Noting the fact batch normalization brings two additional
parameters, B & y, for each unit. In the case of § = u and
y = ﬁz + ¢, then 0" = o, i.e., an identity function.

Another regularization technique implemented for reduc-
ing overfitting was dropout. Dropout is similar to the concept
of bagging, utilized widely in Machine learning algorithms,
where several models are trained on different subsets of the
same training data. Dropout was implemented at within all
internal blocks of the CNN, barring the input block, with the
aim to reduce co-adaptation.

Co-adaptation leads to bestowing increased predictive
capabilities to certain neurons which could lead to reduced
performance in the case of false generalization. Traditional
regularization strategies such as L1, L2 would not suffice as
they are based upon predictive capabilities of different neu-
rons. Implementation of dropout is presented in the equations
below based on the dropout probability p of 50%, where z is
the input vector, y' is representative of the output for a hidden
layer, i is the hidden neuron with ng) as weight and bgl) as
bias, f represents the applied activation function. A vector
r® is applied to yV with the ) vector elements as 1 with
probability of p and O with probability of 1 — p

ri? ~ Bernoulli(p) (12)
5,(1) — r(l)*y(l) (13)
(l+1) (l+1)~ 1 (I+1)
z = 5 + bt (14)
(l+1) _f( (l+1)) (15)

E. INTERNAL BLOCK-WISE COMPUTATION

The internal block-wise computational payload for the pro-
posed CNN is presented in Table 3. The advent of batch
normalization within the convolutional blocks, resulted in
an increase in the computational parameters, however, this
increase was not significantly high. Sigmoid was imple-
mented as the output layer activation function. Comparing the
computational payload of the proposed CNN to the SOTA
look-up table presented in Table 2, it is evident that the
proposed CNN was significantly more lightweight with a
margin of 5.19 Million parameters compared to ResNet-18.

IIl. RESULTS

A. HYPER-PARAMETERS

To evaluate the performance of the proposed CNN archi-
tecture along with the impact of various regularization
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TABLE 3. Block-wise internal computation.

Layer Output Shape Learnable Parameters
Input 3,224x224 -
Conv-1 5,222x222 140
Batch norm 5,222x222 10
ReLu 5,222%x222 e
Max-pool 5, 111x11r e
Conv-2 25, 109%109 1,150
Batch norm 5, 109x109 50
ReLu 5,109x109 -
Max-pool 5,54x54  —eee-
Fc-1 90 neurons 6,561,090
Relu -~
Fc-2 45 neurons 4,095
Relu  — e
Output 2 neurons 92
Total Learnable Parameters 6.5 Million
TABLE 4. Hyperparameters.
Hyperparameters
Batch Size 32
Epochs 40
Learning Rate 0.02
Loss Type Cross Entropy
Optimizer Type SGD-M

strategies presented in the previous section, global training
parameters were defined, enforcing performance evaluation
integrity. The globally defined hyperparameters are presented
in Table 4. Google Collaboratory was selected as the platform
for facilitating all training and evaluation due to its free GPU
allowance. However, GPU allowance was limited, hence the
training epochs were capped at 40.

B. INITIAL ARCHITECTURE

The initial architecture as per the proposed CNN-BDM con-
sisted of a single convolutional block and a fully connected
layer. Due to the singular network structure, the architecture
passed the parameter checkpoint with respect to the SOTA
look-up table, hence the architecture was trained on the
racking dataset based on the hyperparameters defined within
Table 4.

Figure 4 presents the training and validation accuracies
of the initial architecture. It is clear from Figure 4; the
architecture lacked the basic capacity for providing the 90%
accuracy benchmark set in CNN-BDM. It may be argued, the
poor performance was due to the small number of epochs,
however, viewing both training and validation accuracies it is
evident that a plateau has been reached as early as the 151
epoch, hence further increasing of the training epochs would
not improve the performance.

C. MODIFIED (DEPTH INCREASE) ARCHITECTURE

The poor performance of the initial architecture was
attributed to the lack of capacity within the internal architec-
tural blocks. Hence the next iteration involved the introduc-
tion of an additional convolutional block, with the number of
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Training and Validation Accuracy
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FIGURE 4. Accuracy graph for developed CNN classifier.

TABLE 5. Performance evaluation modified architecture.

Performance Evaluation

Modified Architecture
Precision 99.0%
Recall 97.0%
F1 score 98.0%

filters equal to the square of filters within the initial block
i.e., 25. Additionally, and additional fully connected layer
was introduced containing twice the number of neurons with
respect to the initial layer, as per the proposed CNN-BDM.
The motive behind the depth increase was to achieve the
required capacity for generalization, however and implication
of this was increased computational parameters. Hence, the
iterated architecture was compared against the SOTA look-up
table to confirm the number of parameters were less than ref-
erenced SOTA architectures. The architecture was well within
the computational parameters remit, with only 6.5 Million
parameters compared to ResNet-18 at 11.69 Million. Thus,
the modified architecture was forwarded for training based
on hyperparameters defined in Table 4. The performance of
the architecture experienced significant improvement with
the training accuracy optimal result and the validation accu-
racy at 98.9%. Table 5 presents a granular inspection of the
CNN based on three metrics; precision, recall and F1 score,
endorsing the effective generalization of the architecture with
an overall F1 score of 98.8%.

Figure 5 further compliments the results in Table 5, via the
confusion matrix. Class breakdown shows 5 out of 188 sam-
ples were incorrectly classified as normal, whilst 1 out of
164 samples were incorrectly classified as defective.

D. INTERNAL BATCH NORMALIZATION

The performance of the modified architecture presented in
Table 5 was impressive. The application of batch normal-
ization was to investigate if the performance can be further
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FIGURE 5. Confusion matrix for developed CNN classifier.

TABLE 6. Performance evaluation with batch normalization.

Performance Evaluation
With Batch Normalisation

Training and Validation Accuracy

—— [M] TRAIN (1.0): Dropout
-=-=- [M] VALID (0.9972): Dropout

Precision 99.0% g . . x
Recall 96.0% e '
0,
F1 score 98.0% FIGURE 7. Accuracy graph post dropout.
TABLE 7. Performance evaluation with dropout @50%.
Performance Evaluation
Damaged 181 7 With Dropout @ 50%
Precision 99.0%
Recall 99.0%
= F1 score 99.0%
3
g
probability rate of 50%. Looking at the training and validation
Normal il 163 accuracies, presented in Figure 7, it can be seen that the dis-
tance between the two respective accuracies had decreased,
indicating towards further suppression of overfitting as com-
pared to Figure 4. This was due to the disabling of random
Damaged normal neurons, discouraging increased weightage for certain con-

Predicted
FIGURE 6. Confusion matrix for batch normalised architecture.

enhanced i.e., improving the recall rate. Additionally, the aim
of introducing batch normalization was the removal of any
co-adaptation which may have occurred within the internal
blocks during training. Hence batch normalization was intro-
duced into both convolutional blocks prior to the execution
of the activation function, ReLu. Post training, it is clear
from Table 6, the application of batch normalization did not
improve the overall performance, in fact the recall experience
a small drop in performance.

The degradation in performance can also be seen from the
confusion matrix, Figure 6, with the number of misclassifica-
tions for the damaged class increasing to 7.

E. APPLYING INTERNAL DROPOUT

The next regularization strategy aimed at enhancing the
generalization of the proposed CNN on the racking dataset
was dropout. Dropout was implemented with a dropout
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nections, leading to improved generalization.

Table 7, demonstrates the improved performance of the
proposed architecture post applying of dropout. It can be
observed that the recall rate improved by 3% compared to
batch normalization, reaching 99%, with an overall F1 score
of 99%.

Figure 8, presents the confusion matrix manifesting the
improved class-wise performance with only a single damaged
racking being misclassified, whilst 2 instances of normal
racking were misclassified as damaged.

F. REGULARISATION COUPLING
The proposed architecture provided impressive performance
in all three experiments presented above. An outstanding
experiment based on intuition was the merging of both batch
normalization and dropout, implemented into the proposed
architecture with the aim to observe the impact of the overall
performance.

Before applying this, dropout was experimented for the
second time with reduced dropout rate from 50% to 25%.
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Normal 2 163
Damaged normal
Predicted

FIGURE 8. Confusion matrix for dropout.

TABLE 8. Network performance comparison modified architecture.

Precision 99.0%
Recall 97.0%
F1 score 98.0%
With Batch Normalisation
Precision 99.0%
Recall 96.0%
F1 Score 98.0%
With Dropout @ 50%
Precision 99.0%
Recall 99.0%
F1 Score 99.0%
With Dropout @ 25%
Precision 99.0%
Recall 98.0%
F1 Score 99.0%
Batch Normalisation with Dropout @ 50%
Precision 99.0%
Recall 97.0%
F1 Score 98.0%

Table 8 demonstrates, although decreasing the dropout rate
to 25%, provided high performance there was a degradation
in the recall rate compared to 50% dropout rate of 1%.

Hence the coupling of batch normalization was imple-
mented with dropout at a drop rate of 50%. Interesting
this further diminished the recall rate to 97%. This showed
that although the coupling of the two strategies (batch
normalization and dropout) provided higher performance
than batch normalization by itself, the performance was
not optima. This could be attributed towards the fact that
strictly speaking batch normalization is a regularization strat-
egy focused on removal of internal covariance, hence is
more inclined towards providing faster convergence, whilst
dropout, directly interferes with the neurons, to enforce
generalization.

Figure 9 presents the loss and accuracy graphs for
dropout @50% and coupling of batch normalization with
dropout. From the accuracy graph (bottom) it can be seen that
coupling resulted in more instability during early stages of
training as well as a difference of 1.09% between the training
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Training and Validation Loss

~—— [1] TRAIN {0.000525): Dropout
=== [1] VALID (0.004917): Dropout

~—— [2] TRAIN (0.01498)- Batch+Dropout
=== [2] VALID (0.08762): Batch+Dropout

loss

5 » 5 » 5 ) » 0
epoch no
Training and Validation Accuracy

i — [1] TRAIN (1.0): Dropout
=== [1] VALID (0.9972): Dropaut
—— [2] TRAIN (0.9967): Batch+Dropout
-~ [2] VALID (0 9858}: Batch+Dropout

5 i i » % » £ @
epoch no.

FIGURE 9. Coupling graph comparison.

TABLE 9. Performance evaluation test data.

Performance Evaluation

Test Data
Precision 96.0%
Recall 97.0%
F1 score 96.0%

and validation accuracies. More clearly, it can be observed
from the loss graph (top), validation loss starts to increase
after only 15 epochs.

G. TEST DATA EVALUATION

Upon completion of the development, regularization and
training process, the final phase involved testing of the pro-
posed architecture on the test dataset presented in Table 1. For
this, the training and validation datasets used in the previous
sections for model training were merged into a single training
dataset and performance evaluation of the trained architecture
was done on the test data.

Table 9 presents the performance of the proposed architec-
ture on the test dataset. Although, a slight drop in the overall
F1-score is seen (3%), the overall performance was impres-
sive at 96%, endorsing the high efficacy of the proposed
CNN-BDM in effectively designing a custom lightweight
architecture for the racking domain.

The results presented in Table 9 are complimented via the
class-wise confusion matrix presented in Figure 10. As per
the confusion matrix, 3 out of 96 samples belonging to the
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FIGURE 10. Confusion matrix for test data.

TABLE 10. Racking domain research comparison.

Racking Domain Research Comparison

Research Domain Dataset  Detector ~ Accuracy
size
23 Segmentation 75 Mask 93.45%
RCNN
24 Object 19,717 Mobile 92.7%
detection Net
V2
26 Object 2094 YoloV7 91.1%
detection
Proposed Image 1723 Custom 96%

classification

damaged class were misclassified as normal. Whilst 4 out of
80 normal instances were misclassified as damaged.

H. SOLUTION COMPARISON

Table 10 presents a comparison of the proposed research
against the three distinct research out available on automated
racking inspection. Starting with [23], although authors
demonstrate high performance (93.45%) based on a small
dataset, the selected architecture is not compatible with edge
deployment constraints. That is, Mask-RCNN is a compu-
tationally demanding architecture based on ResNet-101 as
its backbone, containing 44.5 Million learnable parameters,
compared to 6.5 Million for the proposed architecture. Prior
research done by [24], [25] also provides respectable perfor-
mance, however, in addition to requiring large amounts of
training data, both are based on the object detection domain.
Although, this is a computationally more lightweight option
as compared to segmentation, it does require additional data
preparation, i.e., the labelling of the ground truths (bounding
boxes), which may be affected by human bias. Alternatively,
our approach is attributed to the image classification domain,
hence eliminating the requirement of bounding box deter-
mination, providing a more robust processing pipeline. The
effectiveness of the proposed methodology is evident from
Table 10, achieving the highest accuracy at 96%.
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IV. DISCUSSION

The effectiveness of the proposed methodology has been
presented in an iterative manner, finally reaching an F1 score
of 96% on the test dataset. The inception of the research
was focused on comprehension and modelling of the initial
normal and damaged racking images. The motive behind this
was to generate a more representative dataset, containing
the key characteristics founding within different warehouse
settings with respect to pallet racking.

The proposed CNN-BDM presented a template for devel-
oping a custom CNN architecture via two checkpoints. The
first checkpoint required benchmarking the parameters of
the designed architecture against the SOTA look-up table,
to justify the creation of the architecture. The next check-
point was based on training the developed architecture on
the racking dataset, on globally defined hyperparameters.
As per the second checkpoint, the architecture required a
validation accuracy of 90% or greater. As demonstrated by the
initial architecture achieving a validation accuracy of 63.07%,
passing checkpoint one did not guarantee high accuracy as the
architecture may still lack the baseline capacity.

The second iteration of CNN-BDM provided impressive
performance achieving an F1 score of 98%. Hence, various
regularization techniques were applied for further enhance-
ment, with dropout at drop rate of 50% providing the high-
est performance of 99% for precision, recall and F1 score.
The proposed architecture was finally evaluated on the test
dataset, although a slight decrease in F1 score was seen, the
performance was nevertheless impressive at F1 score of 96%,
validating the proposed methodology.

V. CONCLUSION

In conclusion, the proposed CNN-BDM was successful in
developing a custom CNN architecture, containing only
6.5 Million learnable parameters, for the detection of defec-
tive pallet racking with an overall F1 score of 96%.

To the best of our understanding, this is the first work
focused on the development of a lightweight custom CNN
architecture aimed at the racking industry. As racking defect
detection via deep learning is a new research field, the
proposed CNN-BDM can play a critical role in propelling
research in the development of lightweight CNN architec-
tures to address the warehousing environmental and opera-
tional constraints such as limited computational power.

The proposed CNN-BDM provides researchers with an
alternative to transfer learning. Transfer learning can be a
lucrative option for many researchers with limited expertise
in CNN internal architecture development, however, transfer
leaning is usually based on SOTA architectures that can be
computationally very demanding, hence making the less fea-
sibly for deployment in constrained environments.

As an extension of this research, staying in line with
the lightweight industrial requirements for edge deployment,
additional strategies can be integrated into the CNN-BDM
for further compression of the learnable parameters with-
out significantly impacting the performance. Some of the
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compression techniques that can be experimented include
model quantization, compression and pruning applicable to
not only pallet racking but also other domains requiring
computationally lightweight architectures. With respect to the
pallet racking domain, future research will look to include
more fault types including racking base plate damage along
with horizontal supports with the aim to provide an inclusive
racking defect detection architecture.
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