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ABSTRACT Multi-view human pose recognition has been extensively studied in computer vision due
to its significant practical implications. Nonetheless, it remains a challenging task to effectively integrate
distinctive view-based features and perform thorough qualitative analysis and quantitative evaluations. In this
paper, based on an innovative multi-view fusion module and a novel Mutable Scaling Shortcut Connection,
a pseudo 3D pose recognition neural network was meticulously crafted. The proposed network framework
comprises four modules: Front ResidualModule, 3DConvolution Cross View FusionModule, Rear Residual
Module, and Detection Module. The Front Residual Module serves as the head module with incipient pose
heatmaps extraction functionality, taking preprocessed images of various views as separate inputs. The 3D
Convolution Cross View Fusion Module performs 3D convolution fusion for the heatmaps output from
Front Residual Module of each view, enabling the heatmaps to benefit from each other consequently. The
Rear Residual Module extracts deeper-level features, and ultimately the Detection Module performs pose
classification and recognition. The proposed network can be trained end-to-end and was evaluated with a
Self-Built Multi-View pose recognition dataset. Analytical and evaluation approaches were used to explain
the contributory effects of the 3D Convolution Cross View Fusion Module, which significantly improve
recognition accuracy from approximately 70% to 91%-94% through Feature Aggregation, Strong Interaction
Property among views, Sparsity Reduction, and Increasing Euclidean Distance.

INDEX TERMS Convolutional neural networks, Euclidean distance, image recognition.

I. INTRODUCTION
Human pose detection has been a popular research topic
in the fields of computer vision and computer graphics for
decades [1]. It allows for the recognition of specific body pos-
tures, such as sitting, meditation, standing, and squats, which
can have numerous practical uses. The classification and
recognition of human poses have the potential for extensive
applications in various fields. Developers can leverage these
applications, which have broad market prospects, for cer-
tain scenarios that require posture recognition and triggering,
such as Behavior Recognition, Human-Computer Interaction,
Video Games, Computer Animation, Virtual Reality, Reha-
bilitation Detection, and Robot Technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonio J. R. Neves .

With the introduction and progress of deep neural net-
works and computer vision technology, researchers have
made significant breakthroughs in human pose recognition
research by adopting diversified specific solutions [2], [3],
[4], [5], [6]. For example, the Cross View Fusion open-source
model developed by Microsoft Research Asia [6] for 3D
Human Pose Estimation has reduced estimation error to a
great extent. However, multi-view human pose recognition
remains a challenging task, requiring the fusion of multi-view
images and reasonable qualitative analysis and quantitative
evaluation.

This paper presents a meticulous crafting of a deep learn-
ing fusion neural network for Multi-View Pseudo 3D Pose
Recognition. The proposed model not only fuses feature from
multiple view images, but also facilitates improved accuracy,
resulting in promising performance. Our work is specifically
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designed to address the challenges in this area, and our main
contributions are outlined below.

• The network employs a CNN-based method to extract
preliminary features and generate initial heatmaps from
input images taken from diverse views To further
enhance the quality of 2D heatmaps, inspired by liter-
ature [6], we adopted the Cross View Fusion method
in the design of 3D Convolution Cross View Fusion
Module (3D CCVFM) This method cross and adds
heatmaps among each pair of views to fuse features from
other views and improve the heatmap quality of any
given view. Additionally, View Dimension is appended
to the feature map, and 3D convolution operation is
used to aggregate overall heatmaps. Experimental ver-
ification on a self-built dataset shows that the proposed
3D CCVFM can significantly improve model accuracy
from approximately 70% to 91%94%, demonstrating
promising performance on pose recognition tasks.

• Inspired by ResNet-50 [7] and LGAttNet [8],
we adopted a common deployment order of Convolu-
tion, Rectified Linear Unit (ReLU), and Batch Normal-
ization as the primary architecture for designing Front
Residual Module (FRM) and Rear Residual Module
(RRM). We also introduced the Pourer Layer into these
primary frameworks. Unlike the identity shortcut con-
nection, the proposed Pourer Layer features Mutable
Scaling Shortcut Connection (MSSC). This novel con-
nection mode allows the modulation factors to update
themselves during the backpropagation process. With
the network iteration model, the MSSC eventually finds
the optimum weighted proportions for both the shortcut
connection part and the residual function part. This
unique feature of the Pourer Layer results in improved
performance compared with the traditional identity
shortcut connection.

• In Section IV-E, we conducted a detailed analysis
and evaluation of 3D CCVFM from multiple perspec-
tives. As demonstrated in the experimental results of
Section IV-D, 3D CCVFM significantly improves the
accuracy of model. Therefore, in Section IV-E.1,
we conducted a qualitative analysis of the effective
principle of 3D CCVFM from two perspectives: Fea-
ture Aggregation and Strong Interaction Property among
views. Following this, in Section IV-E.2, we pro-
vided quantitative evaluation in terms of Sparsity and
Euclidean distance. The experimental statistical results
show that 3D CCVFM reduces the sparsity of feature
maps and increases the Euclidean distance by an order
of magnitude, indicating its superior performance.

II. RELATED RESEARCH
A. HUMAN POSE RECOGNITION
Multi-View 3D human pose recognition has been extensively
studied in computer vision due to the significant amount
of information that can be derived from the human body
posture, which plays a critical role in human communication.

However, much of the existing research focuses on 2D
images, videos, and multi-view videos. For instance, in the
work of Pehlivan and Duygulu [9], multi-view action videos
were captured using 5 cameras, and these videos were used
to construct volumes. Notably, these deep learning networks
that achieve high performance require large datasets to pro-
vide robust support for the model. For example, the meth-
ods proposed by Jammalamadaka et al. [10] were evaluated
quantitatively on a dataset consisting of a large number of
images from standard benchmarks and frames from Holly-
wood movies. Similarly, the method proposed in [11] was
applied to a dataset of 18 films, which contained more than
three million frames. Wang et al. [12] created a large 3D
Human Pose Recognition Dataset (HPRD) to evaluate pose
classification and retrieval. This dataset included 1000 sub-
jects, with each subject performing 100 poses.

However, the performance evaluation of our model was
done on a self-built, small-scale Multi-View Human Pose
Dataset, which means that we had limited data resources for
pose classification and recognition. Additionally, our work
differs from Human Pose Estimation (HPE) methods, such
as those discussed in the literature [2], [3], [4], [5], [6]. For
example, Qiu et al. [6] introduced a cross-view fusion method
in CNN to jointly estimate 2D poses in multiple views and
proposed a recursive image structure model to recover 3D
poses from 2D poses. Chen et al. [2] estimated 3D multiple
people poses from multiple calibrated camera views, taking
the 2D poses in different camera coordinates as input, with the
aim of acquiring exact 3D poses in global coordinates. Dong
et al. [3] utilized a multi-way matching algorithm to cluster
the detected 2D poses in all views. Zhang et al. [4] presented
a geometric approach to reinforce the visual features of each
pair of joints based on the IMUs and then lift the multi-view
2D poses to the 3D space by using an Orientation Regularized
Pictorial Structure Model (ORPSM). Pavlakos et al. [5] intro-
duced a geometry-driven approach to automatically collect
annotations for human pose prediction tasks. In contrast to
these previous works, our study focuses on the accuracy of
the classification and recognition tasks in terms of model
performance evaluation indicators.

B. MULTI-VIEW FEATURE FUSION
In the field of computer vision, the fusion of multi-view fea-
tures has become a common practice for obtaining more dis-
criminative features than the original input. The fundamental
concept of feature fusion is to combine the features extracted
frommultiple images to better utilize the advantages of multi-
view features. To fully exploit the potential of these diverse
features, it is essential to jointly model them. Appropriate
feature fusion methods have been shown to significantly
enhance the efficiency and effectiveness of various computer
vision tasks. Currently, there exist numerous feature fusion
methods utilized in computer vision, among which are the
Pooling Method, Ordered View Feature Fusion (OVFF), and
Image Addition.
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In order to synthesize feature information from multi-view
2D images, Su et al. [13] introduced the MVCNN archi-
tecture, which utilizes an innovative approach to perform
Max Aggregation of views using a view-pooling layer. The
MVCNN combines information from multiple views into a
single and compact shape descriptor, exhibiting commend-
able recognition performance. However, max-pooling selec-
tively captures the highest value in each feature map, which
may result in the loss of spatial information. Additionally,
without distinguishing whether a feature appears once or
multiple times, the intensity information of other features
may also be lost [14]. Furthermore, diverse pooling tech-
niques have been proposed by researchers for feature fusion,
including Within-Cluster Pooling [15], Soft-View Pooling
[16], Intra-Group View Pooling [17], Harmonized Bilinear
Pooling [18], Max-Pooling [19], Spatial Pyramid Pooling
[20]. The OVFF [12] organizes the feature data into blocks
based on viewing sequence and subsequently classifies it
through a full connection layer. Similarly, [21] also employs a
comparable connection method, whereby the resulting fused
feature map is fed into a CNN layer and a Flatten layer for
aggregation. The Image Addition method achieves feature
fusion by directly adding heatmaps, as demonstrated by Cross
View Fusion [6], Orientation Regularized Network (ORN)
[4], and other similar approaches.

Our proposed 3D CCVFM distinguishes itself from prior
research by emphasizing the importance of feature inter-
action among views. By expanding the view dimension
of the feature graph, our method enables multi-view fea-
tures to effectively and comprehensively interact during
the 3D convolution operation. Notably, to the best of our
knowledge, no prior work has leveraged 3D convolution
to integrate multi-view features and achieve superior net-
work performance. This is largely due to the challenging
task of aggregating corresponding features from diverse
views and conducting qualitative analysis and quantitative
evaluations, which constitute pivotal contributions of our
research.

C. SHORTCUT CONNECTION
In statistics, the residual is initially defined as the discrep-
ancy between an actual observed value and its corresponding
estimated value (also known as the fitted value). Residual
networks, or ResNets [7], have gained popularity in the
deep learning field due to their ability to break permutation
symmetry [22], enhance generalization [23], and outperform
other networks in the ImageNet image recognition compe-
tition. In fact, ResNet has become a fundamental network
in the field of deep learning. ResNet_V2 [24], on the other
hand, is a variation of ResNet that restructures the inte-
gral components sequence based on the ResNet architecture.
Residual networks have been demonstrated to simplify the
learning process and enhance effectiveness in various studies
by leveraging the learning of the difference value in the signal
rather than the original signal itself.

In recent years, ResNet-based research has yielded numer-
ous outstanding achievements [23], [25], [26], [27], [28],
[29], most of which are variant networks derived from
ResNet. For example, Xie et al. constructed ResNext
[25], which combines the ResNet and Inception Network
(GoogleNet) [30] inspirations to acclimatize updated datasets
or tasks. Huang et al. proposed a new architecture, DenseNet
[26], that concatenates all layers directly through shortcut
connection. In addition, by capitalizing on the advantages of
the Dropout technique [31], Huang et al. [27] extended the
method of randomly discarding certain hidden units in the
fully connected layer to residual blocks. Chen et al. treated
ResNet and DenseNet as two channels in parallel, and then
fused the information to obtain Dual Path Network [28].
Veit et al. [23] successfully removed certain trained layers in
ResNet and discovered that the network still maintained rel-
atively fantastic performance. Furthermore, complex variant
networks known as ResNet in ResNet (RIR) structures [29]
have also been proposed.

However, these existing works primarily focuses on the
architecture refinement of the original Residual Unit, which
employed a simple matrix addition operation to connect
the shortcut and residual function components, commonly
known as the conventional identity shortcut connection [7],
[24]. As a result, attention was not given to the feature
vector channels screening. Despite the existence of ResNet
variants with attention mechanisms, such as Selective Kernel
Networks(SKNet) [32], Split-Attention Networks(ResNeSt)
[33], Squeeze-and-Excitation Network [34], Deep Residual
Shrinkage Networks [35], and other notable research endeav-
ors, their focus was mainly on refining the residual function
and not on weight allocation within the identity shortcut
connection. When it comes to strengthening or weaken-
ing specific feature channels for screening purposes, these
approaches have paid little attention to weight allocation
within the identity shortcut connection.

This paper proposes a novel approach that focuses on
configuring the weight proportions between the shortcut
connection and residual function components. Our method,
the Pourer Layer, leverages the Mutable Scaling Shortcut
Connection (MSSC) mechanism, which enables simultane-
ous modulation of channel-weighted proportions and can be
optimized during network training iterations. However, the
hardness of this method is incapable of invoking existing
functions directly such as convolutional layer, pooling layer,
and fully connected layer, for automatic weight parameter
updates. Instead, this approach poses a challenge as it requires
the development of underlying algorithms.

III. NET DETECTION MODEL DESCRIPTION
As depicted in Fig. 1, the Pseudo 3D Pose Recognition Net-
work is comprised of four sequential modules, with data input
of each view corresponding to an autonomous Front Residual
Module (FRM). The preprocessed images are methodically
organized into data clusters, wheremultiple views of the same
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pose form an image data group. It is noteworthy that during
the end-to-end training and inference of network, the input
unit is no longer limited to a single two-dimensional pose
detection image, but rather comprises an entire image data
group, which is then associated with a single label.

The 3D Convolution Cross View Fusion Module (3D
CCVFM) commences by performing a cross-image addition
operation on the output features generated by FRM of each
view. Subsequently, the feature image data are passed through
the first RS layer, where it undergoes deformation, rearrange-
ment, and is merged into a block data structure that facilitates
3D convolution input. The 3D convolution layer within the
module compresses the feature data of N2

view dimensions into
a singular unit, thereby achieving views fusion. During the 3D
convolution process, the module enables information inter-
action by considering view-versus-view and channel-versus-
channel, thus ensuring comprehensive information exchange.
To enable deeper feature extraction by the Rear Residual
Module (RRM), the second RS layer deforms the output of
the 3D convolution layer, thereby maintaining consistency
with the output data size of FRM.

The RRM captures intricate features, which are subse-
quently classified and recognized by the Detection Module
(DM). DM is a shallow neural network module that incor-
porates a Global Average Pooling (GAP) [36] layer and a
fully connected layer, enabling classification of multi-view
poses. The integration of GAP not only curtails the number of
parameters but also mitigates the risk of overfitting that arises
due to redundant spatial information. The ultimate output of
network is represented through Softmax prediction labels.
Following subsections explain these modules at great length.

A. NETWORK COMPONENTS
The 3D CCVFM encompasses several image aggregation
functions, coupled with two RS layers that facilitate data
transformation in diverse ways, and a fusion layer based on
3D Convolution operation. Notably, the FRM and RRM, two
finely crafted 2D-CNN components of the network archi-
tecture, integrate Pourer Layers that exploit the advantages
of Mutable Scaling Shortcut Connection mode, resulting
in enhanced performance. Additionally, the DM component
comprises a GAP layer, a 2048 fully connected layer, and a
Softmax layer for accurate and efficient classification.

1) FRONT RESIDUAL MODULE (FRM)
In general, FRM is implemented utilizing a convolutional
neural network without fully connected layer but Pourer
Layer. The FRM architecture described in this paper com-
prises four 2D convolutional layers (trunk) and one down-
sampling layer (branch) to extract heatmaps from input
images. As demonstrated in Fig. 2, the trunk draws inspira-
tion from ResNet-50 [7] and LGAttNet [8] and includes a
max-pooling layer attached to the first convolutional layer.
The subsequent layers employ a common design structure of
Convolution, ReLU, and Batch Normalization. The Strided
Pooling and Strided Convolutional Layers compress the

spatial dimension, reducing the input data shape from H×W
toH/2×W/2. In the branch, a down-sampling layer is attached
to the Pourer Layer, establishing shortcut connections to pre-
vent gradient exploding and vanishing. Shortcut connections
can also alleviate network performance degradation resulting
from deepening the network, a challenge that conventional
normalized initialization and batch normalization are inca-
pable to overcome [7]. It should be emphasized that FRM
requires 3-channel input images of multi-view pose in 112×

112 dimensions. The implementation of FRM is transformed
as follows.

MFRM_i = FFRM_i (Ii) (1)

The variable Ii is the input of the FRM function, corre-
sponding to the FRM of the ith view. Here, the digit i denotes
the position of the view, ranging from 1 to Nview, where Nview
represents the total number of views. After processing the
input image, each FRM generates an initial pose heatmap
represented byMFRM_i.

2) 3D CONVOLUTION CROSS VIEW FUSION MODULE
(3D CCVFM)
As depicted in Fig. 1, during each batch of the training or
inference process, the 3D CCVFM receives a simultaneous
input of Nview featuremaps for cross fusion processing during
the forward propagation phase. To obtain new superimposed
feature maps that benefit from additional information pro-
vided by other views, each output feature map from the FRM
undergoes an image addition operation with the output of
other FRMs. As a result of this operation, Nview correlated
superimposed feature maps are produced from each FRM,
leading to a total of N2

view superimposed feature maps in each
operation batch. This technique facilitates the exchange of
feature information among different views and enhances their
information sharing capability.

In the case of N2
view superimposed feature maps with a

shape of H × W × C, they are intrinsically independent of
each other and, as such, cannot be directly subjected to the 3D
convolution kernel operation. To enable the fusion operation
of 3D convolutional layers, the first RS layer introduces a
novel dimension (the ‘‘view’’ dimension) and preserves the
original data arrangement of dimensions H, W, and C. The
N2
view feature maps are then reorganized along this view

dimension. This reshaping of feature data effectively elevates
the dimensionality from 3 to 4, thereby transforming the
size from H × W × C to H × W × N2

view × C, which aligns
precisely with the kernel size of the 3D convolution layer
(i.e., 1 × 1 × N2

view × C).
The 3D convolution kernel has a size of 1 × 1 in both the

height and width dimensions. This indicates that the convolu-
tion operation preserves the original dimensions of its input
maps and disregards information interaction within the same
channel or view. It enhances performance by incorporating
the ‘‘view’’ dimension. In fact, the 3D CCVFM facilitates
information integration across different views and channels,
making it a noteworthy advancement.
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FIGURE 1. The overall architecture of the proposed Pseudo 3D Pose Recognition Network model. The input data of each view correspond to an
independent Front Residual Module. In 3D Convolution Cross View Fusion Module (3D CCVFM), the annotations on arrows represent the shape of feature
map, such as H × W × C represents Height × Width × Channel. In 3D convolution layer, the annotations denote parameters, including height, width,
length, channel and stride.

FIGURE 2. Front Residual Module: ‘I’ is the input image given to the Front Residual Module, a shallow five-layer CNN including the proposed Pourer
Layer. The heatmap is output from the last ReLU layer and fed to the 3D CCVFM. In each operation layer, the annotations denote parameters, such as
height, width, length, and stride.

FIGURE 3. Rear Residual Module: Input given to this twelve-layer convolutional network including the proposed Pourer Layer is the feature map fused by
3D CCVFM. Rear Residual Module captures high-level features and the result is fed to the DM for pose classification. Within each operation layer, the
annotations represent parameters such as height, width, length, and stride.

As a result of the fused output no longer necessitating the
view dimension, the second RS layer extracts and discards
this dimension, achieving consistency between the ultimate
output form of 3D CCVFM and that of the single FRM.
The reshape operation does not alter the total number of ele-
ments in the tensor. However, it performs essential dimension
adjustments and order remodeling among the elements. These
adjustments and remodeling are significant for the network
to align the convolution kernel with data that have varying
dimensions and scales.

The resultant feature map, M3D_CCVFM, is given as
follows.

M3D_CCVFM = F3D_CCVFM(MFRM_1,MFRM_2, . . .

,MFRM_Nview) (2)

Nview denotes the total number of views, and MFRM_1,

MFRM_2, . . . ,MFRM_Nview respectively correspond to the out-
puts generated by FRM for each view. Each of these outputs
independently serves as an input to the 3D CCVFM func-
tion F3D_CCVFM, which subsequently produces M3D_CCVFM
through a transformation process. The latter is then exported
to capture deeper features downstream in the network.

3) REAR RESIDUAL MODULE (RRM)
RRM employs widely-used architecture, including Convolu-
tion, ReLU, and Batch Normalization, as its primary design
features, similar to FRM. To ensure data shape consistency
with the trunk, the branch performs both down-sampling and
increasing channel in the feature maps. In contrast to FRM,
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RRM utilizes a greater number of network layers, comprising
of three bottleneck structures, as illustrated in Fig. 3. This
increased depth allows RRM to extract deep features from
the 3D CCVFM output, which are subsequently transmitted
to the DM at the end of the network.

As the depth of network layers increases, the neural net-
work can capture increasingly abstract features, leading to
a greater potential for arranging and combining these fea-
tures. To achieve strong expressive power, it is necessary to
gradually decrease the height and width dimensions while
increasing the number of channels in the network, as noted
by [37]. To ensure that the feature information is adequately
conveyed, the feature maps undergo three successive rounds
of down-sampling from the input to the output. By setting the
stride to 2, the height and width dimensions of the feature
map are reduced by half at each down-sampling stage, while
the number of channels is doubled. The resulting high-level
feature map on the RRM output side is highly simplified in
terms of height and width, but contains numerous channels,
with a size of 2 × 2 × 2048. At this point, the feature map
captures most of the crucial features for the network design
task, rendering it suitable for classification and recognition.

The implementation of RRM is expressed as follows.
Specifically, FRRM,MRRM, andM3D_CCVFM respectively rep-
resent the function, output, and input of RRM. M3D_CCVFM
also denotes the output generated by the 3D CCVFM.

MRRM = FRRM(M3D_CCVFM) (3)

FIGURE 4. Pourer Layer: The output of shortcut connection part h(xl ) and
the residual function part f(xl , wl ) are fed into Pourer Layer. Then their
corresponding channels are modulated and added to form the
output xl+1.

4) POURER LAYER (PL)
The utilization of residual learning in neural networks is a
key technique that enables optimization through the inclusion
of shortcut connections. A residual block, also known as a
residual unit, is a module that consists of multiple layers with
shortcut connection and preserves the integrity of information
flow from the input to the output port. By training the residual
feature, the learning objective and complexity are simplified,
thereby facilitating network optimization.

The proposed Pourer Layer distinguishes itself from the
traditional Identity Shortcut Connection (ISC) by capitalizing
on the Mutable Scaling Shortcut Connection (MSSC). Fig. 4
illustrates how the Pourer Layer facilitates the configuration
of weighted parameters ζ and ϑ for the shortcut connection
section and residual function section, respectively. The corre-
sponding channels are then added to form the output feature
map.

Initialized with 1, ζ and ϑ are both parameter vectors
whose dimensionality corresponds to the channel number
of the Pourer Layer inputs. Continuous self-optimization
through a one-hundred-fold learning rate in the backpropa-
gation process of model, ζ and ϑ can be optimized to achieve
the best possible weighted proportions. Through iterative
training, shortcut connection part and the residual function
part can acquire the optimal weighted proportions, i.e., the
optimized solution of ζ and ϑ . The implementation of the
Pourer Layer is transformed as

xl+1 = ζl · h (xl) + ϑl · f (xl,wl) , (4)

where xl and xl+1 respectively represent the input and out-
put of the l th residual unit, whereas h and f denote the
shortcut connection function and residual function. Respec-
tively ζl and ϑl are weighted parameters of h and f. wl is a
set of weights (and biases) associated with the l th residual
unit. By recursively applying this formulation, the equational
expression is obtained as

xl+2 = ζl+1 · h (xl+1) + ϑl+1 · f (xl+1,wl+1) . (5)

Equations (4) and (5) share similarities with the Con-
stant Scaling Shortcut Connection (CSSC) and Convolutional
Shortcut Connection (CSC), as discussed in the literature
[24]. However, it is worth noting that the textual MSSC
exhibits some notable characteristics. Firstly, the network uti-
lizesMSSC only a few times, whichmitigates the exponential
increase or decrease of the modulation factors, ζ and ϑ . This
can prevent optimization difficulties and network crashes,
as observed with CSSC testing on ResNet-110 (which con-
sists of 110 layers). Secondly, ζ and ϑ are independent of
each other within any residual unit. Finally, in the process
of network backpropagation, ζ and ϑ update themselves to
meet the optimal weighted proportions required for network
performance.

In the preceding analysis, the Pourer Layer does not hin-
der the propagation of information or impede the training
procedure. On the contrary, the additive modulated factor
enhances the effective transmission of information. The gra-
dient equation for xl during backpropagation from any deeper
unit l + 1 to any shallower unit l is decomposed as follows.
Based on the chain rule of backpropagation, (6) is derived,
where the loss is denoted as E .

∂E
∂xl

=
∂E

∂xl+1

∂xl+1

∂xl
=

∂E
∂xl+1

[
ζl ·

h (xl)
∂xl

+ ϑl ·
f (xl,wl)

∂xl

]
(6)
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In the same way, the gradient equation for ζl and ϑl can
be decomposed as follows. The ratio can be obtained as
grad (ζl) /grad (ϑl) = h (xl) /f (xl,wl) by comparing the two
expressions.

grad (ζl) =
∂E
∂ζl

=
∂E

∂xl+1
·
∂xl+1

∂ζl
=

∂E
∂xl+1

· h (xl) (7)

grad (ϑl) =
∂E
∂ϑl

=
∂E

∂xl+1
·
∂xl+1

∂ϑl
=

∂E
∂xl+1

· f (xl,wl) (8)

5) DETECTION MODULE (DM)
The DM comprises a Global Average Pooling (GAP) layer
and a fully connected layer with a size of 2048. The GAP
layer aggregates spatial information and is more resistant to
spatial variations in input feature. As a result of the GAP
layer, the feature map is transformed from 2 × 2 × 2048 to
1 × 1 × 2048, reducing the required fully connected layer
size and effectively avoiding over-fitting caused by a large FC
layer. Additionally, a softmax classification layer is appended
to the DM to generate the initial output for the classification
task, ultimately outputting predicted probability values. The
pseudo 3D pose recognition task via the DM is explained
in (9), where MRRM, FDM, and p represent the RRM output,
DM function, and prediction probabilities associated with the
input sample, respectively.

p = FDM(MRRM) (9)

B. LOSS FUNCTION
During the training process, the typical softmax cross-entropy
loss was utilized as a classification loss to optimize themodel.
Here, the associated ground truth label vector is denoted by y,
and the predicted values for the corresponding image sample
group are represented by p = [p1, . . . pK ], where K is the
number of pose categories.

Ecls = −y · log (p) (10)

IV. EXPERIMENTAL SETUP AND RESULTS
A. DATASETS ESTABLISHMENT
We constructed a small Multi-View Human Pose Dataset for
the Pseudo 3D Pose Recognition task, comprising approx-
imately 1.5 thousand multi-view human pose images from
4 participants. The details of the dataset collected for the
experiments are provided below. As indicated in Fig. 5,
the participant is positioned upright along a fixed axis (the
z-axis), and eight cameras are directed toward the centre
with a 45◦ angle between each adjacent view. These cam-
eras surround the central participant for image capture and
data collection. Eight images captured from the same pose
comprise an image data group, which is preprocessed and
utilized as a single input unit for the network. To accurately
reflect model performance, the standard distributional per-
centage was utilized for small datasets to develop and test
our ideas and models. Specifically, the ratio of the training
set, validation set, and test set is approximately 6:2:2.

FIGURE 5. Illustration of Multi-View Human Pose Dataset establishment
process. The cameras, directing to the centre participant, corresponding
to the eight views, are all at the same level of height.

B. PRE-PROCESSING
The preprocessing of the image entails three essential
stages: data augmentation, intensity normalization, and scale
normalization. During the data augmentation phase, the
Hard/Local Attention Mechanism enhancement method is
utilized to eliminate irrelevant areas of the image directly. The
modulation weight is assigned as zero for background areas
that are uncorrelated with the pose and as one for postural-
related regions. This process discards background details and
reduces noise disturbances, as these regions contain no valu-
able information regarding pose recognition. The superiority
of this approach lies in its allocation of limited information
processing resources to the critical portions of the image. As a
result, the neural network can focus on a specific region and
pay strong attention to it, thereby reducing the computational
cost and improving the accuracy of pose recognition. During
the intensity normalization stage, the original images are
converted into corresponding standard forms, inspired by the
approach in Convolutional 3D (C3D) [38]. Thirdly, in the
scale normalization section, the images are reduced to a size
of 112 × 112 pixels using the linear interpolation method.
This technique simultaneously preserves the bulk principal
information of the image data and compresses data size. The
scale normalization process mitigates the computational load
during both model training and inference.

C. EXPERIMENTAL SETUP AND PARAMETERS
All the experiments were conducted with Ubuntu 20.04,
Python 3.8.11 and PyTorch 1.9.0 on an NVIDIA GeForce
RTX 3090 GPU Server (24 GB). Prior to being fed into the
inception network, the images were preprocessed and resized
to 112 × 112 pixels. The network employed gradient descent
method with an SGD optimizer for iterative optimization.
An initial learning rate of 0.008 and a momentum of 0.9 were
utilized to accelerate model convergence. Weighted decay
implementation was performed by capitalizing on a scheduler
to divide the learning rate by 10 every 10 epochs. Model
training was carried out for 40 epochs, with early stopping
employed.
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TABLE 1. The pseudo 3D pose recognition outcomes using various performance metrics.

D. ABLATION STUDIES AND OUTCOMES
The present study draws upon data obtained from our
Multi-View Human Pose Dataset, a collection of diminutive
yet richly informative samples. To evaluate the efficacy of
our experimental approach, we focused on two distinct pose
classes from the test set and employed a range of performance
metrics, including F1-score, recall, precision, and accuracy.
By considering the latter, we were able to gain a more
comprehensive understanding of the predictive capabilities of
model and assess its overall effectiveness.

To evaluate the effectiveness of the model, the confu-
sion matrix technique was applied, and second-level evalu-
ation indicators, namely accuracy, recall, and precision, were
derived from the basic statistical results of the confusion
matrix. The three-level evaluation index, F1-score, was estab-
lished based on recall and precision mapping. During the
experiment, the weight data of the model that exhibited the
highest accuracy on the validation set were selected for infer-
ence on the test set. An experimental ablation study method
was implemented to explore the contribution of each factor
to the overall model performance by eliminating various
module components. The classification performance of the
pose recognition task was quantified using the index values
presented in Tab. 1.

The Multi-View Human Pose Dataset comprises two dis-
tinct classes, each representing a diverse pose. The Fusion
Module Network (FMN), which incorporates a 3D CCVFM,
utilizes a group of images from eight different angles fea-
turing the same pose as its input unit. Conversely, the archi-
tecture of the Without Fusion Module Network (WFMN) is
based on a sequence of FRM (single), RRM, and DM. As the
WFMN only contains a single FRM, it is only capable of pro-
cessing a single image as input. To ensure a fair comparison
with the FMN, the aggregate amount of input data for the
WFMN was kept consistent with that of the FMN during the
training, validation, and testing phases.

Tab. 1 illustrates that the incorporation of cross-fused fea-
tures across multiple views leads to a substantial enhance-
ment in pose recognition performance by utilizing the 3D
CCVFM. Specifically, the effectiveness of the 3D CCVFM
is demonstrated by the considerable improvement in model

accuracy, which elevates from approximately 70% to high
levels ranging from 91% to 94%.Moreover, the incorporation
of the Pourer Layer yields improvements in various evalua-
tion metrics, including precision, recall, and F1-Score. These
findings suggest that both the 3D CCVFM and Pourer Layer
significantly contribute to the improved recognition accuracy
of the network.

E. ANALYSIS AND EVALUATION
In Section IV-E.1, a qualitative analysis is provided to
examine the effective principles of 3D CCVFM from the
perspectives of Feature Aggregation and Strong Interac-
tion Property among views. Subsequently, Section IV-E.2
presents a quantitative assessment using sparsity and
Euclidean distance as metrics. These results demonstrate that
our proposed 3D CCVFM architecture plays an important
role in the performance improvement of multi-view classi-
fication network.

1) QUALITATIVE ANALYSIS
To gain a more profound insight into the neuronal activa-
tion and channel interactions in feature maps, it is imper-
ative to visualize the input and output of the 3D CCVFM.
As depicted in Fig. 6, the preprocessed images exhibited a
notable suppression of irrelevant information, notably facial
details, while diligently preserving the crucial postural fea-
tures. The visualization was accomplished by displaying two
kinds of heatmaps, one illustrating the transformation from
FRM to 3D CCVFM and the other demonstrating the trans-
formation from 3D CCVFM to RRM. These heatmaps were
arranged along the channel dimension to facilitate visualiza-
tion. Upon visualizing the heatmaps, it became apparent that
the output from FRM was intricate, owing to the entangle-
ment of dense feature information. By contrast, the output
from 3D CCVFM exhibited a clear distinction among chan-
nels. This observation was further validated by experimental
statistics, which showed a lower level of sparsity and larger
Euclidean distance, as elucidated in Section IV-E.2. The qual-
itative analysis of the visualization experiment underscores
the detailedness of the generated feature maps. Specifically,
the 3DCCVFM architecture produced feature maps that were
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distinct, informative, and less sparse. These findings portend
the potential of 3D CCVFM in enhancing the performance
of neural networks. The detailedness of qualitative analysis
is described as follows.

a: FEATURE AGGREGATION
In general, relevant features are defined as image infor-
mation advantageous for the current pose recognition task,
whereas irrelevant features do not contribute to the task.
Operations in a convolutional neural network, such as con-
volution, pooling, and activation, can be thought of as a
multi-stage process that distills information from feature
maps. This process continuously filters out irrelevant fea-
tures, retaining high-level relevant features for classification
and detection. As presented in Fig. 6, the input heatmaps of
3D CCVFM contain a large number of irrelevant features,
resulting in complicated feature maps that conceal critical
information for pose recognition. This extensive presence
of irrelevant features negatively impacts learning efficiency
and network performance. Fortunately, the feature distinc-
tion among channels becomes clear after cross-view fusion
with 3D CCVFM. This process strengthens and integrates
the differentiated features learned by each view while sup-
pressing irrelevant features, effectively reducing the burden
on subsequent RRM and DM to extract and learn relevant
features. As a result, 3D CCVFM helps to learn more rel-
evant pose discrimination features, substantially improving
network accuracy and achieving higher pose recognition
performance.

b: STRONG INTERACTION PROPERTY AMONG VIEWS
The Convolutional Neural Network (CNN) boasts three
kinds of principal features: intra-channel, inter-channel, and
channel fusion. The convolutional layer of CNN facili-
tates interaction between channels and generates new chan-
nels in the subsequent layer. If there is no view fusion
function present, Multi-View Convolutional Neural Net-
works (MVCNN) struggle to aggregate discriminative fea-
tures. This challenge arises from the mutual independence
of inception multi-view data among views fed into the net-
work. The absence of a view fusion function will impede
the detection algorithm from effectively learning and exploit-
ing the complementary information across views. This paper
proposes a pivotal operation in the 3D CCVFM that extends
dimensionality of the feature map, enabling a focus on
the information interaction of the novel dimension (the
view dimension), transforming its size from H × W × C to
H × W×N2

view×C. Themost remarkable aspect is the 1×1×

N2
view ×C convolution operation in 3D CCVFM, which con-

ducts view-versus-view and channel-versus-channel interac-
tions, as opposed to interactions within the same view and
channel. This unique interaction mode plays an integral role
in disentangling the intricate relationship between features
among channels and strengthening the connection among
diverse views.

2) QUANTITATIVE EVALUATION
a: SPARSENESS EVALUATION
To validate that the feature maps processed by 3D CCVFM
aggregate more critical features with a discriminatory effect,
we analyzed the output feature maps of multiple FRMs and
3D CCVFM from the perspectives of sparsity and Euclidean
distance. Moreover, we employed the sparseness function
defined by Hoyer [39] to measure and evaluate the feature
map x. This function is widely acknowledged and accepted
for assessing the sparseness of neural representations.

S (x) =

√
n−

(∑
|xi|

)
/

√∑
x2i

√
n− 1

(11)

n in (11) refers to the dimensionality of the feature map x. The
function evaluated by S (x) returns a value of unity if and only
if x contains only a single non-zero component. Conversely,
it takes a value of zero if all components of x are non-zero
and their absolute values are equal. The formula for S (x)
suggests that its value is smaller for smoother images, and
larger for imageswithmore texture. It should be noted that the
sparseness of x, as measured by S (x), lies between 0 and 1,
with lower values indicating lower sparsity. This relationship
is clearly demonstrated in Fig. 7, which presents the statistical
results of our experiments on the test set.

To be more explicit, based on the feature response
maps (FRMs) of each view, the output feature maps exhibit a
sparseness distribution ranging from approximately 0.44 to
0.47, whereas the output of 3D CCVFM demonstrates a
sparseness level of around 0.19. Results from the experiments
indicate a discernible reduction in feature map sparsity for
all test samples. This reduction in sparsity can be attributed
to the 3D CCVFM method aggregating a greater number of
discriminating features.

b: EUCLIDEAN DISTANCE EVALUATION
Conventionally, the similarity between two images has been
measured by computing the Euclidean distance between their
corresponding feature representations [40]. This method of
similarity calculation is convenient and widely used in var-
ious domains such as image retrieval [40], [41], semantic
labeling [42], face recognition [43], [44], motion capture
[45], clustering algorithms [46], [47], and others, owing to its
effectiveness and ease of computation. In the last few years,
scholars have introduced more sophisticated techniques for
evaluating image similarity, such as deep learning-based
models [48]. Nevertheless, despite the advent of these inno-
vative approaches, the Euclidean distance measure persists
as a pertinent and commonly employed tool for gaug-
ing image similarity, thanks to its straightforwardness and
comprehensibility.

In this paper, the Euclidean distance method is employed
to address the distance between two vectors, which can range
from 0 to infinity. The degree of similarity increases as the
distance between the vectors decreases. To this end, (12)
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FIGURE 6. Visualization of FRM and 3D CCVFM using Channel Arrangement Method. Each small square heatmap in the figure represents a channel or a
node in the input or output of 3D CCVFM. The channel arrangement method is used to spread the input and output along the channels for visualization
purposes.

FIGURE 7. Experimental results and statistics of Sparsity. The outputs of
FRM are corresponding to the left blue vertical axis and the outputs 3D
CCVFM is corresponding to the right brown vertical axis.

is utilized to calculate the Euclidean distance between any
two channels in the feature map. Subsequently, the Average
Euclidean Distance (AED) is obtained by taking the average
of the c2 − c preliminary calculation values (where c repre-
sents the number of feature vector channels), which can be
used as a measure for evaluating the feature map.

D =

√∑n

i=1
(xi − yi)2 (12)

LAED = Avg(D1, . . . ,Dc2−c) (13)

FIGURE 8. Experimental results and statistics of Euclidean distance. The
outputs of FRM are corresponding to the left blue vertical axis and the
outputs 3D CCVFM is corresponding to the right brown vertical axis.

D denotes the preliminary calculation Euclidean distance
values, with x and y representing two diverse channels, and n
denoting the dimensionality of x and y. The mean evaluation
value of the final calculation is represented by LAED. Fig. 8
demonstrates the experiment statistical result.

The implementation of the 3D CCVFM has significantly
enhanced the Average Euclidean Distance (AED) of the
feature map, from approximately 20 to around 500. This
results in an order of magnitude in the overall level of AED,
indicating that 3D CCVFM focuses on strengthening the
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discriminative ability of the feature map among channels.
Subsequent fusion of the features leads to a reduced similarity
among channels, an increased discrimination degree, and
improved identification accuracy.

In summary, the 3D CCVFM enhances the discrimina-
tive features of multiple views and reduces the sparsity of
feature maps. This module offers several advantages to the
network: Firstly, it effectively suppresses irrelevant features
and consolidates discriminative features frommultiple views,
which helps to focus on significant features. Secondly, the 3D
CCVFM reduces the number of zero components in feature
maps. Thirdly, 3D CCVFM introduces a novel dimension
(the ‘‘view’’ dimension) of feature maps that promote interac-
tion among different views and strengthen their connections.
Lastly, this module improves the Average Euclidean Distance
of feature maps by an order of magnitude, thereby increas-
ing the feature discrimination among channels. Overall, the
utilization of 3D CCVFM in the network provides signifi-
cant benefits, including improved feature discrimination and
reduced sparsity in feature maps.

V. CONCLUSION
In this study, a novel network for recognizing pseudo 3D
human poses from multiple views is proposed. Through
comprehensive ablation studies on a self-built dataset, the
results demonstrate that the integration of the 3D CCVFM
and Pourer Layer significantly improves various performance
indicators of the model. Qualitative and quantitative evalu-
ations are conducted to explore the effective principles of
the 3D CCVFM from multiple perspectives, validating the
effectiveness of our proposed solution. These findings can
inform future research in the area of multiple view fusion, and
contribute to the development of more robust and accurate
recognition models.
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