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ABSTRACT Traffic congestion is a major source of discomfort and economic losses in urban environments.
Recently, the proliferation of traffic detectors and the advances in algorithms to efficiently process data
have enabled taking a data-driven approach to mitigate congestion. In this context, this work proposes a
reinforcement learning (RL) based distributed control scheme that exploits cooperation among intersections.
Specifically, a RL controller is synthesized, which manipulates traffic signals using information from
neighboring intersections in the form of an embedding obtained from a traffic prediction application.
Simulation results using SUMO show that the proposed scheme outperforms classical techniques in terms
of waiting time and other key performance indices.

INDEX TERMS Reinforcement learning, cyber-physical systems, intersection control, distributed control.

I. INTRODUCTION
Traffic congestion represents a serious problem for urban
environments, due to its high monetary cost and the negative
effects it has on the inhabitants of the area, caused by the
generation of air pollution, delays in emergency services,
and stress-related nervous diseases [1]. In 2020, there was a
drastic decrease of vehicular traffic in large cities globally,
caused mainly by the worldwide lockdowns imposed due to
the COVID-19 pandemic. However, recent data shows that
the upward trend in traffic congestion that was observed
in previous years could quickly resume. Indeed, in 2021,
traffic congestion in the United States costed drivers over $53
billion, a 41% increase from the previous year [2]. In this
context, it is imperative to find efficient ways for reducing
congestion.

The use of Urban Traffic Control (UTC) systems for
efficient intersection management has been the standard
solution to mitigate congestion. UTC systems are the
backbone of modern Intelligent Transportation Systems
(ITS) [3], which focus on the use of technology to effectively
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manage traffic [1]. Due to the extensive deployment of
traffic detectors and the recent advances in computational
equipment to efficiently process data, the current research
trend in the area focuses on the use of data-driven algorithms
to implement different high-level applications that help in
improving traffic conditions [4]. In this setting, two of the
most studied applications are: traffic prediction [5], which
allows making strategic decisions to improve future traffic
conditions; and automatic controllers that act in real-time on
traffic signals, which allows taking immediate actions based
on the current traffic conditions.

Due to the data-driven nature of the problem and the
stochastic complexity, Neural Networks (NNs) have emerged
as a natural tool to implement some of these applications,
thanks to their ability to find complex relationships within
the process [6]. Specifically, Reinforcement Learning (RL)
NNs models are a promising choice for controller design,
given their ability to learn optimal action policies from the
interaction with the environment.

RL algorithms can be used to handle specific events,
as in [7] where a transfer learning method is used to shorten
the time needed to adapt to unexpected emergency situations,
or to manipulate traffic lights in order to optimize traffic.
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Some examples in this latter area are: i) the work in [8], which
uses a Q-network to act on the traffic light, in conjunction
with the Webster’s method to achieve the stable learning
performance of the agent; ii) the work in [9], which goes
further by implementing a cooperative method based on the
Proximal Policy Optimization (PPO), using a Convolutional
Neural Network (CNN) as Actor-Critic, to decide the phase
change moments of the traffic light; and iii) the work in [10],
where, exploiting the idea of modeling traffic networks as
graphs, a Graph Neural Network (GNN) is implemented
as Actor-Critic model to learn cooperative control policies
for phase changes in traffic lights, using the communication
properties of GNNs.

Inspired by the latest developments and success of RL in
areas as diverse as prognosis [11], social networking [12], and
bio-inspired flocking control [13], in this paper we propose
a RL-based distributed control scheme for cooperative
intersection control. The proposed approach determines the
state of the intersection by combining real-time data from
traffic detectors at the intersection, with past and future traffic
information, from the ego and neighboring intersections,
encoded by a GNN traffic prediction model. This state serves
as the input of a RL controller that uses a GNN to calculate,
cooperatively, the ‘‘split’’ of traffic lights. Concretely, the
main contribution of this work is the design of a distributed
PPORL controller for cooperative intersection control, which
works in tandem with a GNN traffic prediction model that
encodes the information of intersections and feeds the PPO
RL controller. To illustrate the benefits of the proposed
approach, an extensive simulation study is performed, which
includes a comparison with classical approaches.

The rest of this manuscript is organized as follows. In Sec-
tion II a brief review of related work on data-driven traffic
prediction and RL-based controller design is presented.
In Section III, the architecture of the proposed solution is
detailed, describing the intersection model, traffic data and
control actions used. In Section IV the GNN-based prediction
model used to create the state embedding is introduced,
while in Section V the RL controller is exposed in detail.
In Section VI an extensive performance evaluation of the RL
controller is given and, finally, in Section VII conclusions and
directions for future work are stated.

II. RELATED WORK
The pertinent state of the art in the area includes the design
of deep learning (DL) algorithms, which exploit the data
collected from the transportation infrastructure, for the
implementation of applications such as: traffic prediction or
real-time controllers that manipulate traffic lights.

Regarding traffic prediction, in [14], a GNN traffic
prediction model based on the Wavenet model for raw audio
generation is presented. This model, called Graph WaveNet
(GWNet), uses stacked blocks of dilated 1D convolutions
and Graph CNNs to capture the hidden temporal and spatial
dependency of the data. Training and testing of the model is
done using the Highway of Los Angeles County (METR-LA)

and the Caltrans PerformanceMeasurement System detectors
in the Bay Area (PEMS-BAY) datasets. Results show that
the GWNet outperforms state of the art prediction models for
prediction horizons ranging from 15 to 60 minutes.

In [5], a cyber-physical system for real time traffic
prediction was implemented using detectors from Las Vegas
I-15 Freeway. This system implements an on-the-fly data
validation and reconciliation module, and a series of state
of the art DL models for traffic prediction. The work in [5]
shows the feasibility of performing real time traffic prediction
with the available technology deployed in major urban areas.

On the controller synthesis side, an extensive number of
works based on RL exist. In [8], a long short-term memory
(LSTM) based Q-network to decide the action of the traffic
lights is designed. The saturation of the roads, calculated
using Webster’s method, serves as the representation of the
state of the intersections (i.e., the input of the RL network).
The control action amounts to choosing the next green phase,
relying on Webster’s method to calculate the split of the
phase. This is done to achieve a stable learning of the RL
agent. This approach outperforms the traditional Q-table,
a lookup table used to calculate the maximum expected future
rewards for action at each state.

In a different approach, [9] seeks to improve performance
by implementing a cooperative solution to decide control
actions. To this end, the state of an intersection is defined
as a spatial matrix where each element represents a section
of the routes entering and leaving an intersection, and its
value indicates if cars are present in that section. Then, all
the matrices are grouped into a tensor that, in addition to a
matrix indicating which phase of each intersection is green,
represents the input to a CNN actor-critic. In this case, the
output of the network is the probability of switching to the
next phase in a predefined cycle, and the control action is
defined based on this probability. To stabilize the training,
two approaches are taken: on the one hand, the imitation
learning technique is used to pre-train the model by making
it to imitate an expert controller that increases the rate of
output cars from the intersection; and, on the other, a PPO
algorithm is used to reduce the impact of policy collapse
(divergence of the policy) caused by the multi-dimensional
output. This model was tested on a 9 intersection SUMO
(Simulation of Urban MObility) environment against a pair
of fixed time models and a pair of Q-learning models, using
queue size and waiting time as performance indices. The
cooperative control model obtained the best results, followed
closely by the fixed-time models implemented. Interestingly,
Q-learning models presented the worst performance. The
work in [9] shows that cooperative control helps in improving
the performance of RL controllers but, since in this particular
formulation information from all intersections in the system
is necessary to make a decision, scalability problems may
arise when implementing it in real time.

Considering the observation that CNNs cannot effectively
extract the dynamic features of the traffic, such as cars
directions, [10] proposes a decentralized solution based on
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a GNN multi-agent advantage actor-critic method, called
GraphLight, to act on traffic signals. Since communication
between agents is involved when using a GNN as actor-
critic, this approach implies coordinated actions from the
agents. Specifically, the state of an agent at time ‘‘t’’ is a
vector containing the current traffic values measured by the
detectors of its controlled intersection, combined with the
state of neighboring agents multiplied by a spatial discount
factor. The control action in this case is the selection of the
next green phase that will be active for a fixed period of time
‘‘d’’. Testing was done on a 25 intersection SUMO scenario.
Results show that the proposed method outperforms state of
the art methods in terms of multiple metrics.

III. PROPOSED CONTROL SCHEME
The proposed control scheme considers that each intersection
Ii is associated with an agent ai that is able to communicate
with a set of neighboring agents Ni. Communication between
agents enables cooperation since access to the state infor-
mation of the neighborhood Vi = ai ∪ Ni will be available
to predict the traffic at intersection Ii, as well as to take
the control actions. Each intersection is required to be fully
instrumented to allow real time traffic data acquisition and
control.

For traffic prediction, it is proposed to split the prediction
model into a GNN encoder and a linear decoder, so that
it would be possible to distribute the encoder part among
the agents and the decoder part can be implemented in a
cloud layer, in the spirit of the general architecture presented
in [15]. In the proposed scheme, each agent communicates
the embedding of the prediction encoder to its neighbors and
to the cloud layer; hence, the cloud receives the encoded
data from all agents to make the final prediction. This way,
each agent can use its own traffic data together with its own
and neighboring prediction embedding as inputs to its RL
controller.

To take advantage of the predictor structure, a GNN is used
for the RL controller and each agent receives the embedding
of the controllers of agents in Ni to calculate the control
action. Under this setup, control actions are calculated from
neighbors’ information without the need of querying the
cloud. Figure 1 shows a general schematic of the architecture.

A. INTERSECTION MODEL
For controller design, the intersectionmodel presented in [16]
(Figure 2) is considered. In this model, the concepts of
movements, phases and cycles are used. A movement mj is
a flow of cars in a specific direction, and a phase pk ∈ P is
a set of movements that flow simultaneously, within the time
interval that this phase is active. As it can be seen in Figure 2,
there are eight possible movements (j ∈ {0, 1, . . . , 7}),
where the even: m0,m2,m4 and m6 are left turns, and the
odd: m1,m3,m5 and m7 are through-right combinations.
For safety and efficiency, the model defines eight phases
(k ∈ {0, 1, . . . , 7}) as pairs of movements that flow without
interrupting each other. Only these combinations are allowed.

FIGURE 1. General architecture of the proposed RL-based distributed
control scheme. At each intersection, local data, data from neighboring
intersections, and high level traffic information from a cloud traffic
predictor are used to produce the control action.

FIGURE 2. Intersection model consisting on eight movements that are
grouped in eight phases, which contain a pair of movements that flow
simultaneously.

Finally, a cycle C is a defined sequence of phases that is
implemented in the traffic light in a cyclic manner.

B. INSTRUMENTATION AT THE INTERSECTION
It is assumed that each intersection is properly instrumented.
Specifically, each intersection is equipped with detectors
capable of collecting in real time different traffic variables
from a specific area of the incoming roads. The detectors
can be, for example, cameras pointing in the direction of
the incoming roads that can extract traffic information using
image processing. This way, the sensed area is bounded by
the range of the camera. The traffic variables that are assumed
available are:
• Vehicle density: Total number of vehicles in the sensed
area divided by the approximate number of vehicles that
can fit in this area.

• Vehicle queue: Total number of halted vehicles in the
sensed area divided by the approximate number of
vehicles that can fit in this area.

• Occupancy: Percentage of sensed area occupied by
vehicles.

• Mean speed: Mean speed of vehicles in the sensed area.
Table 1 describes each of these variables, where max

speed = 13.69 m/s. It should be noted that these measured
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TABLE 1. Characteristics of measured variables.

variables are indeed typically available in instrumented traffic
infrastructure [1], [5].

C. CONTROL ACTION
The controller is a local object of intersection Ii that
configures the activation times tpk of the phases pk ∈ Pi
given a fixed traffic light cycle Ci. For simplicity and to add
robustness to detector failures that prevent the collection of
data from an area, a fixed cycle length Tci must be predefined
by a theoretical or practical method. Then, starting from Tci,
for all the intersections, the controller calculates the optimal
green time tGpk (also called split) for each phase pk when the
cycle starts. The transition times between phases are defined
as three seconds for the yellow time, two seconds for the all
red time and five seconds for the minimum split time.

IV. TRAFFIC PREDICTION MODEL
A key feature of the proposed distributed control scheme
is the use of future traffic information in the representation
of the state of each intersection. To this end, we use
the embedding produced by a GNN traffic prediction
model. Unlike CNNs, GNNs are usually less complex, have
information of the traffic flow direction (reference), and are
usually scalable and easier to distribute, since each node only
needs to access its local information and that of a subset of
neighboring nodes.

To have a better understanding of the proposed strategy,
it is necessary to introduce how graphs and GNNs work.
Graphs are a type of data structure composed of nodes
and edges, in which nodes represent modules that have
information and edges connect nodes that are related. The
advantage of working with graphs is that the information of
the relationship between nodes is explicitly used. Mathemat-
ically, a graph G is represented as a tuple G = (V, E), where
V is the node set and E ⊆ V × V is the edge set. Each node
v ∈ V connects to its neighbors with an edge e ∈ E , and both
have features, xv and xe, that change dynamically over time.
Consequently, at each time step t the graph G has a feature
matrix X (t) [17]. The general principle of the GNN is to learn
a neighborhood embedding hv by aggregating information
from the node neighborhood Nv through a process of ‘‘neural
message passing’’, in which vector messages are exchanged
between nodes and updated using NNs [18]. This process can
be expressed as:

oNv = aggregate(huk ,∀u ∈ Nv) (1)

hvk = update(hvk−1, oNv ), (2)

TABLE 2. Movements from neighbors affecting the movements of a
nominal intersection.

where ‘‘update’’ and ‘‘aggregate’’ are arbitrary differentiable
functions that can be represented by NNs, and oNv is the
aggregated message from neighborhood Nv. Hence, the
inference of a GNN is an iterative process, where at each
iteration k the aggregate function takes the set of embeddings
from the neighboring nodes Nv to create a message oNv based
on the aggregated neighborhood information. Then, in the
same iteration, the update function combines the message
oNv with the previous embedding hvk−1 to generate the new
embedding hvk . At k = 0, the initial embedding hv0 = xv, i.e.,
the features of the node v. A common practice is to represent
each iterationwith a NN layer with its own parameters, so that
it is only necessary to stake layers until the desired number
of iterations is achieved. Note that, at each iteration, the
embedding hv will include information from more distant
neighbors, adding one ‘‘hop’’ per layer, making it a natural
option to implement cooperative strategies.

To implement the GNNmodel, a graph is defined to model
the traffic network, where each detector linked to a movement
‘‘mi’’ represents a node of the graph and the edges are given
by the connections with neighboring movements based on
the direction of car flow. Table 2 shows the input and output
connection with the neighboring intersection movements.

In this work, we consider a two layer GNN as the traffic
prediction model, which is depicted in Figure 3. Using this
particular structure is motivated by the results documented
in [5]. To create the message oNv , the aggregate function
is the element-wise multiplication between neighbors nodes
features and connecting edges features, the latter represented
by GNN parameters. The update function consists of
passing the previous embedding through a feed-forward
(FF) network, and then concatenating the result with the
aggregated message oNv . The embedding hv generated after
the second layer is used as part of the input of the RL
controller. Finally, two linear layers are implemented to
generate the traffic prediction.

V. REINFORCEMENT LEARNING CONTROLLER
The proposed controller is a neural agent in actor-critic
architecture based on PPO [19]. The fundamentals are
exposed in the following.

A. PPO ALGORITHM
PPO is an on-policy RL algorithm that optimizes a sur-
rogate objective and maximizes the expected advantage.
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FIGURE 3. Architecture of the GNN network used for traffic prediction and generating the embedding used as input of the RL controller.

It is developed from the Trust Region Policy Optimization
(TRPO) algorithm [20], where the objective is to find the
biggest possible improvement step without stepping so far
that accidentally causes a performance collapse. When this
is guaranteed, it is possible to perform multiple iterations
over the loss using the same trajectories, without leading
to destructively large policy updates. TRPO determines the
biggest step sizes using a second-order method, while PPO
uses first-order methods that rely on approximations to keep
the new policies close to the old ones. There are two variations
of PPO, in this work we use PPO-Clip.

To give the context of PPO, the vanilla Policy Gradient
(PG) and TRPO are introduced. The PG method works by
optimizing the following loss,

LPG(θ ) = Ê[logπθ (at |st )Ât ], (3)

where πθ is a stochastic policy parametrized by θ , πθ (at |st )
is the probability of taking the action at given the state st
and Ât is an estimator of the advantage function at timestep t .
The expectation is taken as the empirical average over a finite
batch of samples.

Let rt (θ ) denote the probability ratio rt (θ ) =
πθ (at |st )

πθold (at |st )
,

so r(θold ) = 1 and θold are the policy parameters before the
update. TRPO maximizes the surrogate objective

LCPI (θ ) = Ê
[

πθ (at |st )
πθold (at |st )

Ât

]
, (4)

subject to a constraint on the size of the policy updates based
on the Kullback–Leibler (KL) divergence and guarantees
monotonic improvement [20].

The superscript CPI refers to conservative policy iteration.
Nonetheless, it uses second-order methods that are ineffi-
cient. Therefore, PPOmodifies the objective by removing the
constraint of TRPO and adding a penalization that prevents
the policy from moving rt (θ ) away from 1. Consequently,
PPO optimizes the surrogate objective [19]

LCLIP(θ ) = Ê[min(rt (θ )Ât , clip(rt (θ ), 1− ϵ, 1+ ϵ)Ât )],

(5)

where ϵ is a hyperparameter used to keep the policy updates
close to the old one. The motivation for this objective is as
follows. The first term inside the min operator is the surrogate
objective from TRPO, LCPI . The second term clip(rt (θ ), 1−
ϵ, 1+ϵ)Ât is used to remove incentives for moving rt outside
of the interval [1 − ϵ, 1 + ϵ], which is equivalent to making
small changes to the new policy πθ with respect to the old
policy. Finally, the minimum of the clipped and the unclipped
objective is a lower bound on the unclipped objective.

As many other RL algorithms, PPO computes a variance-
reduce advantage-function estimator making use of a learned
state-value function Vφ(s) to compute the generalized
advantage estimation (GAE). The main idea behind GAE is
generating a bias-variance trade-off, which is based on the
fact that trajectories close to the present generally have lower
variance while variance increases considerably in future
trajectories. A general way to present the advantages is
through n-step returns given by

Ânt =
t+n∑
t ′=t

γ t
′
−tr(st ′ , at ′ )+ γ nVφ(st+n)− Vφ(st ), (6)

where γ < 1 is the discount factor, and the bigger n used,
the higher the variance, while the lower n, the more bias.
GAE generalize this advantage estimation by constructing all
possible estimators and averaging them, namely,

ÂGAEt =

∞∑
n=1

wnÂnt , (7)

where Ânt are weighted using an exponential falloff withwn ∝
λn−1 and λ < 1. When (7) is expanded, it simplifies to (8).
In practice, GAE is computed by running the policy for T
timesteps, and using the collected samples for an update. This
is used to update an estimator that does not look beyond
timestep T . Note that PPO’s loss (5) is defined for any
advantage estimation, but in practice uses

ÂGAEt =

T∑
t ′=t

(γλ)t
′
−tδt ′ (8)
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Algorithm 1 PPO Algorithm
for iteration = 1,2, . . . do

for actor = 1,2, . . ., N do
Run policy πold in environment for T
timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize LCLIP wrt θ and LVF wrt φ for K
epochs. LVF = (Vθ (st )− V

targ
t )2.

θold ← θ

end for

δt = r(st , at )+ γVφ(st+1)− Vφ(st ). (9)

The PPO algorithm that uses a fixed-length trajectory
is shown in Algorithm 1. Each iteration, there are N
actors collecting T timesteps of data each. Then, (5) is
constructed on these NT timesteps of data and optimized
using Adam [21].

B. ACTOR-CRITIC MODELS
In the proposed control scheme, the actor and critic share
structure with the traffic prediction model. Particularly, the
actor πθ and critic Vφ share a common feature extractor
based on the traffic prediction model GNN. And then,
each one projects the embedding vector using a two layer
FF network to their respective outputs. The GNN feature
extractor embeds the observation of each node (given in
Table 1) and from their neighbors into a hidden vector hLv ,
where L is the number of GNN layers. After hLv is available at
each node, each node computes the actions and the estimated
expected reward given by πθ and Vφ , respectively. It is
worth noting that irrespective of the node, all use the same
parameters θ and φ to compute the learned functions.
The actor outputs a vector av,t ∈ Rp, where p is the

maximum number of phases available on every intersection.
av,t is a probability vector, i.e., a real-valued vector with
non-negative entries that sum 1, containing the proportion
that each phase is green during the next traffic light cycle
(if the intersection v does not have some phases, the entries
of the action vector associated to the non-existing phases are
masked). Meanwhile, the critic Vφ outputs a scalar containing
the estimated expected reward for each node.

VI. IMPLEMENTATION AND EXPERIMENTATION
A. TEST BED IMPLEMENTATION
A scenario was designed for model testing in SUMO [22].
This scenario consists of a grid of nine intersections, where
each intersection has eight incoming traffic lines and eight
outgoing traffic lines. Each input line represents one of the
movements of the model described in Section III, and has
a traffic detector that covers an area equal to 50% of the
road, i.e., partial observation of the road. In addition, each
intersection has a traffic light with a fixed cycle Ci with the
following sequence: p0 → p3 → p4 → p7; the split time

FIGURE 4. Scenario implemented in SUMO consisting on a grid with nine
fully instrumented intersections.

of each phase can be configured by the controller. Figure 4
shows the scenario implemented in SUMO.

The input data for the traffic prediction model is the last
12 samples of the variable ‘‘mean speed’’ that, with a sample
rate of 5min/sample, represent themean speed during the past
hour. The output are the next four samples, which represent
themean speed of the next 20min. The embedding hv for each
node v is a vector of size 256. For training, 365 simulations,
of roughly one day length each, were performed on the traffic
network scenario. Each simulation was performed with a
different traffic level, using a fixed-time controller for traffic
light management and employing a normal distribution to
choose the traffic level. Area detectors were used with a
sample rate of 5 min to generate a dataset of the ‘‘mean
speed’’ that represents one year of operation. Finally, the first
70% of the dataset was used for training, the next 10% for
validation, and the last 20% for testing.

The RL controller was implemented using the Gym
environment. Gym is a standard Application Programming
Interface (API) for RL that implements a classic ‘‘agent-
environment loop’’, where the agent makes an observation
of the state of the environment, and then takes an action
seeking to maximize a configured reward function. In our
implementation, an agent is in charge of an intersection. The
observation for an agent is an array O ∈ Rm×s, with m equal
to the number of input lines (movements) and s the length of
the state vector of each line. The state vector is composed
by the four traffic variables introduced in Section III, the
embedding hv delivered by the prediction model, and the
present split value of the movement. The action av,t is as
introduced in Section V-B, and an observation followed by an
action is taken each time a traffic light cycle starts. Several
reward functions were evaluated, but the one that gives the
best results is the ‘‘vehicles difference’’, defined as

rw = vl − vi, (10)

where vl is the number of vehicles that left the line during
green light and vi is the initial number of vehicles in the line
before the green light.

Five traffic scenarios Si were created for training and
testing the models. It was established that the models
should be trained leaving a fixed traffic scenario, because
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FIGURE 5. Cycle sensitivity test of the ‘‘RL Veh Left’’ controller evaluated
in the traffic scenario S1 = 1540 vehicles per hour. The lower, the better.

traffic variations made the training unstable and an efficient
controller was not reached.

To evaluate the proposed controller, two tests were
conducted. First, a sensitivity test of the cycle length,
where the RL controller was trained over the scenario S1
(1540 vehicles per hour) using different cycle lengths, so we
can find the cycle length that gives the best performance
over a fixed traffic scenario. And second, a performance
test that seeks to evaluate the controller’s capability to adapt
to scenarios different from the one learned during training.
In this test, five RL models were trained (one for each
scenario) using the best cycle found in the first test, and
then were tested against two classical controllers over all the
designed traffic scenarios. RL models were named ‘‘RL Veh
Diff Si’’, where ‘‘i’’ is the number of the scenario they were
trained on.

All models were trained over 1000 epochs, using 28 tra-
jectories for training and 14 trajectories for validation
per epoch, where each trajectory consists of one hour of
controller submission in the training scenario. Finally, the
best-performing models over all epochs were stored for
testing. In both tests, cars were introduced during the first
hour of simulation, and the simulation finishes either when
there are no cars left (all cars have reached their destiny),
or after 7200 seconds in case the controller is not able to clear
the cars.

The base codes for implementing the proposed approach
are available in [23].

B. EXPERIMENTAL RESULTS
For both tests, as performance indices, we propose:
• Waiting time: time in which the cars had a speed lower
than 1 m/s.

• Time Loss: Average time lost due to driving below the
ideal speed (slowdowns due to intersections, etc.)

For testing the sensitivity to the cycle length, the controllers
were trained and tested using five different cycle lengths,
Tci ∈ [40, 50, 60, 70, 80] seconds. Results are presented
in Figure 5. For Tci = 40 seconds an efficient controller
was never reached, so this result was not plotted. It can
be seen that both performance indices find a minimum at
Tci = 60 seconds and they deteriorate linearly both as this
number increases or decreases. For this reason, a cycle length

Tci = 60 seconds was used to train all the models in the
following test.

For testing the performance, motivated by the results in [9]
where a similar objective of cooperative intersection control
with RL models is pursued, we compare the performance of
our controllers with a fixed-time strategy, since this strategy
was the closest competitor in [9]. This controller has a fixed
cycle time, equal in length to the RL controller, but divided
equally among the phases. To increase the meaningfulness
of the test, it was decided to also compare against Webster’s
method, which is an optimal control strategy widely used in
real implementations. A Webster’s controller was designed
for each traffic scenario Si, and to be fair over the test
conditions, it was decided to constrain the cycle length of the
Webster’s controllers to 60 seconds, so only the split length
of each phase was configured.

As mentioned before, models were tested over five
different traffic scenarios. Each scenario has a different traffic
density, but the traffic distribution is maintained. This was
done to improve the stability of the training process. For
evaluation purposes, each controller was run ten times on the
same scenario, and the results reported in Table 3 correspond
to the average. It can be observed that the RL Veh Diff Si
controllers achieved the best performance in terms of both
indices in the specific scenario they were trained on. It can
also be seen that each controller outperforms the Webster’s
controller in the traffic scenarios. This demonstrates the
capability of the RL controller to handle similar traffic density
scenarios to those in which it was trained.

When the controllers face a scenario different from the one
they were trained on, it can be seen that the performance
of the RL controllers starts to deteriorate compared to the
Webster’s controllers. However, this behavior is slow and less
significant when they move to lower congested scenarios,
so it is possible to find a specific scenario where the RL
controller performs better than Webster’s in a wide traffic
density spectrum. This is the case, for example, of the ‘‘RL
Veh Left S3’’, which performs better than Webster’s in all the
tested scenarios. Figure 6 shows the described behavior.

To estimate the computational complexity and validate the
feasibility of implementing the RL controller in real-time,
an experiment was conducted to study the execution time
required by the RL controller to calculate a control action.
The test was conducted on a desktop computer running
Linux using an Intel Core i7-7700 CPU @ 3.60GHz ×
8 processor, an NVIDIA GeForce RTX 2070 graphics card
and 32 GB of RAM. Figure 7 shows the results in the form
of a histogram. It can be seen that most executions are close
to 3 milliseconds, while the worst-case execution time is
barely over 5.5 milliseconds. These results suggest that the
RL controller can be used in real time as its execution time is
much lower than the control period.

Finally, the impact of the number of parameters of the RL
controller on the execution time is analyzed. To this end, two
additional versions of the RL controller, with twice and four
times the number of parameters of the nominal case, were
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TABLE 3. Results of the evaluated controllers for different traffic scenarios.

FIGURE 6. Comparison of waiting time and time loss indices between the
RL Veh diff S3 controller and the webster controller. The lower, the better.

FIGURE 7. Histogram of the execution time of the proposed RL controller.

tested in terms of execution time. Figure 8 shows the results
in the form of histograms. It can be seen that doubling the
parameters has a mild impact on the execution time, while
the controller with four times the parameters does present a
significant increase of the execution time; however, it still
presents a worst-case execution time much lower than the
control period.

C. LIMITATIONS
Despite the promising results, some limitations exist.
An important aspect of this work is that both training
and testing were performed maintaining a constant input
traffic distribution, as mentioned in Section VI-B. This

FIGURE 8. Histograms of the execution time of the RL controller when
the number of parameters is varied. left: twice the parameters. right: four
times the parameters.

means that, although several scenarios with different traffic
densities were evaluated, the spatial distribution with which
cars entered the network was almost always the same.
This could be a limitation for the implementation in a
real environment. A second limitation is that training and
testing were performed in a scenario consisting of a grid
of fully instrumented intersections of equal morphologies,
which are very difficult to find in a real-world scenario.
Further experiments are needed to evaluate and overcome
these limitations.

VII. CONCLUSION
A novel RL-based distributed control scheme to address the
intersection traffic control problem is proposed. The key
ingredient is the use of an embedding from a GNN traffic
prediction model to represent part of the intersection state,
giving the solution a perspective of the future traffic level
in the neighborhood. Simulation results obtained in SUMO
show that the proposed controller outperforms the fixed-time
and Webster’s standard models for different traffic levels,
even when traffic conditions are drastically different to those
faced during training. It is also observed that the RL controller
is more flexible to cycle time changes.

Future work includes increasing the complexity of the
GNN models used for both traffic prediction and the
RL controller, and using a model that allows extracting
space-time information from the network, such as, for
example, a distributed GWnet-based model.
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