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ABSTRACT Graph neural networks lose a lot of their computing power when more network layers are
added. As a result, the majority of existing graph neural networks have a shallow depth of learning. Over-
smoothing and information loss are two of the key issues that restrict graph neural networks from going
deeper. As network depth goes up, the embeddings of all the nodes eventually converge on the same value,
which separates output representations from input vectors and causes over-smoothing. Moreover, layers of
graph pooling are required in a deep learning model to retrieve specified features for prediction, which
results in some degree of information loss. In this research, we present a new and multi-scale approach
for overcoming these constraints by using concepts from graph theory, namely learnable edge sampling
and line graphs. An edge-sampling mechanism that selects a particular number of edges through a learning
parameter before training reduces oversmoothing, and the issue of information loss is alleviated using a line
graph technique that converts the original graph into a similar line graph. Our method of edge sampling
preserves the core spectral features of the graph without affecting its fundamental structure. Our suggested
technique outperforms state-of-the-art models on publicly available datasets of diverse applications while

having minimal constraints and great training skills.

INDEX TERMS Edge sampling, deep graph neural networks, line graph, link prediction.

I. INTRODUCTION

Numerous data is represented as graph topologies, where a
set of nodes are connected in unexpected ways via edges.
There are many kinds of graphs in the world, such as
knowledge graphs [1], social media [2], image graphs [3],
molecular interaction [4], etc. Graphs provide robust induc-
tive biases to allow relational inference and comprehensive
abstraction [5], which makes learning on graphs essential
not just for the study of graph data but also for gener-
alized interpretation. Graph neural networks (GNNs) [6]
have grown in popularity as the go-to method for study-
ing graphs in recent years. The primary impetus for the
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development of GNNs was to transfer the performance of
neural network models (NNs) from tabular data to the graph
field.

The core idea behind GNN is that, up to a given number
of iterations, the feature vectors of a node and its neighbors
can be combined using a recursive neighborhood aggregation
function. Using a properly specified aggregation function,
it is shown that such message passing is as effective as
the Weisfeiler-Lehman (WL) network isomorphism analysis
[7], which is known to differentiate a large class of graphs
[8]. We focus on Graph Convolutional Networks (GCNs)
[9], [10], [11], [12], [13], [14], a core family of GNNs that
generalize the convolution operation from pictures to graphs.
Specifically, this research focuses on how GCNs have been
used for the purpose of link prediction.
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The depth of the convolutional neural network (CNN) is
known to have a significant impact on performance in the
vision domain. The success of CNN suggests that stacking
additional layers will provide GCN with greater expressiv-
ity, allowing it to define richer neighbor topology. More-
over, describing graph topology necessitates sufficiently deep
structures, which is why the research and development of
deep GCN is so significant. It has been demonstrated in [15],
[16] that when the depth is limited, GCNs are not able to
acquire a graph in an instant or predict certain graph features.

However, it is challenging to achieve the goal of cre-
ating GCN that is both expressive and deep. In reality,
over-smoothing [17] and information loss hinder the expres-
sive potential of deep GCN. An intuitive understanding of
over-smoothing is that an indefinitely deep GCN’s output
tends to converge toward a space with little in the way of
distinguishable information between nodes due to the mixing
of neighborhood characteristics via graph convolution. Over-
smoothing, from a training standpoint, eliminates valuable
discriminative information from the input and results in poor
trainability. Usually, the topology of a subgraph is represented
by characteristics learned using graph neural networks [18].
This implies that graph pooling layers [19], [20], [21] need
to be used to calculate a feature vector of a specific size from
the whole graph, which might lead to a loss of information.
For instance, just a subset of the graph’s nodes may be chosen
to represent it in a sort pooling operation [18]. Additionally,
it usually takes longer for a training cycle to converge in a
graph neural network that has pooling layers.

Many different approaches have been offered to investigate
how to construct deep GCNs [2], [9], [11], [22]. However,
none of them provides sufficiently expressive design, and
it is still uncertain whether or not such architectures are
guaranteed to avoid or alleviate over-smoothing. After first
modeling GCN as Laplacian smoothing, [22] discovered that
the characteristics of vertices inside each linked element of
the graph converge to the same result. Building on the work of
[17], Oono and Suzuki [23] established that GCN converges
to a subspace formed on the basis of node degrees. However,
this conclusion is restricted to conventional GCN [2] without
consideration of alternative architectures.

There have been several heuristic approaches offered to
address the issue of graph link prediction in a variety of
contexts. However, there are still difficulties in deciding
which heuristic functions to use when presented with a novel
network. To address these issues, graph neural network-based
link prediction models (SEAL) have been suggested to auto-
matically infer heuristic methods from the k-hop neigh-
borhood [24]. Their approach outperformed state-of-the-art
methods on several different types of graphs. For each pair of
target nodes, the SEAL model will extract an k-hop bounded
subgraph and make a link prediction depending upon the
structure of the enclosed subgraph. Thus, the challenge of
predicting links is transformed into a graph classification
issue, where the model predicts the presence of a connection
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between two vertices given only their surrounding subgraphs.
Even though the SEAL performs well in many sorts of graphs,
it does have some drawbacks because of its use of pooling
operations.

Our proposed approach, Learnable Edge Sampling and
Line Graph based Graph Neural Network (Lel-GNN), solves
both the problems of over smoothing and information loss.
We suggest directly learning the properties of a target edge,
rather than pulling them out of the complete surrounding sub-
graph, to circumvent the information loss that occurs in pool-
ing layers. Learning node embeddings is more efficient than
feature extraction on the whole network. Successful results in
learning node embeddings have been achieved using graph
convolution networks [2], [12], [25], [26]. However, when
it comes to learning edge embeddings from graphs, graph
convolution layers fall short. We suggest transforming the
original enclosing subgraph into a line graph as a solution
to this problem.

Learnable edge sampling is a technique wherein a percent-
age of the input graph’s edges are selected using a parameter
before learning. Applying edge sampling to GCN training has
various advantages. In the first place, edge-sampling may be
seen as a method of augmenting data. By selecting edges from
a graph, we make new graphs with random distortions. This
makes the original data more diverse and hard to predict. Edge
sampling may be thought of as a message-passing reducer as
well. Messages in GCNss are transferred between neighboring
nodes via edge connections. By selecting out some edges,
the connections between nodes become less dense, and even
when GCN is trained very deeply, over-smoothing is reduced
to some degree.

In this paper, we provide a unified Learnable Edge Sam-
pling and Line Graph based Graph Neural Network (Lel-
GNN) architecture for link prediction, which simultaneously
learns features at the node and edge levels. The overall ideas
that make up the suggested paradigm are shown in Fig. 1.
Line graph nodes all represent edges from the original graph.
It’s also possible for the topological data to be kept in good
shape while transforming. Layers of graph convolution may
be applied straight away in order to obtain the line graph
embeddings of nodes. To infer whether or not a connection
will exist between nodes in the original network, we utilize
the line graph’s node embeddings as features of the edges. So,
in the framework we’ve suggested, the problem of predicting
links can be seen as a problem with classifying nodes. The
proposed Lel-GNN framework is a full-fledged, end-to-end
trainable architecture that makes use of both node/edge inte-
gration and feature cross models. The proposed Lel-GNN
architecture has the following contributions over current link
prediction methods:

« We provide a novel and multi-scale deep graph neural
network model that can retrieve and integrate features
at different scales effectively, which in turn helps to
alleviate oversmoothing and information loss caused by
layer stacking and pooling operations, respectively.
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FIGURE 1. Proposed LeL-GNN architecture.

e The framework employs an end-to-end model to take
advantage of learnable edge sampling and line graph,
both of which are critical to lowering the convergence
speed to the same value and reducing information loss.

¢ Our model performs edge sampling using a learning
parameter that takes into account the need to pre-
serve a robust spectral quality. Therefore, the original
graph structure and any relevant data will be preserved
throughout the sampling process.

« We test our methods using publicly available datasets
from various fields. Our suggested technique outper-
forms the majority of existing baseline methods and the
prior state-of-the-art model, indicating its potential for
widespread use.

The remaining parts of the paper are organized as fol-
lows: In section II, we describe past and recent efforts in
the field of link prediction using graph neural networks and
how they connect to one another. In section III we described
the preliminary notations related to graph. In section IV,
we’ll go through the architecture, methods, and algorithm that
were used to create this link prediction technique. Section V
describes the evaluation metrics, datasets, baseline methods
and experimental setup of our research. Section VI displays
the outcome and result analysis of our model. This paper is
concluded in the section VII.

Il. RELATED WORKS

The pioneering work on GCNs is found in [14], which
introduces a new method of graph convolution that takes
into account both spectral and spatial perspectives. Later,
in [2], [27], [28], [29], and [30], spectral-based GCNs are
subjected to enhancements, extensions, and approximations.
Spatial-based GCNs have emerged as a viable solution to the
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scaling problem faced by spectral-based GCNs on massive
graphs [12], [25], [26], [31]. Several new approaches have
emerged in recent years for quick learning of graph repre-
sentations using sample-based techniques, such as node-wise
sampling methods [12], layer-wise strategies [10], [13], and
graph-wise techniques [32], [33]. Dropout on the edges of
attention has been specifically studied by GAT [34]. Despite
being a post-processed variant of edge dropping preceding
attention computing, the connection to over-smoothing is
never investigated in [34]. However, in this study, we have
explicitly introduced the concept of learnable edge sampling
and offered a thorough explanation of its value in reducing
over-smoothing.

Despite the beneficial advances, the deeper expansion of
GCNs is seldom mentioned in the literature. The use of the
residual mechanism in attempts to construct deep GCNs can
be traced back to the GCN publication [2], and, surpris-
ingly, their results demonstrate that residual GCNs continue
to perform poorly at depths of 3 and beyond. Although
the authors of [17] correctly identify over-smoothing as a
major challenge when building deep networks, they fail to
provide any solutions. In the subsequent research [11], the
authors use a customized version of PageRank that also
incorporates the rooted nodes into the signal forwarding loop,
therefore resolving the issue of oversmoothing. Learnable
edge sampling is compatible with the deep GCN formulation
method used by JKNet [9], which makes use of dense links
for multi-hop message forwarding. DAGNN [35], a recent
improvement to the GCN architecture, accomplishes this by
first isolating the representation conversion from the trans-
missions and then employing a flexible adjusting strategy to
strike a better balance between the data collected from each
node’s local and global surroundings.

56085



IEEE Access

M. G. Morshed et al.: LeL-GNN: Learnable Edge Sampling and Line Based Graph Neural Network for Link Prediction

Computing the similarity score between two target nodes
based on their immediate neighbors is the key notion behind
heuristic approaches. We may classify heuristics into three
orders: first, second, and third. These are the three broad cate-
gories of heuristics regarding the highest hop of neighbors uti-
lized in the computing mechanism. Some popular first-order
heuristics for similarity estimates include looking for com-
mon neighbors, looking for nearest neighbors, and favor-
ing attachment [36]. Methods like Adamic-Adar [37] and
resource allocation [36], [38] are examples of second-order
heuristics that make use of two-hop neighbors. There have
also been proposals for high-order heuristics to calculate the
score to determine how similar two nodes are based on the full
graph. These include Katz [39], rooted PageRank [40], and
SimRank [41]. It is not uncommon for high-order heuristics to
outperform their low-order counterparts, although they come
at a higher computational cost. There are several heuristic
approaches for dealing with various graphs, making it diffi-
cult to choose the best one.

Similarity measures between target nodes may also be
computed using embeddings of nodes [42]. Matrix factoriza-
tion [43], stochastic block [44], etc. are examples of com-
mon embedding techniques that were used to tackle the link
prediction challenge because they can learn the properties
of nodes from the topology of the network. Recent develop-
ments like deepwalk [45], LINE [46], and node2vec [47] have
been presented to learn node embedding using the skip-gram
approach; these methods were influenced by word embedding
techniques used in natural language processing applications.
Using a random walk generator, Deepwalk selects the sub-
sequent visited node evenly from the neighborhood of the
existing node, creating random walks of a certain length for
each vertex. Node embeddings are then learned from the
newly created node sequence using the skip-gram technique.
In order to recreate the graph topology, the variational graph
autoencoder (GAE) [48] is suggested to use of graph convo-
lutional neural networks for the purpose of node embedding
learning. The node embedding approaches may learn useful
properties from the graph, leading to respectable results in
the link prediction challenge. However, in cases when the
network becomes very sparse, the efficiency of connecting
node embedding approaches might suffer.

To get over the shortcomings of heuristic approaches, sev-
eral deep learning methods were suggested for automatically
inferring the structural properties of a graph [24], [49], [50].
For this purpose, the Weisfeiler-Lehman Neural Machine [49]
developed a neural network with a fully connected layer rely-
ing on a specified enclosing subgraph that targeted the two
nodes of interest in order to make a link prediction between
them. SEAL [24] transforms the link prediction challenge
into a problem of classification which may be addressed
through the graph neural networks, allowing on account of the
forecast of whether a connection exist from a broad enclosed
subgraph. The SEAL method uses the robust learning capa-
bilities of graph neural networks to provide state-of-the-art
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outcomes on the issue of link prediction. In order to enhance
SEAL’s functionality on elementary graphs, a multi-scale link
prediction strategy was developed [50].

lll. PRELIMINARIES

A. NOTATIONS

Assume that there are N nodes in an undirected graph G = (V,
E), where V = (v{,v2,...vy) is a node collection and
E = (ej|vi, vj € V)isasetof links connecting the nodes v; and
vjin V. The adjacency matrix A € RN >N in the topology space
is defined as A;; = 1if ¢;; € E and O otherwise. Accordingly,
the node degree matrix D € RMV is a diagonal matrix where
D = XA x; € RF(i € 1,2,...N) feature vectors are
associated with each node in graph G, and their collection
is denoted by the matrix X € RV*F. Let the Laplacian be
Lc = D — A for graph G, and specify the new Laplacian
Ly for the output of the weighted graph H in the same way
by graph sparsification. As a result, H has the strong spectral
property, which is expressed as the following inequality with
any x:

(1 —exTLex <xTLpx <1+ e)xTLgx )

B. LINK PREDICTION WITH GRAPH NEURAL NETWORKS
To learn meaningful node representations, graph neural net-
works(GNNs) iteratively aggregate processed representations
of neighboring nodes in each /-th GNN layer, given a con-
nected graph G and a feature matrix X, as shown below:

RI+D = & (Zh’ W’) )

where A is a normalized adjacency matrix (normalized in
one of many ways depending on the GNN architecture),
w!is a weight matrix that can be trained, and K9 s the
X-dimensional feature matrix of the node. To determine
whether a given connection (i, j) exists, we utilize the ‘%)
representations of the nodes in the network, which are gener-
ated by stacking L layers of GNN.

vi=o (m(hiL, hjL)) 3)

where m is the function of inner product or multi layer per-
ceptron(MLP), and hlL is the embedded feature of the node
i from h'"). In this study, sigma is implemented as ReL.U,
which is a nonlinear function. The representation of the graph
is produced by pooling the last layer representations of the
nodes after L GNN layers.

h = POOLING(hE|v € V) 4)

IV. METHODOLOGY

A. PROPOSED SYSTEM ARCHITECTURE

Subgraph extraction, feature extraction based on the subgraph
structure, and classification-based link prediction make up
the gist of the supervised heuristic pipeline for link prediction
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problems. When performing supervised heuristic link predic-
tion, extracting the underlying graph structure is a critical
criterion. To extract features from graphs, graph convolution
networks are currently the best way [2], [4], [14], [25]. In a
graph convolution network, a linear transformation is used to
give each node an embedding feature, which is then shared
with the nodes around it.

Thus, each node is represented by a set of high-level
properties drawn from itself and its immediate surroundings.
Every node is mostly impacted by the nodes immediately
around it, even if the node characteristic may be carried
deeper by stacking additional graph convolution layers.
A node can’t effectively get data from distant neighbors if its
representation is the same as those around it. When this hap-
pens, link prediction models might not work as well because
the subgraph around it has too much redundancy. As we
want to employ node embeddings to distinguish between
nodes, the convergence to a single value after stacking several
GNN layers is unacceptable. Each node in an L-layer GNN
is surrounded by L-hops, creating a receptive field. As a
result, the number of hops, representing GNN layers, rapidly
increases, leading to an over-smoothing issue as a result of
the receptive field’s overlapping and sharing neighbors. Even
more important, as we go through the layers, the model’s
performance gets worse because nodes next to each other
share the same embedding, which leads to the vanishing
gradient problem.

We present a learnable edge sampling approach that can
rapidly eliminate duplicate features and change the graph
into a new scale, allowing for the characteristics of a node
to be efficiently propagated to its far-range neighbors. Our
suggested edge sampling approach uses new subgraphs from
inputs that are h-hop enclosed with fewer characteristics.
To generate a range of subgraphs with varying sizes, we may
aggregate the graph repeatedly. To forecast a link’s existence,
our proposed model takes as inputs multi-scale enclosing
subgraphs and then extracts hierarchical properties. Our sug-
gested strategy is based on the assumption that various-sized
enclosing graphs might provide mutually-enhancing data for
link prediction. Before moving on to the convolution layer,
we also used the line graph technique to change the graph
into a similar line graph. This would reduce the amount of
data lost during the pooling process at the end of the chain.

B. LEARNABLE EDGE SAMPLING

Edge sampling refers to picking a random subset of edges in
a graph. Let c;; represent the total number of i and j’s shared
neighbors in the undirected graph G = (V, E), where (i, j) €
E. For clarity, we will first focus on the situation when all
c;j values for all edges are already known. To put this into
effect, we may either compute them precisely in parallel or
use a sampling technique called “neighbor sampling” to geta
close approximation. Using a multinomial distribution model
with probability p, we randomly choose m edges from G to
construct a sparsifier H. A sparsifier in the context of graphsis
a subgraph that retains the connectivity features of the parent

VOLUME 11, 2023

graph but has considerably fewer edges. A graph sparsifier,
for example, may be used to speed up some graph algorithms
by minimizing the number of edges that must be evaluated.
The following equation is used to choose the edges for our
proposed algorithm.

2
pif = cij+2 . (5)
Z(i,j)eE 2

We add the edge (i,j) € E on H also give it the value
k(mpij)’1 if this is chosen k& > 1 times. Take note that
subgraph G containing edges (i, j) with ¢;; pathways which
have range 2 across i and j, the overall edge resistivity con-
necting i with j will be 2/(c;; + 2). As such, it provides a
ceiling on the efficient resistance of the G edge connecting
points i and j.

Our sampling technique becomes more like graph sparsi-
fication with effective resistances as the number of shared
neighbors grows. But as the number of shared neighbors goes
down, the technique starts to resemble random sampling more
and more. The following learnable parameter « is used to
assess the quality of local network connections.

1 2

o = — 2
" e 0T

(6)

where ¢;; is the number of neighbors that nodes i and j have
in common. We’ll demonstrate that « is connected to other
well-known statistics that are analogous to it in nature, includ-
ing the clustering coefficient [51] and the network curvature
[52]. In addition, it determines how many edges must be
sampled for the major spectral feature to be retained.

Definition 1: Given a connected and undirected graph
G = (V, E). We define the parameter o of the graph G by
equation (6) and € € (0,1). Using the preceding method,
choose O(anlogn) edges from G to create a weighted network
H. Then H has a probability of at least 1-1/n of meeting the
strong spectral characteristics equation (1).

The parameter o determines the typical quality of the local
network. A specific situation where d; = d over all nodes i
as well as ¢;; = c over all edges (i,j) € E may be used to
illustrate the concept of «. Since the number of elements in
set M is denoted by |M |, we get o =~ 2|E|/(nc) = d/c. In this
case, the number of neighbors shared by i and j is roughly
d/a providing (i, j) € E. That s, 1/« will be the total number
of shared neighbors between i and j.

Definition 1 demonstrates that if we sample locally and
keep O(nlogn) edges, we may nearly preserve the network
structure when the local connections are strong a=0(1).
In comparison, if the local connection is low, as in the case
when ¢; = O(1), then p;; are of a similar order, and the
sampling strategy is very close to uniform sampling. Most of
the graphs we have access to are rather sparse, so the values
are fairly tiny; this is consistent with the observation that
real-world networks tend to have high levels of local con-
nectivity. For the aforementioned sampling strategy to work,
we need to know how many neighbors ¢;; all incident node
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pairs share. The computing cost of the sampling approach has
linear structure to the overall edge quantity |E| if ¢;; has free
access, as they are in certain social networks like Facebook.
If ¢;j are unavailable, we may either use a parallel calculation
method or make an approximation using a neighbor sampling
method. And thus, to sum up, we provide a simple approach
to sampling that takes advantage of the fact that real-world
networks often have a lot of local connections. We show that
by sampling O(anlogn) edges, we can ensure that the strong
spectral condition equation (1) is satisfied.

Here we explore the challenge of computing c;; (exactly or
roughly) when the graph is too big to fit on a single machine.
Once all ¢;; are calculated, the sampling approach is as simple
as randomly selecting edges from the graph and averaging the
results. An MPI-based distributed memory parallel technique
is used in [53] to efficiently determine the number of shared
neighbors c;;. The method first dissects the graph into smaller,
overlapping subgraphs, which are then stored independently
on different workstations. The number of shared neighbors
between each pair of nodes in a subgraph is then tallied
using a sequential algorithm that identifies all triangles in
the subgraph. Because a single edge in the original graph
could be part of many overlapped subgraphs, the scores from
each local computer are combined before the final result is
shown. [53] show that their method can handle networks with
billions of edges and that the number of local machines can
grow almost linearly. Moreover, sampling, or in other terms,
dropping edges, can alleviate oversmoothing, which is proved
through theoretical results by [54].

C. LINE GRAPH TRANSFORMATION

Graph neural networks can be used to predict a link’s exis-
tence by learning properties out of a provided bordering
subgraph Gﬁl’vz, whereas Gﬁwz refer to h-hop bounding
subgraph centering upon 2 specific nodes v; and v,. Every
node in the enclosing subgraph is labeled to indicate the
structural significance of the target connection. The number
of nodes in a graph’s surrounding subgraphs may vary. When
we attempt to extract a feature vector of a specific size for
use in subsequent prediction, we will experience some data
loss. As a solution to this problem, we suggest creating a line
graph out of the enclosing subgraph to show the connections
among the edges of the initial graph. So, graph convolution
neural networks can be used to predict a link’s properties by
looking at its line-graph representation.

It has been proposed that the adjacencies of edges in an
undirected graph G may be represented by its corresponding
line graph L(G) [55], [56]. A line graph, denoted by the
notation L(G), in mathematics has the following concept:

1) In creating the line graph L(G), the links of the initial

graph G are used as vertices.

2) In L(G), a connection between two vertices occurs only

when their respective links both point to the same node.

Fig. 2 shows the steps involved in transforming a line
graph. We start with an undirected graph G with eight vertices
and eight edges. Because of this, there are eight vertices in the
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line graph L(G). According to the concept of the line graph,
the edges that correspond to nodes (AB) and (AD) in the actual
graph G all pass through the same node A. The following
feature of L(G) is derived from the concept of a line graph:

GH
AB

DG

AD

D o

Transformed line graph

Original graph

FIGURE 2. The method for transforming a line graph. Each line graph
node is labeled with the names of the two nodes at each end,
representing edges from the original graph.

Definition 2: If G is the graph having x number of vertices
with y number of edges, then the amount of vertices in the
corresponding line graph L(G) is y. L(G) has the following
amount of edges:

1 X
eLG) = 5 > di—y )
i=1

where d; is the i-th node’s degree in graph G. This condition
ensures that learning about line graph features does not sig-
nificantly increase computational complexity. Furthermore,
the time complexity of creating the line graph L(G) from the
initial graph G is linear [57], [58].

D. PROPOSED ALGORITHM

Here, we break down the proposed framework into its three
constituent parts. The order of the three stages is flexible. The
graph topology labeling and enclosing subgraph extraction
functions presented in this section are suitable for the major-
ity of networks.

1) EXTRACTION OF ENCLOSING SUBGRAPHS

The topology of a network focused on two nodes may reveal
whether or not a connection between them exists. Increased
use of topological data usually results in improved perfor-
mance. On the downside, it will need more computational
resources. In an effort to strike a good compromise between
speed and computing cost, we use a k-hop enclosing subgraph
to anticipate the presence of the connection between nodes v
and v;, as shown below:

Gt = (vlmin(d(v, v1), d(v,v2)) < k} ®)

V1,V2

where, d(v,v1) is the geodesic distance or shortest route
between v and v;.

2) LABELLING OF NODES

All we know about a graph is its topology, which we infer
from a subgraph’s enclosure. This is because we need to use
a labeling function to determine the significance of each node

VOLUME 11, 2023



M. G. Morshed et al.: LeL-GNN: Learnable Edge Sampling and Line Based Graph Neural Network for Link Prediction

IEEE Access

in the graph before we can learn properties about the target
connection. The following requirements must be met by the
node-labeling function: The first task is to locate the two
nodes of interest. Two, tell the intended nodes how crucial
they are to the structure. An efficient node labeling function,
as suggested by [24], is used in this study.

fiv) =1+ min(d(v, vi), d(v, vj))
dy  d
+ (SN +(d%2) — 1} ©)

where, (d;/2) and (d;%?2) refer to output of integer division,
leftover from d; split in half, and dy=d(v, v;)+d(v, v;). More-
over, fi(v;) = 1 and fj(v;) = 1 designate the target nodes v; and
vj with label 1. If a node v meets the conditions d(v, v;) = o0
ord(v, vj) = oo, we labeled it as zero, because f;(v) = 0. Label
f1(.) € R s returned by the node labeling function. The label
of a node is usually expressed as a one-hot encoded vector.

3) EDGE ATTRIBUTE GENERATION

In the process of creating a line graph, the original graph’s
edges are transformed into nodes. Only original graph nodes
are given the label. Instead of copying the labels of individual
nodes from the source graph, a transformation function must
be used to map node labels to edge attributes. Therefore, in a
line graph, the edge property may be used as the node feature
without any further transformation. Based on the label of the
node, we recommend the following way to build the edge
attribute:

lovivpy = Nmin(fi(v), fi(v)),
max(fi(vi), fi(vj), avg(fivi), filvj))) ~ (10)

where v; and v; are the two nodes at the edge’s endpoints,
f1(.) is the function for node labeling, and || is the concate-
nation process for the three inputs. The attribute of the edges
(vi, vj) and (v}, v;) should be same, since we only examine
undirected graphs in this study for link prediction. Changing
the end nodes while maintaining the same edge attribute given
by equation (10) is easily provable. Furthermore, the function
can reliably keep the node’s structural relevance information.

Simple graphs with edge attributes may be transformed
effectively using the approach provided in equation (10).
Node properties are sometimes included with graphs. In cita-
tion networks, for instance, a synopsis of the article might
be included as a node property in the graph. In the case
of attributed graphs, the problem of link prediction is also
heavily influenced by the node characteristics. This calls for
a more generic treatment of attributed graphs in the method
for transforming edge attributes. Based on the equation (10),
we may combine the original node property and the node
label to generate the edge attribute. While reversing two
endpoint nodes position in an undirected graph, the edge
property will not be consistent. One method to get around
this restriction is by treating the actual node label and node
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property with a slightly new manner.

l(Vth) = ||(min(fi(vi), f1(vj)),
max(fi(vi), fi(vj)),
avg(fi(vi), fi(vj)), xy; + xv;) (11)

where x,, and x,; are the node v; and v;’s initial attributes.
To ensure that edge properties remain consistent even after
swapping the end nodes, we suggest combining them using
a summing operation on the node attributes. In a line graph,
the newly created edge attribute /(y,;,,;) may serve as the node
attribute. So, graph neural networks are used to turn the
job of predicting links into a problem of classifying nodes.
The process of link prediction in our proposed framework is
shown in algorithm 1.

Algorithm 1 Proposed LeL.-GNN Model Algorithm
1: Input: Node (vq) and (v2), Graph G
2: Output: Link or Non Link
3: Enclosing K-hop subgraph G?VI,VZ) extraction for target
nodes (v1) and (v2) using equation (8)
4: Labeling the nodes using the function from equation (9)
to G](CVLVz)
5: Sampling O(anlogn) edges from graph G](‘vl’ »,) Where o
is a learnable parameter from equation (6)
6: if attributed graph then
7: Get the edge attribute [y, .;) by equation (11)
8
9

: else

: Get the edge attribute [, v;) by equation (10)

10: end if

11: Transform the sampled subgraph Gé‘VI ) 1O correspond-
ing line graph L(Gé‘v1 )

12: Apply deep graph neural networks on line graph
L(Gé‘v1 Vz)) for feature extraction

13: Classify Link or Non Link

V. EXPERIMENTS

In this part, we will describe the evaluation measures,
datasets, baseline procedures, and experimental design that
we used in this study, which in turn will help others reproduce
our results.

A. EVALUATION METRIC
A common approach to the link prediction issue treats it as
a simple case of binary classification. One of the node pairs
will have a positive label if there is a connection between the
two nodes, and a negative label otherwise. As can be shown
in Fig. 3, the confusion matrix [59] is an effective tool for
assessing the quality of a binary classifier. The confusion
matrix for link prediction in graph shows:
o True Positive (Tp): In a graph, true positive values are
available links in the original graph and are predicted as
available links by the model.
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FIGURE 3. Confusion matrix for link prediction.

o True Negative (T ): In a graph, true negative values are
not available links in the original graph and are predicted
as not available links by the model.

« False Positive (Fp): In a graph, false positive values are
links that were not available in the original graph but that
the model thought were available.

« False Negative (Fy): In a graph, false negative values are
links that were available in the original graph but that the
model thought would not be available.

Based on the aforementioned definitions, we propose the

following two assessment criteria:

AUC (Area Under the Curve) used to evaluate the whole set
of rankings, the AUC measures the likelihood that a missing
link will be assigned a greater value than an absent connec-
tion. If, out of a total of n comparisons, n; of the missing
connections have a greater value and n; have the equal value,
then:

AUC = (n1 +0.5n2)/n (12)

It’s important to keep in mind that an AUC close to 0.5 is
expected if the scores come from a truly random and uniform
distribution. Therefore, the performance of the algorithms
relative to chance may be evaluated by seeing how much their
AUC:s surpass 0.5.

Precision = Ty, /(T, + Fp) (13)

The precision measures how well the projected number of
positive links between node pairs matches the actual quan-
tity of positive links between node pairs. Better prediction
efficiency is associated with higher precision values. The
following equation describes how precision is determined.

B. DATASETS AND BASELINE METHODS

1) NON ATTRIBUTED DATASETS

We evaluate our proposed Learnable Edge Sampling and Line
Graph based Graph Neural Network (LeL-GNNs) model on
10 non attributed datasets: BUP, HPD, CEG, YST, NSC,
LDG, GRQ, UPG, UAL, and ADV [51], [60]. We gather
10 datasets from various domains to show that our suggested
strategy is applicable in a wide variety of settings. Further-
more, the studies employ graphs of varying complexity in
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terms of the number of nodes and the number of connections.
Table 1 displays information about the datasets. In this study,
we examine two advanced heuristic techniques—Katz [39],
and PageRank (PR) [40]—and compare them to our own sug-
gested technique. Moreover, the SEAL [24] method is chosen
as a benchmark alongside the graph auto-encoder (GAE)
[48] as well as graph embedding technique node2vec (N2V)
[61]. Furthermore, our LeL.-GNN method is compared to two
recent state-of-the-art benchmark LGLP [62] and mLink [50]
methods for link prediction.

2) ATTRIBUTED DATASETS

As node-attribute graphs, we employ Cora [63], Cite-seer
[64], and Pubmed [65]. Table 2 contains details about the
datasets, such as their characteristics and statistics. We use
LeL-GNN in conjunction with the variational graph autoen-
coder (VGAE) [48], the adversarially regularized graph vari-
ational autoencoder (ARGVA) [66], and the Graph Info Clust
model (GIC) [67], all of which are unsupervised GNN mod-
els and compared with the recent state-of-the-art method
WalkPool [68], to provide the best results for datasets includ-
ing node attributes.

3) OPEN GRAPH BENCHMARK DATASETS

Our LeL-GNN is tested on the following Open Graph
Benchmark (OGB) [69] datasets for link prediction accuracy:
ogbl-ppa, ogbl-collab, ogbl-ddi, and ogbl-citation2. Table 3
summarizes important statistics from each dataset. Ranking
the efficiency of positive sample edges against negative sam-
ple edges is used to evaluate link prediction in OGB datasets.
In particular, the Hits@K metric is used to determine the
percentage of positive sample edges that get ranked in the top
K positions relative to the negative edges that were randomly
selected. This metric is used in ogbl-ppa, ogbl-collab, and
ogbl-citation2. The Mean Reciprocal Rank (MRR) is used as
an assessment measure in ogbl-citation2; this metric averages
the reciprocal ranks of the actual link and the negative candi-
dates at each source node.

We compare our LeL-GNN against three heuristic
approaches, three embedding-based techniques, as well as
five GNN models to show how well they perform in the
task of link prediction. We employed three popular heuris-
tic approaches—Common Neighbors, Adamic Adar [37],
as well as Resource Allocation [38]—that are based on over-
lapping neighborhoods. Without going through a learning
process, they are able to forecast linkages by using each
other’s predefined structural data about overlapping regions.
Matrix factorization, Node2Vec [61], as well as Multi-Layer
Perceptron (MLP) were the embedding-based algorithms we
employed. We also evaluate our approach against other GNN-
based models, including GCN [2], GraphSAGE [12], JK-Net
[9], GAT [34], as well as recent state-of-the-art method Label-
ing Trick [70] which is based on SEAL. Using a similar-
ity score calculated between the target node and the source
node associated with the target links, GCN, GraphSAGE,
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TABLE 1. Non attributed graph datasets summary.

Datasets Vertices Edges Average Degrees Types
BUP 105 441 8.4 Blogging Site
HPD 8756 32331 7.38 Biological networks
CEG 297 2148 14.46 Biological networks
YST 2284 6646 5.82 Biological networks
NSC 1461 2742 3.75 Author Networks
LDG 8324 41532 9.98 Author Networks
GRQ 5241 14484 5.53 Author Networks
UPG 4941 6594 2.669 Power Networks
UAL 332 2126 12.81 Airport Traffic Networks
ADV 5155 39285 15.24 Social Media

TABLE 2. Attributed graph datasets summary.

Dataset Vertices Edges Classes Node Features
Cora 2708 5429 7 1433

Citeseer 3327 4732 6 3703

Pubmed 19717 44338 3 500

JK-Net, and GAT are able to forecast target connections.
Target linkages may be predicted using representations of
the surrounding subgraphs as graph categorization, which is
extracted using SEAL.

C. EXPERIMENTS SETUP

In order to evaluate the efficacy of our suggested approach,
we randomly pick 80% of all existing edges to serve as
positive training sets and the other 20% to serve as positive
test sets. On top of that, an equal number of false links
are drawn at random from the graph to be used as neg-
ative samples during both the training and testing phases.
Performance on datasets may be improved by adjusting the
settings of baseline approaches. In the Katz approach, we use
adamping factor of 0.001. PageRank’s damping factor is at its
default value of 0.85. For node2vec, we chose an embedding
dimension of 128.

We replicate the original paper’s [24] environment to test
the SEAL architecture. In this work, for the SEAL archi-
tecture, we compute the K-hop containing subgraph, then
we use the same function for node labeling as in equation
(9). For calculating the node embeddings, we utilize sixteen
graph convolution layers, and sort pooling [18] is employed
to build a feature vector for the surrounding subgraph that
is fixed in size. We use 64 channels of output feature map
from our sixteen-layer graph convolutional neural network.
In this configuration, the sort pooling layer’s ratio is 0.6.
To determine whether a connection exists, a classifier is used,
which consists of two 1-dimensional convolution layers with
32 and 64 output channels and 2 fully connected layers.
On each data set, the SEAL method is trained for 100 epochs.

Node embeddings in our method are calculated using a
graph neural network, the same kind of network used in the
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SEAL model, so that comparisons between the two methods
are fair. An important aspect of our approach is that it does
not rely on graph pooling or 1-D convolution layers. As a
result, our suggested technique uses a much lower number
of parameters than the SEAL model does. For each dataset,
we train our technique for 32 epochs.

In order to construct a preliminary node representation,
we use an unsupervised strategy on the three datasets (cora,
citeseer and pubmed) that include node features. This is due
to the fact that traditional two-layer GCNs lack expressive
power, making it difficult to extract meaningful node charac-
teristics when there are node attributes present [71].

The size of hops between samples in the surrounding sub-
graphs is set to 2, with the exception of the UPG dataset,
where it is set to 3. The LDG and ADV datasets, as well as
the Pubmed and OGB benchmark datasets, yielded a large
number of nodes from 2-hop subgraphs. Therefore, we con-
strain each dataset to a maximal number of nodes per step that
can be stored in memory. In specific, if the number of nodes
chosen surpasses 100 at any given step, we pick 100 nodes at
random.

We used PyTorch to reimplement the neighborhood heuris-
tic approach described in the cited works. We utilized the
GAT, GraphSAGE, GCN, JK-Net, and Node2Vec implemen-
tations from PyTorch Geometric [72] alongside the SEAL
implementation from its official github source. The common
hyperparameters we used in our entire experiment are as
follows: optimizer: Adam; learning rate: 0.001; and weight
decay: 0. We run all of our experiments on a server equipped
with an Nvidia GeForce RTX 3090 Ti (24GB) and a Quadro
RTX (48GB) GPU card.

VI. RESULTS AND ANALYSIS

1) NON ATTRIBUTED DATASETS

We test 10 non attributed datasets using our suggested tech-
nique and the baseline approaches to see how well our
approach compares to others. Each dataset is randomly
divided into a training set and a test set ten times. Table 4
displays the average AUC comparison obtained using 80%
training connections. Table 5 shows the results based on
AP. Since the heuristic method is manually developed, it is

56091



IEEE Access

M. G. Morshed et al.: LeL-GNN: Learnable Edge Sampling and Line Based Graph Neural Network for Link Prediction

TABLE 3. OGB link prediction datasets’ statistical and evaluation measures.

Dataset Vertices Edges Average Degrees  Density  Split Ratio = Metric
ogbl-ppa 576,289 30,326,273 73.7 0.018% 70/20/10  Hits@100
ogbl-collab 235,868 1,285,465 8.2 0.0046% 92/4/4 Hits@50
ogbl-ddi 4,267 1,334,889 500.5 14.67% 80/10/10 Hits@20

ogbl-citation2 2,927,963 30,561,187 20.7 0.00036% 98/1/1 MRR

TABLE 4. AUC comparison with state-of-the-art methods. Results are average AUC with standard deviations for 10 runs with 80% training links.

Datasets Katz PR N2V

GAE

SEAL mLink LGLP LeL-GNN

BUP
HPD
CEG
YST
NSC
LDG
GRQ
UPG
UAL
ADV

87.10+2.73
85.47+0.35
84.84+2.05
80.56+0.78
98.00+0.31
92.96+0.19
89.81+0.59
59.59£1.51
92.01+0.88
92.13+0.21

90.13+£2.45
87.19+0.34
89.14+1.35
81.40+0.75
98.05+0.29
94.46+0.19
89.98+0.57
59.88+1.51
93.74+1.01
92.78+0.18

80.25+5.55
79.61£1.14
80.08+1.52
77.07+0.36
96.23+0.95
91.88+0.56
91.33+0.53
70.37£1.15
85.40+0.96
77.70+0.83

90.16£1.65
85.21+0.45
83.73+0.75
77.07+£0.36
98.83+0.33
93.84+0.21
91.15+0.45
69.84+0.96
91.80+0.86
90.55+0.23

93.32+0.84
92.26+0.09
87.44+1.21
82.07+0.96
99.55+0.01
96.44+0.13
97.10+0.12
81.37+0.93
95.21+0.77
95.07+0.13

93.54+0.63
92.64+0.08
89.08+0.86
91.40+0.13
99.65+0.01
96.62+0.11
97.56+0.10
83.14+0.61
96.43+0.33
95.21+0.10

95.24+0.53
92.58+0.08
90.16+0.76
91.97+0.12
99.82+0.01
96.70+0.07
97.68+0.10
82.17+0.57
97.44+0.32
95.40+0.10

95.83+0.38
93.33+0.55
92.01+0.95
92.47+0.35
99.88+0.01
97.19+0.13
97.63+0.12
82.57+0.21
97.73+0.38
95.63+0.14

TABLE 5. AP comparison with state-of-the-art methods. Results are AP with standard deviations for 10 runs with 80% training links.

Datasets Katz PR N2V

GAE SEAL LGLP LeL-GNN

BUP
HPD
CEG
YST
NSC
LDG
GRQ
UPG
UAL
ADV

85.94+3.46
89.52+0.32
85.94+3.46
85.76+0.64
98.02+0.43
94.91+0.27
93.08+0.29
74.29+0.83
93.51+0.79
93.72+0.16

89.53+3.11
91.01+0.23
87.96£1.69
86.34+0.72
98.08+0.34
96.26+0.22
93.18+0.34
74.74+0.81
94.30+1.27
94.03+0.24

81.47+4.48
80.57+0.81
77.98+1.54
78.48+1.03
96.81+0.86
92.12+0.50
93.92+0.31
76.55+0.75
82.53+1.12
79.02+0.65

89.26+2.10
86.62+0.39
82.53£1.51
82.65+0.86
98.93+0.31
95.24+0.19
93.78+0.33
75.04+0.87
93.41+0.67
90.87+0.26

93.58+0.68
93.41+0.09
86.49+1.08
91.85+0.20
99.51+0.01
96.55+0.11
97.86+0.11
83.91+0.83
95.46+0.59
95.18+0.12

95.46+0.43
93.65+0.08
89.70+0.53
92.98+0.10
99.82+0.01
96.86+0.06
98.14£0.10
84.78+0.53
97.37+£0.25
95.72+0.08

94.34+0.29
93.55+0.06
91.08+0.31
93.73+0.23
99.57+0.01
97.81+0.21
98.87+0.16
85.48+0.31
97.85+0.34
96.26+0.10

evident from the findings that the heuristic approach cannot
provide good performance on all datasets. Due to its ability to
automatically infer the edge distribution from given datasets,
the SEAL model is consistently shown to beat all heuris-
tic approaches and embedding methods. The findings also
demonstrate that directly learning the embedding of the target
link is superior to the alternative of learning a graph embed-
ding. Two recent state-of-the-art methods, mLink and LGLP,
have shown great performance in the task of link prediction.
These models and many other recent models also use the
same method of SEAL architecture for subgraph extraction
and node labeling. Considering the idea of converting the
extracted subgraph into a corresponding line graph LGLP, our
proposed method is similar, but we introduced learnable edge
sampling before line graph transformation, which ensures
major spectral features are retained.

Our suggested LeL-GNN model outperforms the state-
of-the-art approaches on most of the datasets, including
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SEAL and LGLP, on both of the assessment measures used.
As a result, we know that our suggested technique can
learn superior characteristics to describe the corresponding
link for prediction in the LeL-GNN setting. As an added
bonus, our suggested technique is more reliable than the
baselines.

In order to better demonstrate the efficacy of our sug-
gested approach, we visualized features of edges utilizing
t-distributed stochastic neighbor embeddings [73] and took
the output of the final fully connected layer as a feature of
each edge. Fig. 4 displays the actual class difference as the
outcomes of the t-SNE. For 20% of the test edges, we demon-
strate the rendering on the BUP, HPD, LDG, UAL, and ADV
datasets. Green indicates a positive connection, while red
indicates a negative one. The outcomes show that character-
istics taught using our suggested model can be categorized
with little effort. We compared the time complexity of our
method with SEAL and LGLP to show the efficiency of our
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algorithm. Table 6 is the representation of single epoch time
on the same device.

2) ATTRIBUTED DATASETS

In addition, we undertake tests on attributed graphs. Through
the use of LeL.-GNN, we are able to extrapolate higher-order
data from unsupervised learning’s representations of nodes.
We chose 10 random samples and present the average AUC
and standard deviations for these in Table 7; for AP, please
refer to Table 8. Table 7 and Table 8 displays the outcomes of
unsupervised models in a LeL-GNN setting and is compared
with the recent state-of-the-art WalkPool. The accuracy of
predictions is enhanced by LeL-GNN for all unsupervised
methods and datasets. The most notable improvements from
using LeL-GNN can be seen when using the Pubmed dataset,
in which topology is more important than features.

We achieve better performance than SEAL for attributed
datasets because we use a unique method for integrating
node functionalities. By incorporating a regularization term
that moves the learned embeddings closer to the associated
node attributes in feature space, our method modifies the goal
function. When the node properties are useful and applicable
to the link prediction job, this regularization term may assist
in collecting more information from them and increasing
performance.

One other factor is that our objective function was created
to maximize different criteria than the SEAL’s. While SEAL
is concerned with maintaining the topological facts of links,
our method aims to maintain both the network’s topological
structure and the local connections of nodes in feature space.
As a result, our method and SEAL respond differently to the
same node properties. In conclusion, discrepancies in how
SEAL and our method include node features and improve
their objective functions are likely to be blamed for why
employing node features could result in a performance loss
in SEAL but not in our method.

3) OPEN GRAPH BENCHMARK DATASETS

Using the Open Graph Benchmark (OGB) datasets, Table 9
displays the performance of various baselines and LeL.-GNN
in terms of link prediction. With the exception of ogbl-
citation2, we employ GCN as an adaptation to combine with
LeL-GNN on all datasets. Due to the high memory require-
ments of GCN during training, we bypassed it while training
our LeL-GNN in ogbl-citation2. Table 9 demonstrates that,
across the board, LeL-GNN perform at the state-of-the-art
level. In particular, LeL-GNN outperforms the best baselines
on ogbl-collab and ogbl-ddi. It is also important to note that
LeL-GNN in ogbl-citation2 achieved state-of-the-art perfor-
mance without the aid of GCN, i.e., by merely using graph
topologies devoid of input node properties.

On both the ogbl-ppa and the ogbbl-collab datasets, tradi-
tional feature-based GNNs perform much worse than neigh-
borhood overlap-based heuristic techniques. This means that
feature-based GNNs struggle to make direct use of struc-
tural information, such as degree and overlapping neighbors,
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when making link predictions. This conclusion suggests that
LeL-GNN and SEAL-based methods like the labeling trick
are superior to traditional GNNs because of their ability to
learn topological information. LeL.-GNN and SEAL-based
methods outperform heuristic approaches across all datasets
because they are able to capture the structural information
that they use. Although the labeling trick performs well when
compared with heuristic approaches, it underperforms when
compared to feature-based techniques in ogbl-ddi. It might
be interpreted as the labeling trick being unable to make
use of the input node characteristics and structure infor-
mation in an adaptive manner. Instead, LeL-GNN adap-
tively integrates LeL.-GNN and GCN, utilizing learnable edge
sampling for each dataset, which demonstrates even greater
performance than the efficiency of LeL-GNN and GCN
individually.

Our suggested technique can learn the target link’s
attributes while still in the network. The only layers needed
for feature extraction are graph convolution ones. To do this,
the SEAL model employs graph convolution and pooling
layers, since the method is carried out in the original graph.
While the SEAL model has many parameters, our suggested
technique has few and converges quickly. Using the loss of
training and testing for each epoch, we are able to see how
quickly our model converges across various datasets. Fig. 5
shows the outcome generated through TensorBoard [74]. Our
proposed model shows smooth convergence, as shown by the
findings. Our suggested technique just needs 30-35 epochs
to reach its optimal performance. So, our proposed method
reduces the number of model parameters and shortens the
time it takes to train.

From the training and testing loss curves (Fig. 5), we can
clearly see that there is no over-smoothing problem like
in regular deep GCN models, as we used 16-layer models.
So the over-smoothing problem caused by layer stacking is
successfully handled in our model while maintaining state-of-
the-art performance. We tried with a more deep architecture,
like 32 or 64 layers, but unfortunately there is not much
performance gain in terms of AUC and AP using our method.
We believe that in the near future, researchers will explore
more deep GNN with some excellent methods to get the
expressive power of GNN like CNN.

Over-smoothing problems have been shown to be allevi-
ated by the drop edge [54], but our method is different from
the drop edge idea. In DropEdge, they drop out a certain
rate of edges from the input graph at random. But in our
method, we sampled edges based on a learning parameter
that tells us how many edges we need to sample in order to
keep the main spectral feature. In drop edge, they proved that
removing edges can reduce the over-smoothing problem in a
graph neural network model [54].

Over-smoothing is relevant to link prediction because it
may reduce the discriminative capability of machine learn-
ing models’ learned representations of network nodes, mak-
ing it harder for these models to correctly forecast whether
or not connections exist between pairs of nodes. It is
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FIGURE 4. The BUP, HPD, LDG, UAL, and ADV datasets are visualized using t-SNE [73]. Green indicates a positive
connection, while red indicates a negative one.

TABLE 6. Comparison of single training epoch time on the same device. Results are in seconds, with standard deviations for 10 runs.

Method BUP HPD LDG UAL ADV
SEAL 1.81+0.26 2.75+0.35 2.80+0.52 2.91+0.88 3.55+0.36
LGLP 1.68+£0.17 2.68+0.26 2.68+0.35 2.75+0.53 3.18+0.25

LeL-GNN 1.56+0.12 2.55+0.32 2.60+0.28 2.53+0.72 3.32+0.28

TABLE 7. AUC on attributed datasets using state-of-the-art architectures. Results are reported with standard deviations for 10 runs with 90% training
links.

VGAE ARGVA GIC
WP LeL-GNN WP LeL-GNN WP LeL-GNN
Cora 94.64+0.55 95.70+0.62 94.71+0.85 95.83£0.70 95.90+0.50 96.45+0.42
Citeseer 94.32+0.90 94.58+0.75 94.53+1.77 94.73+0.68 95.94+0.53 95.61+0.55
Pubmed 98.49+0.13 98.30+0.22 98.52+0.14 98.45+0.52 98.72+0.10 98.95+0.22

TABLE 8. AP on attributed datasets using state-of-the-art architectures. Results are reported with standard deviations for 10 runs with 90% training links.

VGAE ARGVA GIC
WP LeL-GNN WP LeL-GNN WP LeL-GNN
Cora 95.11+0.53  95.50+0.60 95.23+0.84 95.74+0.76  95.97+0.57 96.31+0.43
Citeseer 94.89+0.89 95.22+0.75 95.04+x1.46 95.63+0.20 96.04+0.63 96.48+0.48
Pubmed 98.46+0.14 98.50+0.10 98.49+0.14 98.67£0.12 98.65+0.15 98.80+0.10

standard practice in neural networks for link prediction to network model that predicts whether or not a given pair
develop low-dimensional representations of network nodes of nodes are connected uses these representations as input
that reflect their structural and relational features. A neural characteristics.
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TABLE 9. Comparison of our LeL-GNN and baselines’ link prediction (%) results on the Open Graph Benchmark (OGB) datasets. Each value is the mean
efficiency over 10 independently initiated trials. Out of memory is abbreviated as OOM. The top results are highlighted here.

Method ogbl-ppa

ogbl-collab  ogbl-ddi  ogbl-citation2

Common Neighbors  27.65+0.00
Adamic Adar 32.45+0.00
Resource Allocation  49.33+0.00

50.06+0.00 17.73+0.00 76.20+0.00
53.00£0.00 18.61+0.00 76.12+0.00
52.8940.00  6.23+0.00 76.20+0.00

Matrix Factorization 27.83+2.02

38.74+0.30  17.9243.57 53.08+4.19

Node2Vec 17.24+0.76  41.36+0.69  21.95+1.58 53.47+0.12
MLP 0.47£0.05  19.98+0.96 N/A 28.99+0.16
GCN 16.98+1.33  47.01+0.79  44.60+8.87 84.79+0.24

GraphSAGE 13.93£2.38  48.60+0.46  48.01+£9.02 82.64+0.01
JK-Net 11.40£2.04 48.84+0.83  57.98+6.88 OOM
GAT OOM 44.89+1.23  29.51+6.40 OOM

Labeling Trick 48.80+3.16  64.74+0.43  30.56+3.86 87.67+0.32

LeL-GNN 49.20+0.40  65.52+0.50 60.37+3.47 85.58+0.28

Train SEAL ~ ===m: Train SEAL ~ ==sm Train SEAL ~ sssm Train SEAL ~ ===m:
o TestSEAL e o TestSEAL == 02 Test SEAL  sees TestSEAL  ®eee
Train LeL-GNN === Train LeL-GNN === Train LeL-GNN === o Train LeL-GNN ===
Test LeL-GNN =~ == Test LeL-GNN =~ === Test LeL-GNN === Test LeL-GNN ==
S 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 s 10 15 20 25 30
Epoch Epoch Epoch Epoch
NSC LDG GRQ UPG
Train SEAL ~ ===m:
L Test SEAL ~ ==== i peend, o =:::::::::::-.:::‘.‘.::w—--«-:.—:_-_-_-:_____\_\
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FIGURE 5. Training and testing loss comparison with SEAL.
When too much information is aggregated across nearby which avoid excessive information aggregation and retain the
nodes during the learning process, a phenomenon known as discriminative capability of the learned node representations,
“over-smoothing” occurs, in which the representations of we may reduce the likelihood of over-smoothing occurring.

nodes in a graph become too similar to one another. This
may make it hard for a neural network model to effectively VIl. CONCLUSION
discriminate between nodes and forecast connections since In this research, a new and adaptable link prediction model

critical information is lost and distinctions between them

are (LeL-GNN) based on learnable edge sampling and line

diluted. By employing regularization methods like dropout graphs to aid in the creation of deep GNNss is proposed. Using
or graph convolutional networks with connections skipped, simply the number of neighbors in common, we provide a

VOLUME 11, 2023
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learnable edge sampling approach. This basic statistic offers
a straightforward approach for measuring network local con-
nection through the learnable parameter «, which affects the
sampling method’s efficiency directly. In order to prevent
over-smoothing in graph convolution, our technique incor-
porates additional variety into the training dataset by arbi-
trarily sampling edges at a fixed rate, . When predicting
the presence of a connection across varying-sized networks,
a feature vector of a predetermined size is generated using
pooling layers. However, the pooling process might end up
discarding useful data. In addition, training times for graph
neural networks containing pooling layers are often longer.
In order to get around these restrictions, we suggest gener-
ating a line graph from the original graph, where the target
link feature can be obtained straight away from a line graph
without resorting to a pooling operation. Results from 10 dis-
tinct datasets demonstrate that our suggested strategy beats
most of the baseline methods and state-of-the-art models.
Additionally, the LeL-GNN model converges substantially
quicker compared to the other model. We anticipate that our
study will pave the way for further investigation into deep
GNNss and their wide range of possible applications.
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