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ABSTRACT This research explores the potential of Machine Learning (ML) to enhance wireless commu-
nication networks, specifically in the context of Wireless Smart Grid Networks (WSGNs). We integrated
ML into the well-established Routing Protocol for Low-Power and Lossy Networks (RPL), resulting in an
advanced version called ML-RPL. This novel protocol utilizes CatBoost, a Gradient Boosted Decision Trees
(GBDT) algorithm, to optimize routing decisions. The ML model, trained on a dataset of routing metrics,
predicts the probability of successfully reaching a destination node. Each node in the network uses the model
to choose the route with the highest probability of effectively delivering packets. Our performance evaluation,
carried out in a realistic scenario and under various traffic loads, reveals that ML-RPL significantly improves
the packet delivery ratio and minimizes end-to-end delay, making it a promising solution for more efficient
and responsive WSGNs.

INDEX TERMS Machine learning, wireless smart grid networks, neighbourhood area networks (NAN),
routing protocol for low-power and lossy networks (RPL).

I. INTRODUCTION
Communication technologies play an important role in the
current transformation of the electricity infrastructure. The
operation of the new power grids, known as smart grids, heav-
ily relies on communication systems. Incorporating devices
with communication capacities into the grid allows the util-
ities to achieve a high level of control over the grid, making
its operation more reliable, efficient, and secure.

From the communication point of view, the smart grid
networks can be divided into three segments or subnetworks
as it is shown in Fig. 1: Home Area Network (HAN), Neigh-
borhood Area Network (NAN), also referenced as Field Area
Network (FAN), and Wide Area Network (WAN). Home
Area Networks are deployed inside homes and act as the com-
munication infrastructure to interconnect sensors and smart
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appliances. Smart meters collect data generated by HANs and
transmit it through the NAN to the utility data centers. NANs
connect smart meters and other utility equipment such as line
sensors, reclosers, bank capacitors, smart switches, battery
storage, and EV charge stations with data aggregation points
(DAPs), also named collectors. Finally, WANs represent the
last segment of the smart grid communication network, serv-
ing the critical role of linking the data aggregation points with
the utility control centers. The primary function of WANs is
to establish a seamless connection between these two compo-
nents of the smart grid network.

The three subnetworks have their own requirements and
are important for the correct functioning of the smart grid
network. However, the NAN has attracted the attention of
academia and industry since it supports the transmission
of a considerable volume of data and distributes necessary
control signals between many end devices and utility control
centers [1].
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NANs usually cover large areas and can interconnect hun-
dreds of thousands of devices, which challenges the reliability
of the network. Communication systems deployed in NANs
include wired and wireless technologies or a combination of
them. However, due to the advantages of wireless technolo-
gies, they are becoming more popular for NANs. Two groups
of wireless technologies are relevant in this domain, RF mesh
technologies, which include 802.15.4 [2] and 802.11s [3],
and the second group considered Low Power Wide Area
Networking (LPWAN), which includes Sigfox [4], LoRa [5],
and NB-IoT [6].

This work has focused on one of the biggest challenges of
mesh technologies: the way the packets are routed. Mesh net-
works heavily rely on the performance of the utilized routing
protocol. One of the well-known routing protocols for Wire-
less Smart Grid Networks (WSGNs) is the Routing Protocol
for Low-Power and Lossy Networks (RPL) [7]. However,
numerous studies have pointed out that RPL suffers from
issues that limit its efficiency and domain of applicability [8].

We present in this article a new routing strategy over RPL
based onMachine Learning (ML) predictions, which we have
named ML-RPL. In recent years, ML techniques have shown
promising results to solve different problems in communi-
cation networks, and routing is one of them. In this case,
we have selected CatBoost, a gradient-boosting algorithm,
to improve the routing decisions in RPL. The predictions
made with the algorithm are used to calculate the path cost
from the source to the destination. Nodes choose the routes
with the highest probability of delivering the packets to the
destination.

While our proposed routing strategy uses Catboost for
prediction, it is important to note that this approach can be
extended to other ML algorithms as well. We chose Catboost
for its strong performance in previous studies [9], [10] and its
ease of integration into our simulation platform.However, it is
not the focus of this work to perform an in-depth comparison
of different ML algorithms in our routing strategy.

In order to assess the effectiveness of our proposed
approach, we conducted simulations using actual smart meter
locations in the city of Montreal, with traffic patterns repre-
sentative of those found in smart grid applications. Our new
ML-based routing mechanism provided notable improve-
ments to both, packet delivery ratio (PDR) and end-to-end
delay across a range of traffic loads.

A. CONTRIBUTION AND ORGANIZATION
Based on our findings in this paper, the following contribu-
tions can be outlined:

• We propose a novel routing strategy based on ML to
improve the routing decisions of RPL. To the best of our
knowledge, previous research has not explored the use
of ML algorithms to improve RPL’s routing decisions.

• We present a method based on simulations to generate
a dataset for collecting routing information in wireless
smart grid networks.

FIGURE 1. Smart grid network [1].

• We conduct simulations using smart meter locations
from a real deployment in the city of Montreal to eval-
uate the performance of our proposed routing strategy.
Our simulation scenario was designed to be realistic and
reflective of actual network conditions in wireless smart
grid networks. To our knowledge, only one previous
study [11] has used real-world topology data for eval-
uation purposes in a simulation environment.

The rest of the paper is organized as follows. Section II
discusses some related works. A background on RPL parent
selection is provided in Section III. The proposed solution is
presented and described in detail in Section IV. The perfor-
mance of the new routing strategy is evaluated in Section V,
and the conclusions and future works are addressed
in Section VI.

II. RELATED WORK
This section shows how ML-based solutions have gained
interest in solving traditional network issues in wireless net-
works. We mainly cover solutions for routing algorithms,
but other investigations related to congestion control and
traffic classification are also highlighted.We also show recent
improvements in RPL and the approaches they have followed.

The work in [12] proposes DTMR, a decision tree-based
multi-metric routing protocol for vehicular ad hoc networks
(VANETs) that aims to make more intelligent forwarding
decisions. The authors obtained their targeted dataset from
multiple simulations runs over different urban VANET sce-
narios and evaluated the importance of different routing met-
rics by applying regularization. Subsequently, only the most
relevant routing metrics were incorporated into DTMR for
forwarding decisions. However, the authors did not exploit
the inherent capability of decision tree-based models to deter-
mine feature importance directly, which could potentially
have resulted in a different ranking of routing metrics. Addi-
tionally, while the evaluation focuses on achieving an optimal
protocol design, the proposed solution is not benchmarked
against other routing protocols for VANETs, which repre-
sents the primary limitation of this work. The same authors
present GraTree in [9], anotherML-basedmultimetric routing
protocol. For this paper, they employed CatBoost to train the
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ML model using the same dataset they obtained in [12]. Gra-
Tree is compared to an existing solution not based onML and
to DTMR in terms of packet delivery ratio (PDR), end-to-end
delay, and overhead. GraTree performs better than the other
routing protocols except for the delay measure. Although
the routing solution presented in the paper targets VANETs,
the comprehensive description of their ML-based approach,
including data collection, processing, learning phase, and
integration into the simulator, makes the methodology adapt-
able to other types of networks.

Authors in [13] address the network congestion control
problem in smart grids. They present a new congestion con-
trol mechanism based on feed-forward neural networks for
smart grids. The purpose of the work is to guarantee the
different Quality of Service (QoS) requirements for different
smart grid applications. The proposed mechanism requires
source nodes to decide whether to transmit new data packets
generated by the applications based on the current state of
the network. This state is characterized by the value of the
channel utilization factor and by the packet buffer occupation.
The evaluation of the proposed mechanism shows signifi-
cant improvements in terms of throughput, transit time, and
quality of service differentiation. However, the grid topology
considered in this research work does not represent a real
smart grid deployment, which would provide a more realistic
test for congestion management. Future works must take into
account smart meter positions from real deployments.

An Enhanced Tree Routing Based on Reinforcement
Learning for Wireless Sensor Networks (WSN) is presented
in [14]. The aim of the protocol is to identify the most suitable
parent node within a tree topology by utilizing empirical
network data gathered via Q-learning. The authors establish a
state space, action set, and reward function based on multiple
cognitive metrics, and subsequently determine the optimal
parent node through an iterative process. Simulation out-
comes indicate that the proposed method outperforms exist-
ing techniques, such as the linear weighted sum-based parent
selection algorithm, in aspects like end-to-end delay, packet
delivery ratio, and energy consumption. The analysis does not
address the potential routing overhead incurred by the algo-
rithm due to the cycle detection mechanism implemented,
which requires each node to send a join request message
containing its list of child nodes to the candidate parent node.
Furthermore, the paper does not examine the scalability of
the proposed method in larger network scenarios, which may
present additional challenges and limitations.

In an attempt to improve the RPL protocol, authors
in [15] use Adam Deep Neural Network (ADNN). The work
addresses the problem of routing overhead, packet losses, and
load imbalanced in RPL. They state that the parent selection
policy must be changed based on the type of packet required
to transmit in order to achieve a better quality of service in
the network. ADNN is used to classify the packets consid-
ering packet header information such as packet length, time
to live, payload length, and payload content. Although the

proposed routing algorithm outperforms other solutions in
the literature, the experiments conducted for a small network
of 50 nodes raise concerns about the algorithm’s complex-
ity. The algorithm comprises multiple components, such as
a grid-based network construction with various levels of
unequal grids, grid head selection, a transmission scheduling
mechanism, two different objective functions, and modifica-
tions to the trickle timer algorithm, in addition to employing
the Adam Deep Neural Network mentioned above.

Another work focused on improving RPL using ML tech-
niques is presented in [16]. In this case, a new parent selec-
tion strategy is proposed to choose the best parent when
two or more candidates have the same ranking in the RPL
destination-oriented routing tree. The core of this technique is
to use Random Forest (RF) [17], for feature importance anal-
ysis. The parent selection strategy is designed based on the
importance of each feature, which are routingmetrics, such as
expected transmission count, mac losses, channel utilization,
and throughput. The routingmetric importance is then used to
assign weights to a forwarding score function, which aids in
determining the optimal candidate parent among all potential
options. The primary limitation of this strategy is the static
assignment of weights, which prevents the parent selection
strategy from being more adaptable to different load condi-
tions. Despite this limitation, the simulation results presented
in the paper demonstrate significant improvement in terms
of PDR compared to standard RPL implementations across
various network sizes.

Aside from the last two investigations mentioned above,
to the best of our knowledge, more recent approaches to
improve RPL did not apply ML techniques to enhance the
routing decisions. For example, in a recent enhancement
of RPL named Weighted Random Forward RPL (WRF-
RPL) [18], the authors tackle the load balancing problem by
combining the energy remaining in the nodes and the number
of possible parents that a node has. These two routing metrics
are the base of a weighted random selection algorithm used to
choose the best next-hop candidate. Even though WRF-RPL
improves the network’s lifetime and the PDR, the solution
ignores other important routingmetrics related to link quality.
In addition, considering only the number of parents may not
accurately reflect the actual load on a node. Some nodes with
fewer parents might experience higher traffic or processing
demands, while others with more parents might be underuti-
lized. This can lead to an imbalanced load distribution and
potentially reduced network performance.

Authors in [19] stand for QWL-RPL. They analyze the
RPL protocol under a heterogeneous traffic pattern and pro-
pose a new protocol based on the queue and workload-based
condition. The queue condition is obtained by counting the
number of packets in the queue, and the workload is measured
at each node by counting the number of transmitted packets at
the MAC layer during fixed periods of time. The first metric
would be an indicator of congestion, and the second one of
traffic load. Thus, the node chooses as its preferred parent the
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one less congested andwith less traffic load. The combination
of the metrics is simply the sum of them. The most significant
improvement observed with QWL-RPL is a routing overhead
reduction. After examining the results and the protocol’s per-
formance throughout all the experiments, the authors suggest
the potential benefits of incorporating ML into the routing
protocol. This would allow the protocol to possess self-
learning and self-adaptive features, facilitating a shift from
a rule-based routing approach to a learning-based one.

The possibility of exploiting the multi-topology routing
feature of the RPL standard has also received some attention.
The authors in [20] investigate the use of multiple RPL
instances in Wireless Sensor Networks (WSNs). However,
they utilize the two standard RPL implementations, and no
modifications are proposed for them. The implementation
based on the hop count metric is used for the instance of peri-
odic and non-critical traffic, and the implementation based
on the expected transmission count (ETX) is used for the
instance of high-critical data traffic. Another work in the
same direction is presented in [21]. This work focuses on
the use of multiple RPL instances to ensure the Quality of
Service (QoS) provision for different traffic classes. Also, this
investigation addresses the single routing metric problem in
RPL, and a new parent selection framework based on a multi-
attribute decision-making approach is proposed. The results
show that the multi-topology routing approach improves the
QoS provision in the network. However, the total length of
each simulationmay not be sufficient to capture the long-term
behavior and performance of the proposed routing approach
under various network conditions.

In summary, while some works covered in the literature
review have shown promising results, there remain challenges
such as routing metrics selection, the use of realistic network
topologies, scalability, dynamic adaptability, and balancing
the trade-offs between performance improvements and added
complexity. Building on these insights, our proposedmachine
learning-based routing protocol addresses these challenges to
further enhance the routing performance for WSGNs.

III. RPL PARENT SELECTION BACKGROUND
To provide basic knowledge for understanding our proposed
machine learning-based routing protocol for smart grid net-
works, it is essential to first explore the parent selection
process in RPL. As our design builds upon and enhances
the RPL protocol, this section aims to provide the necessary
background on RPL’s parent selection mechanism.

RPL is a distance vector routing protocol that is adapted
to a variety of Low-Power and Lossy Networks (LLN). The
protocol constructs a multihop routing tree rooted at a single
6LoWPAN Border Route (6LBR) by forming a destination-
oriented directed acyclic graph (DODAG) [7]. When a new
node joins an RPL network, it selects a parent node (default
route) based on the DODAG information that it receives
from its neighbors through DAG information object (DIO)
messages.

The rules of how each node determines the preferred parent
are guided by the Objective Function (OF). The Internet
Engineering Task Force (IETF) has standardized two OFs
for this purpose: the Objective Function Zero (OF0) defined
in RFC6552 [22], and the Minimum Rank with Hysteresis
Objective Function (MRHOF) defined in RFC6719 [23]. OF0
utilizes the hop count as a routing metric to identify the
optimal parent among candidate neighbors, making it ideal
for selecting the nearest node to the DODAG root as the
preferred parent.

In the case of MRHOF, the OF has been designed to
find the paths with the smallest path cost while preventing
excessive network churn. It does so by using two mecha-
nisms. First, it finds the minimum path cost, and second,
it switches to the node that offers the shortest path cost if
the path cost through this node is less than the current path
cost by at least a given threshold. This second mechanism is
called ‘‘hysteresis’’ [23]. By default, the OF uses the expected
transmission count as a routing metric to calculate the path
cost. The ETX is a measure of the quality of a link in terms of
reliability. Low values indicate a link is more reliable and vice
versa. The path cost from a node to the DODAG root is the
sum of the ETX of each link in the path. If multiple candidate
parents share the same path cost, other tie-breaking criteria
might be used, which is implementation dependent. One of
the effective alternatives for tie-breaking is presented in [16].

IV. MACHINE LEARNING-BASED ROUTING DESIGN
In an RPL network, each node recognizes its neighbor nodes
by DIO messages received from them. Thus, every time a
node receives a DIO message, it must update the candidate
parent set and select the preferred parent considering the
routing metrics defined for that purpose. In our strategy,
we follow the same approach, but instead of combining the
metrics directly as many previous investigations in the litera-
ture have done, we use the metrics to calculate the probability
of reaching the node that sent the DIO. To calculate the prob-
ability, the nodes use an ML model that has as inputs features
based on certain routing metrics and outputs a probability on
whether the DIO-sender node can be successfully reached.

Let’s designate the positive event of reaching the DIO-
sender as class label y = 1, and the p(y = 1|x) is the
probability that a particular sample belongs to class 1 given
its features x. Then, the path cost of node k to reach the DIO-
sender (e.g. node m) could be expressed by the following
equation:

path_cost(k,m) = 1− p(y = 1|x) (1)

As we are interested not only in the path cost to reach node
m but also in the path cost to the destination (i.e., DODAG
root), the total path cost of node k to reach the DODAG root
through node m would be the sum of the path cost to reach
node m, plus the node m’s path cost to reach the root. That is
expressed in Eq.( 2):

C(k,m) = path_cost(k,m)+ C(m, P̂m) (2)
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where P̂m is the preferred parent of nodem. It is worth noting
that node m must advertise its path cost so that node k can
calculate the path cost through node m.
Nodes keep a record of the total path costs through all

possible candidate parents. The node that offers the lowest
path cost to the destination is then selected as the preferred
parent. In general, If S is the set of n candidate parents of
node k , the best alternative parent or preferred parent P̂k is
given by:

P̂k = argmin
n∈S
{C(k, n)} (3)

As in the MRHOF version of RPL, a node switches to
a new parent only if the new minimum calculated total
path cost is smaller than the current total path cost through
the preferred parent by the parent_switch_threshold . The
value of parent_switch_threshold serves as a hysteresis factor
that aims to prevent unnecessary and inefficient parent node
changes.

Algorithm 1 describes the entire strategy for parent selec-
tion. The algorithm starts having a set of candidate parents,
followed by computing the total path cost to the destination
via each candidate. Then, the algorithm determines the can-
didate with the lowest path cost and switches to a new parent
if the threshold decision is satisfied.

Algorithm 1 Pseudo-Code of the Parent Selection Strategy

Require: S, a set of n candidate parents of node k . Pk ,
current_preferred_parent. ζ , parent_switch_threshold .
for each n ∈ S do

Calculate total cost to the root through n, C(k, n).
end for
P̂k = argmin

n∈S
{C(k, n)}

if C(k, P̂k ) ≤ (C(k,Pk )− ζ ) then
Pk ← P̂k

end if
return Pk

The parent selection strategy described in Algorithm 1
is the core of our ML-based routing proposal, ML-RPL.
Since the path cost calculation in the strategy depends on
the predictions made by an ML model, the necessary steps to
develop the ML model are presented in Fig. 2. The following
subsections describe each step of the process.

A. DATA COLLECTION AND PROCESSING
The first step in Fig. 2 focuses on data collection and the
subsequent processing required to obtain a representative
dataset for model training and evaluation. In practice, con-
structing a good dataset can be challenging as it is heavily
reliant on the type of data being observed. To address this
challenge, it was imperative to collect data using a real smart
grid network, as there were no pre-existing datasets avail-
able for our proposal. Accordingly, representative simulation
scenarios were created, considering a public database that

FIGURE 2. Roadmap to build the ML model for ML-RPL.

provides the positions of 335,297 smart meters distributed
over an area of approximately 431 square kilometers in the
city of Montreal. The large scale of this deployment made it
infeasible to simulate the entire scenario using any network
simulation tool. Thus, the simulations for data collectionwere
run separately over different areas, as illustrated in Fig. 3.
The simulations were carried out using the network simulator
OMNeT++ [24].

In each simulation, the smart meters sent packets through
random routes to the collector. Our focus was to capture
routing metrics at the moment a node was either transmitting
or forwarding a packet. This allowed us to collect routing
metrics related to the link between sender and receiver and
others that give information related to the status of the nodes.
In summary, the gathered routing metrics are:

• Hop count. Distance to the destination based on the
number of hops.

• Expected TransmissionCount (ETX). Calculated with
respect to the meter that is supposed to receive the
packet. The ETX is calculated on a link according to the
following expression:

ETX =
1

Df · Dr
(4)
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FIGURE 3. Smart meters deployment in the city of montreal.

Df is the measured probability that a packet is received
by the neighbor and Dr is the measured probability that
the acknowledgment packet is successfully received.
The ETX is also smoothed by using an exponential
weighted moving average (EWMA) filter, making it
robust to sudden link condition changes:

ETXnew = α · ETXcurrent + (1− α) · ETXprior (5)

the value of α is implementation dependent, and it has
been set to 0.8 as in other implementations [25].

• MAC losses. The average percentage of frame losses in
the MAC Access Control (MAC) layer. These losses are
computed as the sum of losses resulting from the max-
imum number of frames retransmitted, the maximum
number of extra backoff times reached, and queue drops.

• Density. Number of neighbors within the transmission
range of the meter that is supposed to receive the packet.

• Channel utilization. Percentage of the time the channel
is busy at the receiver side.

• Throughput. Frames per second transmitted by the
meter that is supposed to receive the packet.

• Queue utilization (Qu). Queue utilization of the meter
that is supposed to receive the packet. It is computed by
each node as:

Qu(k) =
Number of packets in queue of node k

Total queue size of node k
(6)

• Received Signal Strength Indicator (RSSI). Average
of RSSI values of the packets received from the node
that is supposed to receive the packet.

All the routing metrics except for Density and the Hop
countwere smoothed using an EWMA filter in a similar way
as the ETX. In order to obtain a large number of samples cov-
ering a wide range of values of these routingmetrics, different
simulation conditions were considered. For example, to have
different congestion levels, the sending interval of the smart

TABLE 1. Simulation settings for data collection.

meters varied from 5 minutes up to 1 hour. Also, the number
of smart meters in the scenarios was changed from 50 to 300.

The communication channel was modeled by using the
Log-Normal Path Loss Model as suggested in [26]. The value
for the path-loss exponent α and the shadowing deviation σ

are taken from [27], which have been used in previous related
works like [28]. Other simulations setting are given in Table 1.

To summarize the data collection, Fig. 4 shows a simplified
example of the process. For instance, if node 5 sends a packet
to the collector, represented by node C , the hop statistics are
stored in a repository with the structure shown at the bottom
of Fig. 4. The columns of the repository corresponding to
packet sending time, source, packet identifier, packet event
(packet sent, forwarded, or received at the destination), and
the values of the different routing metrics at each hop.

The raw data obtained from the simulations have to be
processed and organized in a structured way. To this end,
it was used Pandas [29], a library developed in the Python
programming language for the purpose of manipulating and
analyzing data. Once the data is processed, the dataset used
to train the ML model looks like in Fig. 5. Each sample in
the dataset represents a unique packet transmitted over the
network, recorded hop by hop. The features are the rout-
ing metrics recorded at each hop, and the classes represent
whether the packet was received at the next hop or not
(r = 1, if the packet was received successfully, r = 0 oth-
erwise). A summary of the characteristics of the dataset that
will be used for training is shown in Table 2.

B. ML MODEL SELECTION
The second step in our roadmap involves the selection of the
ML model that will be used for predicting the best parent
for forwarding packets at each hop. We are presented with
a binary classification problem where we want the ML algo-
rithm to learn when the packets are received successfully or
not at the next hop.
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FIGURE 4. Example of data collection hop by hop and the repository.

FIGURE 5. Dataset appearance.

TABLE 2. Dataset summary.

There are manyML algorithms for classification problems.
In our case, we have chosen CatBoost, a member of the
family of Gradient Boosted Decision Trees (GBDT) algo-
rithms. This algorithm has already been used successfully in
networking. In [9], it is compared to other ML algorithms to

make forwarding decision tasks, and the results encouraged
its use in this work. Catboost can also be exported to C++,
which makes it easy to integrate it into the network simulator.

CatBoost is built upon the theory of decision trees and
gradient boosting. Gradient boosting ML technique was first
described in [30]. The main idea of boosting is to sequentially
combine many weak models to create a solid competitive
predictive model. When decision trees are used as base learn-
ers, a new tree is added at each step of the process. The
decision trees are fitted sequentially, so the fitted trees learn
from the former trees’ errors to minimize the value of the
loss function. Adding a new tree to existing ones continues
until the selected loss function is no longer minimized or a
maximum number of trees is reached. Algorithm 2 describes
the boosting process with decision trees as base learners.

Algorithm 2 GBDT Algorithm
Require: (xi, yi)ni a set of data, where xi are input val-
ues, and yi, i ∈ {1 . . . n} are the expected output values.
L(yi,F(x)), a differentiable Loss Function. Learning rate,
α. M , maximum number of decision trees.
Initialize: F0(x) = argmin

γ

∑n
i=1 L(yi, γ )

for m = 1 to M do
1: Compute rim = −

[
∂L(yi,F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

for i =

1, . . . , n
2: Fit a regression tree to the rim values and create

terminal regions Rjm, for j = 1 . . .Jm
3: For j = 1 . . . Jm, compute

γjm = argmin
γ

∑
xi∈Rjm L(yi,Fm−1(xi)+ γ )

4: Update Fm(x) = Fm−1(x)+ α ·
∑Jm

j=1 γm1(x ∈ Rjm)
end for
Output: FM (x)

Two critical algorithmic introduced in CatBoost are the
implementation of ordered boosting, a permutation-driven
alternative to the classic algorithm, and an innovative algo-
rithm for processing categorical features. Both techniques
were created to fight a prediction shift caused by a spe-
cial kind of target leakage present in all currently existing
implementations of gradient boosting algorithms [31]. Also,
CatBoost does not follow similar gradient boosting models in
the growing procedure of the decision trees. Instead, it grows
oblivious trees, meaning that the same splitting criterion is
used across an entire level of the tree. Such trees are balanced,
less prone to outfitting, and allow to speed up the executions
at the testing time significantly [32].

C. MODEL OPTIMIZATION AND VALIDATION
Prior to initiating the training process, the dataset is parti-
tioned into two subsets, with 80% allocated for training and
20% for testing. The initial phase of the training process
involves adjusting the primary hyperparameters of the model.
These hyperparameters, such as the learning rate, the number
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TABLE 3. Hyperparameter search space.

of trees in the ensemble, and the maximum depth of each tree,
and others, are predetermined model parameters that are not
learned from the data. To do so, we have used a technique
named Grid Search, which is implemented in the Python
library scikit-learn [33]. The grid search technique involves
exploring the optimal parameter values within a specified
parameter grid. This means that a range of values is assigned
for each hyperparameter, which is then evaluated through
the grid search to determine the most suitable combination.
Table 3 summarizes the hyperparameters search space.

In order to see how the Catboost model performs after the
hyperparameter optimization, we show the Receiver Oper-
ating Characteristic (ROC) curve in Fig. 6. The ROC curve
is one of the most well-known performance metrics for ML
classifiers [34]. The area under the curve (AUC) is a measure
of the ability of a classifier to distinguish between classes and
is used as a summary of the ROC curve. The higher the AUC,
the better the performance of the model at distinguishing
between the positive and negative classes. Fig. 6 shows five
curves and their mean because K-fold Cross-Validation has
been used. K-fold Cross-Validation is a technique where the
dataset is randomly split into k folds without replacement,
where (k − 1) folds are used for the model training and one
fold is used for testing. This procedure is repeated k times,
and the ROC curvewas recorded at each time. Themean value
of ROC shown in Fig. 6 is 0.91, which means that our model
achieves good class separation performance.

We are also interested in analyzing the relevance of
each feature in the model. By identifying the routing met-
rics that are most relevant, the proposed routing algorithm
can improve efficiency. Catboost has implemented different
methods to calculate the feature importance after model train-
ing, so we can directly get the individual importance values
for each of the input features. The result of this analysis is
presented in Fig 7. The values are normalized so that the sum
of the importance of all features is equal to 100. A higher
value of the importance indicates a larger average change to
the prediction value, if this feature is changed.

FIGURE 6. Receiver operating characteristic (ROC) curve.

It is seen that the RSSI metric has the most influence on
the model output, followed by the ETX and the throughput.
Contrarily, the density, and the queue utilization show low
significance in the model output. In order to complement
the previous analysis, we have applied Recursive Feature
Elimination (RFE). RFE is a feature selection method that
recursively removes the least important feature until the spec-
ified number of features is reached. In Fig 8, we have plotted
how the AUC of the model varies versus the number of
features selected. The figure shows that utilizing more than
six metrics does not result in any improvement in the ROC
metric. As a consequence, the ML model does not consider
either the density or the queue utilization when making rout-
ing decisions.

The developed ML model has to be integrated into the
network simulator, step 3 in Fig. 2. Since the model was
initially developed using Python, we converted the Python-
based model to its equivalent C++ implementation. The
C++ model is incorporated into the OMNeT++ simulator
by linking the implementation with the rest of the modules
and components of the simulator. The next section is dedi-
cated to testing the model as part of the routing protocol in
the network simulator.

V. PERFORMANCE EVALUATION
We present the performance evaluation of our proposed
ML-RPL in this section. Our approach is compared to one
of the standard RPL implementations (MRHOF) and also
to RPL+, the proposal presented in [16]. Three different
experiments varying the network load were conducted to
compare the routing algorithms. Next are the details of the
simulation settings, and later the results of each experiment
are presented.

A. SIMULATION SETTINGS
To compare the routing algorithms, we utilized the
OMNeT++ simulator in a realistic scenario extracted from
the city of Montreal. The scenario consisted of a set of
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FIGURE 7. Feature importance analysis.

FIGURE 8. ROC_AUC score versus number of features.

TABLE 4. Simulation parameters.

200 smart meters and one collector, as depicted in Fig. 9.
The channel, physical layer, and MAC layer have the same
characteristics as was described in the data collection process,
Table 1. Each simulation executed corresponds to 1.5 hours of
network operation, and the results presented are the average
of 10 simulations per experiment with a confidence interval
of 95%. The simulation settings can be found in Table 4.
Regarding network traffic, typical smart grid applications

such as Meter reading (MR), Alarm events (AE), and Power
Quality (PQ) have been considered. MR is the most basic

FIGURE 9. Simulation scenario.

smart grid application. It refers to the usage information that
smart meters collect and must report periodically to utilities.
AE is the second application taken into consideration. Alarms
can happen at any time and are sent randomly during the sim-
ulation time by a percentage of smart meters. AE can include
events such as measurement failure, system restart, system
memory full, configuration errors, etc. The other application
considered has been PQ. Examples of Power Quality events
include but are not limited to leading/lagging power, voltage
fluctuations, imbalance in energy flow, harmonics, and volt-
age sags and swells. Table 5 presents how these applications
have been configured in each experiment.

As shown in Table 5, experiment 1 has the lowest traffic
load. For experiment 2, the three applications are transmitted,
but only 25% of the smart meters transmit AE and PQ. Exper-
iment 3 has the highest traffic load, where the MR traffic is
doubled, and 50% of the smart meters generate AE and PQ
traffic.

B. SIMULATION RESULTS
Fig. 10 shows the PDR measured at the collector for the first
experiment. Recall that the PDR expresses the ratio between
the number of successfully received packets at the destination
and the total number of transmitted packets. In this experi-
ment, the smart meters transmit only MR packets. It can be
seen that ML-RPL performs better than MRHOF and RPL+
by 7% and 5%, respectively. Overall, ML-RPL is able to
achieve 94% of PDR on average.

In terms of end-to-end delay, the comparison among the
three routing protocols is shown in Fig 11. The highest delay
corresponds to MRHOF since it is based on the ETX metric
which measures the most reliable paths not necessarily the

VOLUME 11, 2023 57409



C. L. D. Santos et al.: ML-RPL: ML-Based Routing Protocol for Wireless Smart Grid Networks

TABLE 5. NAN applications transmitted over the SG per experiment.

shortest ones. The average delay of RPL+ is almost half of
MRHOF’s value. It is worth noting that RPL+ takes into
account the hop count metrics to build the routes from nodes
to the root. Later other metrics are applied to decide among
candidates with the same hop distance, so the paths with
minimum distance to the destination are always chosen. This
is why better results with respect to MRHOF were expected.
ML-RPL was found to be slightly better than RPL+ with
an average difference in delay of only 60 ms. However, it is
worth noting that ML-RPL exhibits greater deviation from
the mean delay value, with some individual simulation runs
experiencing delays exceeding 600 ms. ML-RPL is more
of an intermediate solution between MRHOF and RPL+.
It considers the hop count metric alongside other metrics to
predict the optimal path. As a result, the weight assigned
to other metrics may sometimes result in longer paths hav-
ing a better probability of successful delivery. Nevertheless,
ML-RLP guarantees successful delivery to the destination.

In the second experiment, we added AE and PQ traffic.
Fig 12 depicts the PDR for each routing variant. We can
observe that ML-RPL achieves the best PDR for the 3 traffic
categories. However, for MR, the PDR fell 3% with respect
the experiment 1 when there was no more traffic simulta-
neously. The other routing algorithms were also unable to
achieve the same PDR for MR traffic as in experiment 1.
Nevertheless, for RPL+ the reduction was only 1%. The
difference in favor of our machine learning-based routing
protocol is more notable for the other traffic cases. For AE,
the PDR of ML-RPL is 6% and 9% better than the PDR
observed with RPL+ and MRHOF, respectively. Regarding
the third traffic type, PQ, the 94% of PDR achieved by
ML-RPL is better by 11%with respect MRHOF and 4%with
respect to RPL+.

FIGURE 10. Packet delivery ratio in experiment 1.

FIGURE 11. End-to-end delay in experiment 1.

FIGURE 12. Packet delivery ratio in experiment 2.

The packet delay for the second experiment is shown in
Fig 13. It can be seen again that MRHOF has the worst
average packet delay. It is also seen that ML-RPL achieves
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FIGURE 13. End-to-end delay in experiment 2.

FIGURE 14. Packet delivery ratio in experiment 3.

slightly better delay that RPL+ for MR traffic as in experi-
ment 1, but this is not the case for the rest of the traffic cases.

Fig. 14 shows the PDR results for the third experiment.
In this experiment, we increased the network load by decreas-
ing the sending interval of the MR application by 50% and
doubling the percentage of the smart meters sending alarm
reports and power quality events. The main goal is to see
how the new proposal routing protocol behaves when the net-
work load increases. The PDR shows that ML-RPL decreases
slightly for each traffic category with respect to experiment 2.
The reduction in PDR is 1% for MR, 4% for AE, and 4%
for PQ. The PDR of RPL+ and MRHOF decreases as well
for 2 out of 3 traffic types with respect to experiment 2.
It was expected as the traffic load increases, the PDR would
decrease. However, ML-RPL can keep the PDR above 90%
for each traffic type, which is a significant advantage of our
strategy based on ML techniques.

The end-to-end delay for the last experiment is depicted
in Fig. 15. It shows a similar pattern as in experiment 2, but
all the routing variants have higher values of delay for the

three applications. Since the traffic load was increased, the
transmission attempts face more contention, which results
in longer back-off times and more re-transmission, so the
delay increases in consequence. It is worth noting that there
is a spike in the PQ application when ML-RPL is used. The
average value is slightly bigger than even MRHOF, but we
know from Fig. 14 that more smart meters are able to reach
the destination when using ML-RPL. Some of those smart
meters are further away from the collector, which results in
an increase in the average end-to-end delay.

In summary, the improvement observed in our ML-based
routing proposal compared to the other protocols can be
attributed to several key factors. Firstly, we emphasize the
data-driven approach employed in our design. In our specific
context, this means that the parent selection process is guided
by insights extracted from a previously generated dataset.
This allows our routing protocol to make more accurate deci-
sions when selecting the most suitable node for forwarding
packets.

In addition, the incorporation of an ML model into our
routing protocol design enables greater adaptability com-
pared to traditional approaches. Our proposal has demon-
strated its ability to adapt to varying network conditions and
to learn the complex relationships between diverse features.
This adaptability allows our ML-based routing protocol to
make more accurate predictions even in the presence of
network load variations, leading to improved performance
metrics such as PDR for all test scenarios.

C. ROUTING OVERHEAD
The consumption of significant network resources and reduc-
tion of efficiency aremajor concerns in wireless networks due
to routing overhead. This section will evaluate the routing
overhead of our suggested routing protocol and compare it
with MRHOF and RPL+.

Routing overhead is defined as the number of control
messages generated by a routing protocol tomaintain network
connectivity and routing tables. In RPL, this involves DIO
and DAO messages transmitted to keep network connectiv-
ity. Fig. 16 shows the average number of control messages
generated in each experiment by each protocol.

As traffic load increases, the number of control messages
tends to increase for all routing protocols. This is because
nodes change their preferred parent more frequently when
traffic load increases, looking for the best alternative. These
changes generate extra control messages to notify neigh-
bors about the change, which can also cause neighbors to
change parents based on the new information. When nodes
change parents too frequently, it can cause network instability
and potential loops. Thus, there is a clear trade-off between
changing to the best alternative candidate parent at the price
of increasing network overhead and instability, and keeping
the current parent even when it is not the best option.

Fig. 16 shows that ML-RPL has slightly less overhead
than MRHOF. This is due to our protocol’s consideration
of additional factors in the state of the link and the state
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FIGURE 15. End-to-end delay in experiment 3.

FIGURE 16. Overhead per experiment.

of the possible candidate parents, rather than relying solely
on the ETX routing metric, as MRHOF does. Consequently,
variations in the ETX value do not always prompt a parent
change in our protocol.

Compared to RPL+, ML-RPL incurs more overhead. This
difference in overhead can be attributed to certain key differ-
ences between the two protocols that affect their operation
and performance. RPL+ is an extension of the RPL standard
that uses the hop count metric as its base. It also takes
into account other metrics such as ETX, throughput, MAC
losses, and channel utilization, in a tie-breaking equation to
decide among candidates with the same ranking in the routing
tree, but the weights assigned to each of them are fixed.
In contrast, ML-RPL is based on a Gradient boosted decision
tree algorithm, which is a non-linear model that can capture
complex interactions between features, resulting in a more
dynamic routing protocol with wider ranges of prediction and
higher variability in parent selection. Despite the increase
in overhead, network performance is not degraded; in fact,
it is beneficial based on the PDR. Therefore, our innovative

protocol strikes a good balance between the other two routing
protocols.

VI. CONCLUSION AND FUTURE WORK
We have presented a novel proposal of a machine learning-
based routing protocol for Wireless Smart Grid Networks
named ML-RPL. The proposal focuses on enhancing the
parent selection strategy of one of the well-known protocols
in this type of networks, the Routing Protocol for Low-Power
and Lossy Networks. We started our design by gathering a
large amount of simulation data from a real deployment of
smart meters that helped us to build a representative dataset.
Each feature in the dataset corresponds to a value of a routing
metric that characterizes the link or the state of the nodes
measured hop by hop as the packets travel from source to
destination. This dataset served to train the ML algorithm
and is later used to make the routing decisions. In addition,
a feature importance analysis was conducted to use, by the
protocol, only the routing metrics more relevant.

The performance evaluation of the new proposal showed
significant improvements with respect to one of the standard
RPL implementations in terms of packet delivery ratio and
end-to-end delay. The proposal also overcame an RPL mod-
ification (RPL+) that uses Random Forest to improve the
parent selection strategy.When comparing to RPL+, it can be
seen that ML-RPL is consistently better in terms of PDR, and
in some cases, the end-to-end delay achieved is also better.
However, as more packets arrive at the destination when
ML-RPL is used, some of those packets followed longer paths
and consequently increase the average end-to-end delay with
respect to RPL+.

In general, the results show a significant potential of the
ML techniques to be applied in solving or improving net-
working tasks. The capacity of learning from a dataset that
contains previous events and later use that knowledge has
been the key for better results. For future work, we are
strongly considering to incorporate Quality of Service (QoS)
criteria in the decision-making process to guarantee the QoS
of some applications with specific requirements. In addition,
we plan to extend our routing strategy to otherML algorithms
and conduct a detailed comparison among them.
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