
Received 8 May 2023, accepted 30 May 2023, date of publication 5 June 2023, date of current version 12 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3283028

An Automatic Method for Generating Symbolic
Expressions of Zernike Circular Polynomials
HONG-YAN ZHANG , YU ZHOU , (Member, IEEE), AND FU-YUN LI
School of Information Science and Technology, Hainan Normal University, Haikou 571158, China

Corresponding author: Hong-Yan Zhang (hongyan@hainnu.edu.cn)

This work was supported in part by the Hainan Provincial Natural Science Foundation of China under Grant 2019RC199, in part by the
Hainan Provincial Education and Teaching Reform Project of Colleges and Universities under Grant Hnjg2019-46, and in part by the
National Natural Science Foundation of China under Grant 62167003.

ABSTRACT Zernike circular polynomials (ZCP) play a significant role in optics engineering. The symbolic
expressions for ZCP are valuable for theoretic analysis and engineering designs. However, there are still
two problems which remain open: firstly, there is a lack of sufficient mathematical formulas of the ZCP
for optics designers; secondly the formulas for inter-conversion of Noll’s single index and Born-Wolf’s
double indices of ZCP are neither uniquely determinate nor satisfactory. An automatic method for generating
symbolic expressions for ZCP is proposed based on five essential factors: the new theorems for converting
the single/double indices of the ZCP, the robust and effective numeric algorithms for computing key
parameters of ZCP, the symbolic algorithms for generating mathematical expressions of ZCP, and meta-
programming & LATEX programming for generating the table of ZCP. The theorems, method, algorithms and
system architecture proposed are beneficial to both optics design process, optics software, computer-output
typesetting in publishing industry as well as STEM education.

INDEX TERMS Zernike circular polynomial, symbolic computation, mathematical table, computer-output
typesetting, LATEX programming, STEM education.

I. INTRODUCTION
In optics engineering, the Zernike circular polynomials
(ZCP), also named Zernike polynomials for simplicity, are
essential for representing aberrations in imaging system,
optics design and optical testing [1], [2], [3], [4], [5], [6],
[7], [8], [9]. Mathematically, ZCP are a sequence of bivariate
polynomials defined on the unit disk

D =
{
(x, y) : 0 ≤ x2 + y2 ≤ 1

}
= {(ρ, θ) : 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π}

derived from the circular pupils of imaging system. Named
after Frits Zernike, they play an important role in beam
optics and optics design [10], atmospheric turbulence [11]
and image processing [12]. The ZCP are orthogonal functions
which represent balanced aberrations that yield minimum
variance [9]. The computation of ZCP are significant for the-
oretic analysis and engineering applications. The numerical

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Selim Habib .

algorithms are discussed in lots of literature such as [4],
[12], [13], and [14]. However, the symbolic computation
for automatically generating the mathematical expressions
for the ZCP is missing. It may be inconvenient or trou-
blesome for the optics designers to look for the formulas
of ZCP with ‘‘high’’ orders. Actually, there are less 28 ∼
40 and 70 expressions for the ZCP in ZEMAX and CodeV
respectively.

The purpose of this paper is to propose an automatic
method for generating mathematical expressions for the ZCP.
FIGURE 1 illustrates the framework of our work. There are
five modules for the system architecture:
• Principle of Index Conversion, which includes our new
theorems and proofs about the single/double index for
the ZCP;

• Numeric computation, which computes key parameters
robustly and effectively for large integers so as to avoid
the overflow problem in computing factorials;

• Symbolic computation, which deals with the algorithms
for automatic generating symbolic expressions of the
ZCP;

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

56481

https://orcid.org/0000-0002-4400-9133
https://orcid.org/0000-0002-8481-1796
https://orcid.org/0000-0003-0161-5325

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

• Meta-programming and LATEX programming, which
generates the long table of ZCP and outputs the corre-
sponding pdf file for printing, reading and reference;

• System setting, which sets the necessary information for
themathematical formula of ZCP and the geometric con-
figuration of the long table of mathematical expressions.

The contents of this paper are organized as follows:
Section II deals with the preliminaries of backgrounds;
Section III copes with the principle of inter-conversion of the
single/double index for computing ZCP; Section IV focuses
on how to generate long table of mathematical expressions of
ZCP; Section V is the conclusion.

II. PRELIMINARIES
A. FUNDAMENTALS OF MATHEMATICS
1) NOTATIONS FOR INTEGERS
For an integer n ∈ Z = {0,±1,±2, · · ·}, it is even if and
only if 2 | n, i.e., 2 divides n or equivalently n ≡ 0 (mod 2);
otherwise, it is odd if and only if 2 ∤ n or equivalently n ≡
1 (mod 2). The sets of even and odd integers are denoted by

Zodd =
{
i ∈ Z : 2 ∤ i

}
= {±1,±3,±5, · · ·}

and

Zeven = {i ∈ Z : 2 | i} = {0,±2,±4,±6, · · ·}

respectively. The set of positive integers areN = {1, 2, 3, · · ·}
and the set of non-negative integers is Z+ = N ∪ {0} =
{0, 1, 2, · · ·}. Similarly, the set of negative integers is Z− =
−N = {−1,−2,−3, · · ·}. In consequence, the sets of
non-negative even integers and non-negative odd integers can
be denoted by Z+even and Z+odd respectively.

For any real number x ∈ R, the unique integer n = ⌊x⌋ ∈ Z
such that n ≤ x < n+1 is called the floor of x. Similarly, the
integer n′ = ⌈x⌉ ∈ Z such that n′ − 1 < x ≤ n′ is called the
ceiling of x.

2) EXPRESSION OF GENERAL POLYNOMIALS
A polynomial Tn(x) with argument x and degree n can be
written by

Tn(x) =
n∑
i=0

aix i = a0 + a1x + · · · + aix i + · · · + anxn

(1)

If ai = 0 for all odd i, then Tn(x) is an even polynomial. Simi-
larly, if ai = 0 for all even i, then Tn(x) is an odd polynomial.
Futhermore, some of the coefficients a0, a1, · · · , an may be
missing if they equal zero. In consequence, we can denote a
polynomial as

T (x) =
k∑
s=0

csxps , ps ∈ Z+ (2)

where ps ∈ Z+. In other words, a polynomial can be
described by the sequence of coefficients c = ⟨c0, · · · , ck ⟩
and the corresponding sequence of power indices p =
⟨p0, · · · , pk ⟩.

3) BINOMIAL AND TRI-NOMIAL COEFFICIENTS
In general, for any real number α ∈ R and non-negative i ∈
Z+ = {0, 1, 2, · · ·} the generalized binomial expansion can
be expressed by

(1+ x)α =
∞∑
i=0

(
α

i

)
x i, x ∈ ROC = (−1, 1)

in which ROC is the region of convergence and(
α

i

)
=

α(α − 1) · · · (α − i+ 1)
i!

(3)

is the binomial coefficient [15], [16], [17]. Particularly,
if α ∈ Z+ is a positive integer, we have(

α

i

)
=

α!

i!(α − i)!
. (4)

For any r ∈ Z+ we have

(x1 + x2 + x3)r =
∑

i1+i2+i3=r

(
r

i1, i2, i3

)
x i11 x

i2
2 x

i3
3

where(
r

i1, i2, i3

)
=

(i1 + i2 + i3)!
i1!i2!i3!

, i1 + i2 + i3 = r (5)

is the tri-nomial coefficients, which is symmetric for a permu-
tation of i1, i2, i3 and can be expressed in terms of binomial
coefficients:(

r
i1, i2, i3

)
=

(
i1 + i2
i1

)(
i1 + i2 + i3
i1 + i2

)
. (6)

Therefore, for r = n − s, p = 3, i1 = s, i2 = k − s, i3 =
n− k − s, i1 + i2 + i3 = n− s, we can obtain(

n− s
s, k − s, n− k − s

)
=

(
k
s

)(
n− s
k

)
. (7)

When computing the value of binomial coefficients with
computer programs, we should keep an eye on the overflow
problem since the factorial r ! increases rapidly with the inte-
ger r . We can avoid such a risk by reformulating the binomial
coefficient properly, i.e., for any i ∈ Z = {0} ∪ N,(

α

i

)
=

1, i = 0;
i−1∏
t=0

α − t

i− t
, i ≥ 1.

(8)

The value of
(
α
i

)
can be computed withAlgorithm 4 robustly

and fastly.

4) KRONECKER SYMBOL
The notation

δij =

{
0, i ̸= j
1, i = j

(9)

is called the Kronecker symbol. Particularly, δm0 = 1 for
m = 0 and δm0 = 0 otherwise.

56482 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

FIGURE 1. System architecture for automatically generating a long table of the mathematical expressions of ZCP{
Zj (ρ, θ) : jmin ≤ j ≤ jmax

}
.

5) DISCRETE UNIT STEP FUNCTION
The discrete unit step function is defined by

u(m) =
{
1, m ∈ Z+ = {0, 1, 2, 3, · · ·}
0, m ∈ Z− = {−1,−2,−3, · · ·} (10)

with the counterpart of Heaviside function in the continuous
case.

6) CARDINALITY
For a finite set A = {x1, · · · , xr }, its cardinality is denoted by
|A|, i.e.

|A| = |{x1, · · · , xr }| = r . (11)

B. ZERNIKE CIRCULAR POLYNOMIALS
1) DEFINITION OF ZERNIKE CIRCULAR POLYNOMIALS
Generally, for n ∈ Z+ and m ∈ Z such that |m| ≤ n and
2 | (n− m), the ZCP can be denoted by [1], [3], [4]

Zmn (ρ, θ) = Nm
n Rmn (ρ)2m(θ), ρ ∈ [0, 1], θ ∈ [0, 2π]

(12)

where

Nm
n =

√
2(n+ 1)
1+ δm0

=

{√
2(n+ 1), m ̸= 0
√
n+ 1, m = 0

(13)

is the coefficients for normalization,

2m(θ) =

1, m = 0, j ∈ Z+odd
cos(|m| θ), m ̸= 0, j ∈ Z+even
sin(|m| θ), m ̸= 0, j ∈ Z+odd

(14)

is the angular function with equivalent complex form ei|m|θ ,

Rmn (ρ) =
1

(n−|m|2)!ρ|m|

[
d

d(ρ2)

] n−|m|
2 [

(ρ2)
n+|m|

2 (ρ2
− 1)

n−|m|
2

]

=

n−|m|
2∑

s=0

(−1)s ·
(n− s)!

s!
(
n+|m|

2 − s
)
!

(
n−|m|

2 − s
)
!

· ρn−2s

=

k∑
s=0

(−1)s ·
(

n− s
s, k − s, n− k − s

)
· ρn−2s

VOLUME 11, 2023 56483

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

=

k∑
s=0

csρps = c0ρn + c1ρn−2 + · · · + ckρn−2k

(15)
is the radial Zernike polynomials in which

k =
1
2
(n− |m|) (16)

andcs = (−1)s
(

n− s
s, k − s, n− k − s

)
, 0 ≤ s ≤ k;

ps = n− 2s, 0 ≤ s ≤ k.
(17)

Substituting (7) into (17), we obtain the following efficient
expression for computing cs

cs = (−1)s
(
k
s

)(
n− s
k

)
, 0 ≤ s ≤ k. (18)

2) SINGLE AND DOUBLE INDICES FOR ZERNIKE CIRCULAR
POLYNOMIALS
There are different schemes for representing the order of ZCP
in theory analysis and applications. The first scheme is the
Born-Wolf notation (BWN), which uses the double indices
⟨n,m⟩ in the expression Zmn (ρ, θ). This kind of notation is
well known in the famous book by Born-Wolf [1]. The BWN
is also named with OSA notation.

The second scheme is characterized by a single index j.
However, there are three choices for the single index:
• ANSI ‘‘Standard Zernike Polynomials’’. In this case
jANSI =

n(n+2)+m
2 .

• ZEMAX ‘‘Standard Zernike Coefficients’’. This is intro-
duced by Noll in studying atmospheric turbulence [11],
in which j is used to represent the order instead of n and
m. In the software ZEMAX for optics design, the Noll’s
notation j is taken.

• ZEMAX ‘‘Zernike Fringe Polynomials’’,1 which is
introduced by James C. Wyant [18].

In this paper, we just concern the Noll’s Zj and the Born-
Wolf’s Zmn due to their wide applications in optics design
where the relation between ⟨n,m⟩ and j is well known for
optics engineers. In this sense, we have [10], [11]

Zj(ρ, θ) = Zmn (ρ, θ), j = j(n,m) ∈ N (19)

such that

⟨Zj |Zj′⟩ = πδjj′ . (20)

3) PROBLEM OF THE INTER-CONVERSION OF
SINGLE/DOUBLE INDICES
For the given single index j, we have [9], [19]

n = n(j) =
⌊√

2j− 1+
1
2

⌋
− 1 (21)

and

m = m(j) =

 2
⌊
2j+1−n(n+1)

4

⌋
, n ∈ Z+even;

2
⌊
2j+1−n(n+1)

4

⌋
− 1, n ∈ Z+odd.

(22)

1It is also named polynomials of University of Arizona.

However, there is a lack of simple expression to calculate j
when both n and m are given. Actually, what we can find is
a description of j in a range n(n + 1)/2 + 1 ≤ j ≤ n(n +
1)/2+ n+ 1 (as explained in [9], [19]). Here both the lower
and the upper bound for j is not tight, so it can not be used
to determine j uniquely. Consequently, it is worth exploring
new results for the inter-conversion of j and ⟨n,m⟩.

C. ELEMENTS OF A TABLE
1) GENERAL DESCRIPTION OF A TABLE
For a general table with abstract data set

T =
{
dα
∈ S1 × S2 × · · · × Sncols : ibegin ≤ α ≤ iend

}
where dα

= (dα
1 , · · · , dα

β , · · · , dα
ncols) is the α-th record as

shown in TABLE 1, there are some fundamental parameters
for specifications: the caption of the table, the number of
columns denoted by ncols, the number of rows denoted by
nrows = iend−ibegin+1, the list of attribute nameswith the size
ncols, the elements of attribute data which have nrows records
and each record is an array of abstract data type (ADT) with
ncols members.

2) TABLE OF MATHEMATICAL EXPRESSIONS FOR ZERNIKE
CIRCULAR POLYNOMIALS
For our objective of automatically generating the long table

TZernike

=

{
d j = [j, n,m,Nm

n ,Rmn (ρ)2m(θ)] : jmin ≤ j ≤ jmax

}
,

(23)

for the ZCP with algorithms and computer programs, all of
the data terms in the table are strings specified with LATEX
grammar. It is easy for us to set the following specifications:
• the number of columns is ncols = 5;
• the list of attribute names are:

- - attribname-#1 — j, the symbolic expression for the
single index j could be the string "j";

- - attribname-#2— n, the symbolic expression for the
n-component of double indices ⟨n,m⟩ could be the
string "n";

- - attribname-#3—m, the symbolic expression for the
m-component of double indices ⟨n,m⟩ could be the
string "m";

- - attribname-#4 — Nm
n , the symbolic expression for

the normalization coefficient could be the string "
N^m_n";

- - attribname-#5 — Rmn (ρ)2m(θ), the symbolic
expression for the Zernike circular polynomial
such that Zj(ρ, θ) = Rmn (ρ)2m(θ) could be the
string "$\\Zern_j(\\rho,\\theta)= \\
Radipoly{n}{m}(\\rho)\\Theta_m(\\
theta)$";

• the caption of the table could be
- - caption — Zernike Polynomials Zj(ρ, θ) =

Nm
n Rmn (ρ)2m(θ).

56484 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

TABLE 1. General form of caption for a table with ncols attributes and nrow = iend − ibegin + 1 records.

As an illustration, for 1 ≤ j ≤ 465, our table (obtained
by compiling the LATEX source file) will have the form like
TABLE 2.

III. INTER-CONVERSION OF SINGLE/DOUBLE INDICES OF
ZERNIKE CIRCULAR POLYNOMIALS
The inter-conversion of the double indices ⟨n,m⟩ and single
index j is significant for generating the table of ZCP and look-
ing up the table for the polynomials of interests automatically.
In this section, we will establish new formula and theorems to
specify the implementation of the inter-conversion for Noll’s
single index j and Born-Wolf’s double indices ⟨n,m⟩.

A. CONVERSION OF DOUBLE/SINGLE INDICES
The Noll’s index j and the Born-Wolf’s indices ⟨n,m⟩ can be
converted to each other and the conversions can be uniquely
determined.
Theorem 1: The Noll’s index j can be computed with Born-

Wolf’s indices ⟨n,m⟩ by

j(n,m) =
n(n+ 1)

2
+ |m| + u(m) (24)

for |m| ≤ n and 2 | (n− m).
Proof: Let

Vn = ⟨v1, · · · , vr , · · · , vn+1 ⟩

=

{
⟨0,−2, 2,−4, 4, · · · ,−n, n⟩, n ∈ Z+even
⟨−1, 1,−3, 3, · · · ,−n, n⟩, n ∈ Z+odd

(25)

be the sequence of possible integers m such that

m = vr =

r − 1, for 2 ∤ r and 2 | n;
−r, for 2 | r and 2 | n;
−r, for 2 ∤ r and 2 ∤ n;
r − 1, for 2 | r and 2 ∤ n.

(26)

In other words, the integer

r = |m| + u(m) =
{
m+ 1, m ≥ 0
−m, m < 0

(27)

is the subscript r or the position in the sequence Vn for m =
vr ∈ Vn. It is easy to find that the cardinality of Vn is

|Vn| = n+ 1, n ∈ Z+ (28)

Therefore, for i ∈ {0, 1, · · · , n− 1}, the total number of
Zernike polynomial Zmi (ρ, θ) is

n−1∑
i=0

|Vi| =
n−1∑
i=0

(i+ 1) = 1+ 2+ · · · + n =
n(n+ 1)

2
.

Thus for the given n and m, let r be position of m ∈ Vnmod 2,
then the corresponding index j for the Zj(ρ, θ) = Zmn (ρ, θ)
must be the sum of base position n(n + 1)/2 and relative
position r , i.e.,

j =
n(n+ 1)

2
+ r (29)

This implies that (24) holds since we have (27). Q.E.D.

B. CONVERSION OF SINGLE/DOUBLE INDICES
As mentioned above, there is a lack of simple formulae
for converting Noll’s single index j to Born-Wolf’s double
indices ⟨n,m⟩. The following theorem remedies the defects.
Theorem 2: Given the Noll index j, the Born-Wolf’s

indices ⟨n,m⟩ can be computed with the following
expressions:

n(j) =
⌈
−3+

√
8j+ 1

2

⌉
, (30)

r(j) = j−
n(j)[n(j)+ 1]

2
, (31)

m(j) = vr(j) =

r(j)− 1, for 2 ∤ r(j) and 2 | n(j);
−r(j), for 2 | r(j) and 2 | n(j);
−r(j), for 2 ∤ r(j) and 2 ∤ n(j);
r(j)− 1, for 2 | r(j) and 2 ∤ n(j).

(32)

Proof: By (24), we have

n(n+ 1)
2

< j ≤
n(n+ 1)

2
+ n+ 1. (33)

Consequently,

−3+
√
8j+ 1

2
≤ n <

−1+
√
8j+ 1

2
(34)

This implies (30) by the definition of floor of real number.
(31) is obvious by (29). With the help of (26) we immediately
have (32). Q.E.D.

VOLUME 11, 2023 56485

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

TABLE 2. Zernike circular polynomials Zj (ρ, θ) = Nm
n Rm

n (ρ)2m(θ).

IV. GENERATING TABLE OF ZERNIKE CIRCULAR
POLYNOMIALS
A. NUMERIC COMPUTATION FOR GENERATING ZERNIKE
CIRCULAR POLYNOMIALS
The purpose of numeric computation for generating ZCP is
to determine the key parameters involved, which includes
single/double indices j, n,m, binomial coefficients

(
α
i

)
and

the powers pi in radial polynomial function Rmn (ρ).

1) CALCUALTE THE PARAMETER k FOR THE RADIAL
ZERNIKE POLYNOMIAL
The parameter k in (16) determines the number of terms of
the radial Zernike polynomial Rmn (ρ). The k can be directly
obtained by the double indices ⟨n,m⟩, see Algorithm 1.

Algorithm 1 Calculate the parameter k for the number of
terms in the radial Zernike polynomial Rmn (ρ)
Input: Noll’s double indices ⟨n,m⟩
Output: the parameter k for the radial polynomial Rmn (ρ)
1: function CvtNM2K(⟨n,m⟩)
2: k ← (n− |m|)/2;
3: return k;
4: end function

2) INTERCONVERSION OF SINGLE/DOUBLE INDICES
Given the BWN pair ⟨n,m⟩, the Noll’s single index j can
be determined by (24), please see the procedure CvtNM2J
in Algorithm 2 for the details. On the other hand, suppose
the single index j is known, we can compute the double
indices ⟨n,m⟩ according to (30), (31) and (32). The procedure
CvtJ2NM in Algorithm 3 illustrates the steps and details
completely.

Algorithm2Convert the BWNpair ⟨n,m⟩ to theNoll’s single
index j

Input: Double indices ⟨n,m⟩ of BWN where n ∈ Z+ and
m ∈ Z such that −n ≤ m ≤ n and 2 | (n− m).

Output: Single index j ∈ N of Noll notation.
1: function CvtNM2J(⟨n,m⟩)
2: Check the input n and m: n ≥ 0,−n ≤ m ≤ n, 2 |

(n− m).
3: if (m ≥ 0) then
4: j← n(n+ 1)/2+ m+ 1;
5: else
6: j← n(n+ 1)/2− m;
7: end if
8: return j;
9: end function

56486 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

Algorithm 3 Convert the single index j of Noll notation to
double indices ⟨n,m⟩ of BWN
Input: Single index j of Noll notation.
Output: BWN pair ⟨n,m⟩ where n ∈ Z+ and m ∈ Z such

that |m| ≤ n and 2 | (n− m).
1: function CvtJ2NM(j)
2: Check the value of the integer j: j ≥ 1
3: n←

⌈
(−3+

√
8j+ 1)/2

⌉
;

4: r ← j− n(n+ 1)/2;
5: if (2 | n) then
6: if (2 | r) then
7: m←−r ; // For 2 | n and 2 | r , m = −r .
8: else
9: m← r − 1; // For 2 | n and 2 ∤ r , m = r − 1.
10: end if
11: else
12: if (2 | r) then
13: m← r − 1; // For 2 ∤ n and 2 | r , m = r − 1.
14: else
15: m←−r ; // For 2 ∤ n and 2 ∤ r , m = −r .
16: end if
17: end if
18: return ⟨n,m⟩;
19: end function

3) COMPUTATION OF BINOMIAL COEFFICIENTS
The binomial coefficients

(
α
i

)
is important for comput-

ing the coefficients cs in (18). The robust and fast pro-
cedure CalcBinomCoef for computing the

(
α
i

)
is given in

Algorithm 4.

Algorithm 4 Calcluating the binomial coefficient
(

α

i

)
Input: Real number α ∈ R and non-negative integer i ∈ Z+;
Output: The real number

(
α

i

)
.

1: function CalcBinomCoef(α, i)
2: Check the value of integer i: i ≥ 0
3: prod← 1;
4: if (i ≥ 1) then
5: for t ∈ ⟨0, 1, · · · , i− 1⟩ do
6: prod← prod · (α − t)/(i− t);
7: end for
8: end if
9: return prod;

10: end function

4) COMPUTATION OF COEFFICIENTS AND POWER INDICES
OF RADIAL ZERNIKE POLYNOMIALS
The coefficients {cs : 0 ≤ s ≤ k} and power indices
{ps : 0 ≤ s ≤ k} in the radial Zernike polynomials can be
computed by the procedure CalcRadialPolyPowerCoef in
Algorithm 5 according to (17) and (18).

Algorithm 5 Calculate the sequence of coefficients c =
⟨c0, c1, · · · , ck ⟩ and sequence of power indices p =

⟨p0, p1, · · · , pk ⟩ for the radial polynomial function Rmn (ρ)

Input: BWN pair ⟨n,m⟩ where n ∈ Z+ and m ∈ Z such that
|m| ≤ n and n− m is even.

Output: The sequence of coefficients c = ⟨c0, c1, · · · , ck ⟩
and the sequence of powers p = ⟨p0, p1, · · · , pk ⟩ of
radial polynomial function Rmn (ρ) where k = (n−|m|)/2.

1: function CalcRadialPolyPowerCoef(⟨n,m⟩)
2: k ← CvtNM2K(⟨n,m⟩);
3: sign← 1;
4: for s ∈ ⟨0, 1, · · · , k⟩ do
5: cs ← sign · CalcBinomCoef(k, s) ·

CalcBinomCoef(n− s, k);
6: ps← n− 2s;
7: sign←−sign;
8: end for
9: return ⟨c,p⟩;
10: end function

FIGURE 2. Procedures involved in generating symbolic expression for a
polynomial.

B. SYMBOLIC COMPUTATION FOR GENERATING ZERNIKE
CIRCULAR POLYNOMIALS
1) GENERATING SYMBOLIC EXPRESSION FOR A
POLYNOMIAL
Formally, there are two steps for generating the symbolic

expression for a polynomial g(x) =
k∑
s=0

csxps :

• generate the symbolic expression for the general term
csxps

- - generate the unsigned general term |cs| xps ;
- - determine the sign of cs since wemay get "+", "-"

or "0";
• generate all of the k+1 terms one by onewith an iterative
operation via loop construction in high level computer
programming language.

FIGURE 2 illustrates these steps with the help of nesting
procedures for sub-tasks.

When the sequence of coefficients c = ⟨c0, c1, · · · , ck ⟩
and the sequence of power indices p = ⟨p0, p1, · · · , pk ⟩ of
the polynomial f (x) = c0xp0 + · · · csxps + · · · + ckxpk are
given, the symbolic expression of g(x) can be generated with
an iterative process:
• determining the generating method for the symbolic
expression of general term csxps ;

VOLUME 11, 2023 56487

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

• generating all of the terms iteratively for s =

0, 1, 2, · · · , k .
However, there are three issues to be settled:
• specifying the formal variable x for the polynomial since
it may be x, t , ρ or other possible symbol;

• specifying the operator for representing the power since
xr could be implemented by x^r in LATEX and MAT-
LAB/Octave, or by x**r for Python, and so on;

• specifying the special cases for the general term:
- - if ps = 1, then csx1 should be replaced by csx;
- - if ps = 0, then csx0 should be replaced by cs;
- - if cs < 0, then the string +csxps should be replaced

by − |cs| xps ;
- - if cs = 0, then the term csxps should disappear and

be ignored.
For the mathematical expression of polynomials, we should
consider the coefficients and their signs carefully. The proce-
dure GenSexprCatSign in Algorithm 6 is used to determine
the symbol ‘‘+’’ or ‘‘−’’ for concatenation. The steps for
generating a general polynomial are built on the following
operations:
• determining the symbol ‘‘+’’ or ‘‘−’’ for the i-th term
cixpi according to the procedure GenSexprCatSign;

• generating symbolic expressions for the term |ci| xpi
without the sign of ci via the procedure GenSexprUs-
gnGeneralTerm in Algorithm 7;

• generating the symbolic expression for the general term
cixpi in the polynomial according to the procedure Gen-
SexprGeneralTerm in Algorithm 8;

• generating the polynomial f (x) =
∑
i

cixpi with the

procedure GenSexprPolynom in Algorithm 9.
It should be noted that if ci = 0, the term cixpi will be ignored
for generating symbolic expression.

Algorithm 6 Generate the symbol "+" or "−" for concatena-
tion
Input: Argument fp for text file, Coefficient ci and position

label i
Output: The sign of ci
1: function GenSexprCatSign(fp, ci, i)
2: if (ci < 0) then
3: Fprintf(fp, "−");
4: else // for ci ≥ 0
5: if (i ̸= 0) then
6: Fprintf(fp, "+");
7: end if
8: end if
9: end function

2) GENERATING SYMBOLIC EXPRESSIONS FOR RADIAL
ZERNIKE POLYNOMIALS
Once the algorithm for generating a general polynomial
is designed, we can use it to generate the Zernike radial

Algorithm 7 Generate symbolic expression for the term
|ci| xpi without the sign of c
Input: Argument ci for the i-th coefficient , argument pi for

the power index;
Output: The string of characters for |ci| xpi ;
1: function GenSexprUsgnGeneralTerm(var, op, ci, pi)
2: ucoef← |ci|;
3: switch pi do
4: case 1
5: if (ucoef ̸= 1) then
6: Fprintf(fp, "%d%s",ucoef,var);
7: else
8: Fprintf(fp, "%s",var);
9: end if
10: end case
11: case 0
12: Fprintf(fp, "%d",ucoef);
13: end case
14: default
15: if (ucoef ̸= 1) then
16: Fprintf(fp, "%d%s%s{%d}", ucoef,

var, op, pi);
17: else
18: Fprintf(fp, "%s%s{%d}", var, op, pi);
19: end if
20: end default
21: end switch
22: end function

Algorithm 8 Generate the symbolic expression for the gen-
eral term cixpi in the polynomial
Input: Argument fp for text file, integer i, string argument

var for x, string argument op, argument ci for the i-th
coefficient, integer argument for pi for the power index
of single term

Output: Symbolic expression of cixpi stored in the text file
accessed by fp.

1: function GenSexprGeneralTerm(fp, i, var, op, ci, pi)
2: GenSexprCatSign(fp, ci, i);
3: GenSexprUsgnGeneralTerm(fp, var, op, ci, pi);
4: end function

polynomials Rmn (ρ) where the coefficients and power indices
should be computed properly. The procedure GenSex-
prRadialPolynom in Algorithm 10 is designed for this
purpose.

3) GENERATING SYMBOLIC EXPRESSIONS FOR ANGULAR
FUNCTION
The symbolic computation for the angular function 2m(θ)
is straight ford according to (14), please see the procedure
GenSexprAnguFun in Algorithm 11.

56488 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

Algorithm 9Generate Symbolic Expression for a polynomial

f (x) =
k∑
s=0

csxps

Input: Argument fp for text file, symbolic argument var
for x, symbolic argument op for the power operator,
sequence of coefficients c = ⟨c0, c1, · · · , ck ⟩, sequence
of power indices p = ⟨p0, p1, · · · , pk ⟩, integer size for
the counting number of single terms in f (x).

Output: Symbolic expression for the polynomial f (x) stored
in the text file accessed by fp.

1: function GenSexprPolynom(fp, var, op, c, p, size)
2: for s ∈ ⟨0, 1, · · · ,size− 1⟩ do
3: if (cs = 0) then // if cs is equal to 0
4: continue; // just ignore the term csxps since it

is zero, increase s by 1
5: end if
6: GenSexprGeneralTerm(fp, s, var, op, cs, ps);
7: Fprintf(fp, " "); // is is optional , print empty

space for better visualization.
8: end for
9: end function

Algorithm 10 Generating symbolic expression for the
Zernike radial polynomial Rmn (ρ)
Input: Argument fp for text file, double indices ⟨n,m⟩,

string var for ρ, string op for "^".
Output: Print symbolic expression for the Zernike Radial

polynomial Rmn (ρ) =
k∑
s=0

csρps .

1: functionGenSexprRadialPolynom(fp, ⟨n,m⟩,var,op)
2: size← 1+ CvtNM2K(⟨n,m⟩); // size = 1 + k;
3: ⟨c,p⟩ ← CalcRadiPolynomPowerCoef(⟨n,m⟩);

// Algorithm 5
4: GenSexprPolynom(fp, var, op, c, p, size); //

Algorithm 9
5: end function

4) GENERATING SYMBOLIC EXPRESSIONS FOR
NORMALIZATION COEFFICIENT
The symbolic computation of the normalization coefficient
Nm
n can be based on (13) and a simple if-else statement is

enough, please see the procedure GenSexprRadiNormCoef
in Algorithm 12.

5) GENERATING NON-STANDARD (UNNORMALIZED)
ZERNIKE CIRCULAR POLYNOMIAL
For any single index j ∈ Z+ or the corresponding dou-
ble indices ⟨n,m⟩, the ZCP Zj(ρ, θ) = Zmn (ρ, θ) =
Nm
n Rmn (ρ)2m(θ) consists of three parts: the normalization

coefficient Nm
n determined by (13), the radial polynomial

Rmn (ρ) specified by (15), and the angular function 2m(θ)
given by (14). The procedure GenSexprZernikePolynomNM

Algorithm 11 Generate Symbolic Expression for Angular
Function 2m(θ)
Input: Argument fp for text file, double indices ⟨n,m⟩
Output: Symbolic expression for angular function θm(θ)
1: function GenSexprAnguFun(fp, ⟨n,m⟩)
2: j← CvtNM2J(⟨n,m⟩);
3: m← |m|;
4: if (j ∈ Zeven) then
5: switch m do
6: case 0
7: if (j = 0) then
8: Fprintf(fp, "1");
9: end if
10: end case
11: case 1
12: Fprintf(fp, "\\cos(\\theta)");

// print cos(θ)
13: end case
14: default
15: Fprintf(fp, "\\cos(%d\\theta)",

m); // print cos(mθ)
16: end default
17: end switch
18: else
19: switch m do
20: case 0
21: // do nothing
22: end case
23: case 1
24: Fprintf(fp, "\\sin(\\theta)");

// print sin(θ)
25: end case
26: default
27: Fprintf(fp, "\\sin(%d\\theta)",

m); // print sin(mθ)
28: end default
29: end switch
30: end if
31: end function

in Algorithm 13 generates the un-normalized ZCP, which
separates the normalization coefficient Nm

n clearly.

C. META-PROGRAMMING AND LATEX PROGRAMMING
For the purpose of generating mathematical formula for
ZCP, we can usemeta-programming and LATEXprogramming.
Essentially, the key idea of meta-programming is generating
destination code with algorithms and computer programs
implemented by source code. There are two fundamental
steps to do so:
• generating LATEX code (destination code) for creating
symbolic expressions for Zernike circular polynomi-
als with some high level programming languages such
as C/C++, Octave/MATLAB, Python, Java and so on
(source code);

VOLUME 11, 2023 56489

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

Algorithm 12 Generating symbolic expression for the nor-
malization coefficient Nm

n

Input: Argument fp for text file, double indices ⟨n,m⟩
Output: Print the symbolic expression normalization of

coefficient Nm
n =
√
2(n+ 1)/(1+ δ0m)

1: function GenSexprRadiNormCoef(fp, ⟨n,m⟩)
2: if m = 0 then
3: Fprintf(fp, "\\sqrt{%d}", n + 1); // print
√
n+ 1

4: else
5: Fprintf(fp, "\\sqrt{%d}", 2 ∗ (n + 1)); //

print
√
2(n+ 1)

6: end if
7: end function

Algorithm 13 Generate the LATEX code for the non-standard
(un-normalized) Zernike circular function Ẑj(ρ, θ) =

Rmn (ρ)2m(θ)
Input: Argument fp for text file, double indices ⟨n,m⟩
Output: Symbolic expression for Rmn (ρ)2m(θ) denoted by

the grammar of LATEX
1: function GenSexprZernikePolynomNM(fp, ⟨n,m⟩)
2: size← 1+ CvtNM2K(⟨n,m⟩);
3: var← "\\rho"; // for the symbol ρ in LATEX
4: op← "^"; // for the power operator in LATEX
5: if (m = 0 or size = 1) then
6: GenSexprRadiPolynom(fp, ⟨n,m⟩, var, op);

// print Rmn (ρ)
7: else
8: Fprintf(fp,"("); // print left bracket
9: GenSexprRadiPolynom(fp, ⟨n,m⟩, var, op);
10: Fprintf(fp,")"); // print right braket
11: end if
12: GenSexprAnguFun(fp, ⟨n,m⟩); // print 2m(θ)
13: end function

• compiling the LATEX code to generate the symbolic
expressions and output a file with the format *.dvi or
*.pdf.

In this work, we use the C programming language to generate
the LATEX source code for representing the symbolic expres-
sions for ZCP. Our emphasis is put on the algorithms instead
of concrete C code since the algorithms can be implemented
with various programming languages.

1) GENERATING LATEX CODE FOR A LINE OF A TABLE
The procedure GenLaTeXTableLine is used to generate a line
d i of a long table

T =
{
d i ∈ S1 × S2 × · · · × Sncols : ibegin ≤ i ∈ iend

}
.

However, it depends on the concrete problem and we have to
give details in the program. In object-oriented programming,
it is a good idea to implement it with virtual function. For
the purpose of generating ZCP, we can set i ← j (Noll’s

single index j), ncols ← 5, ibegin ← jmin and iend ← jmax.
Algorithm 14 gives the method of generating the Zj(ρ, θ).

Algorithm 14 Generate LATEX code for the line of a table of
Zernike Circular Polynomials
Input: Argument fp for text file, single index j ∈ N
Output: LATEX code for the j-th line d j, viz.,

d j = [j, n,m,Nm
n ,Rmn (ρ)2m(θ)] ∈ TZernike

1: function GenLaTeXTableLine(fp, j)
2: ⟨n,m⟩ ← CvtJ2NM(j);
3: Fprintf(fp, " $%d$ & $%d$ & $%d$", j, n, m);

// print the indices j, n,m
4: Fprintf(fp, " &$");
5: GenSexprRadiNormCoef(fp, ⟨n,m⟩); // print the

normalization coefficient Nm
n

6: Fprintf(fp, "$");
7: Fprintf(fp, " &$");
8: GenSexprNonStandardZern(fp, ⟨n,m⟩); // print

Ẑj(ρ, θ) = Rmn (ρ)2m(θ)
9: Fprintf(fp, "$");

10: end function

2) GENERATE LATEX CODE FOR LONG TABLE
We can set the format of the long table based on the \
usepackage{longtable} in the preamble of the LATEX
source file. The procedure GenLaTeXLongTable in Algo-
rithm 15 is used for automatically generating a long table
which may span multiple pages.

3) GENERATE MAIN BODY OF LATEX SOURCE FILE
The main body of the LATEX source file is a necessary part
of the LATEX source file, which has simple specification. The
procedure GenLaTeXFileMainBody inAlgorithm 16 is used
for generating themain body of LATEX source file. For control-
ling the the format of the pdf file to be created, it is necessary
for us to set the document class of the LATEX source file.
We just set it with themode ‘‘article’’ and select the 11pt fonts
andA4 paper. Please see the procedure SetLaTeXDocCalss in
Algorithm 17.

4) GENERATE LATEX SOURCE FILE
In the LATEX programming, it is important for us to set the
preamble so as to import the macros or definitions for special
symbols, mathematical environments, format specifications
and so on. For our purpose, we need to import packages
for mathematics, long table and paper size. Particularly,
we should define new commands for printing the math-
ematical notations Zmn and Rmn . The procedure SetLaTeX-
DocPreamble in Algorithm 18 describes the details about
setting the preamble.

The key contents of LATEX source file is the code in
the LATEX environment \begin{document} \ldots
\end{document}, which includes the long table

56490 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

Algorithm 15 Generate LATEX code for a long table with the
data sheet of size nrows×ncols where nrows = iend− ibegin+1.

Input: Argument fp for LATEX file, integer ibegin, integer
iend, variable tab for table information with the four
members:
• ncols: number of attribute
• attribname: list of attribute names
• alignctrl: alignment information
• caption: name of the table title

Output: LATEX code for the long table

T =
{
dα
∈ S1 × S2 × · · · × Sncols : ibegin ≤ α ≤ iend

}
1: function GenLaTeXLongTable(fp, tab, ibegin, iend)
2: SetLtabBeginCenter(fp);
3: SetLtabBeginLtable(fp, tab);
4: SetLtabCaption(fp, tab);
5: SetLtabHline(fp);
6: SetLtabTableHead(fp, tab);
7: SetLtabHline(fp);
8: SetLtabEndFirstHead(fp);
9: SetLtabCaptionContinue(fp, tab);

10: SetLtabHline(fp);
11: SetLtabTableHead(fp, tab);
12: SetLtabHline(fp);
13: SetLtabEndHead(fp);
14: SetLtabHline(fp);
15: SetLtabEndFoot(fp);
16: SetLtabHline(fp);
17: SetLtabEndLastFoot(fp);
18: for i ∈ ⟨ibegin, ibegin + 1, · · · , iend⟩ do
19: GenLaTeXTableLine(fp, i); // depends on con-

crete problem
20: end for
21: SetLtabHline(fp);
22: SetLtabEndLtable(fp);
23: SetLtabEndCenter(fp);
24: end function

Algorithm 16 Generate LATEX code for the main body of the
LATEX source file for generating a long table
Input: Argument fp for LATEX file, integer ibegin, integer iend
Output: Main body of the LATEX source file for generating a

long table
1: functionGenLaTeXFileMainBody(fp, tab, ibegin, iend)
2: Fprintf(fp, "\\begin{document}\n\n");
3: Fprintf(fp, "\\maketitle\n\n");
4: Fprintf(fp, "\n");
5: GenLaTeXLongTable(fp, tab, ibegin, iend);
6: Fprintf(fp, "\n");
7: Fprintf(fp, "\\end{document}\n");
8: end function

generated by the procedure GenLaTeXLtable in
Algorithm 15. The procedure GenKeyContentsInTeXFile in

Algorithm 17 Set the document class of the LATEX source file
Input: Argument fp for LATEX source file
Output: Text line for the document class
1: function SetLaTeXDocCalss(fp)
2: Fprintf(fp, "\\documentclass[11pt,
a4paper,nolineno]{article}\n\n");

3: end function

Algorithm 18 Set the preamble of the LATEX source file
Input: Argument fp for LATEX source file, struct variable

layout for the layout information which includes the
following members:
• orient: orientation, it could be portrait or
landscape

• left: distance for the left margin, say "2.0cm"
• right: distance for the right margin, say "2.0cm"
• top: distance for the top margin, say "2.0cm"
• bottom: distance for the bottom margin, say "2.0
cm"

Output: Text lines for the preamble of the LATEX source file
1: function SetLaTeXDocPreamble(fp,layout)
2: //Import LATEX packages required for mathematical

formula, paper size and long table
3: Fprintf(fp, "\\usepackage{amsmath,
amsfonts,amssymb}\n");

4: Fprintf(fp, "\\usepackage[%s,left=%s,
right=%s,top=%s,bottom=%s]{geometry
}\n", layout.orient, layout.left,
layout.right, layout.top, layout.bottom);

5: Fprintf(fp, "\\usepackage{longtable}\n\
n");

6: //Set the macros for generating the symbolic
expresstions for Zernike functions:

7: Fprintf(fp, "\\DeclareMathOperator{\\
Zern}{Z}\n");

8: Fprintf(fp, "\\DeclareMathOperator{\\
Radi}{R}\n");

9: Fprintf(fp,"\\newcommand{\\Zernpoly
}[2]{\\Zern_{#1}^{#2}}\n");

10: Fprintf(fp,"\\newcommand{\\Radipoly
}[2]{\\Radi_{#1}^{#2}}\n");

11: //Set the title and author for the pdf document to be
generated

12: Fprintf(fp, "\\title{Table of Zernike
Circular Polynoms}\n");

13: Fprintf(fp, "\\author{\ldots}\n");
14: end function

Algorithm 19 shows the mechanicsm of generating the very
LATEX code of interest.
The ultimate goal of automatically generating mathemat-

ical formula of ZCP is to create a LATEX source file which
consists of the following steps:

VOLUME 11, 2023 56491

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

Algorithm 19 Generate the key contents, i.e. the LATEX long
table, for the LATEX source file
Input: Argument fp for LATEXsource file, struct vari-

able tab with four members (viz. ncols, atribname,
alignctrl and caption), integer ibegin, and integer
iend

Output: The complete LATEX code for creating long table
1: function GenKeyContentsInTeXFile(fp, tab, ibegin,
iend)

2: Fprintf(fp, "\\begin{document}\n\n");
3: Fprintf(fp, "\\maketitle\n\n");
4: Fprintf(fp, "\n");
5: GenLaTeXLtable(fp, tab, ibegin, iend);
6: Fprintf(fp, "\n");
7: Fprintf(fp, "\\end{document}\n");
8: end function

• creating an empty LATEX *.tex file with the operation
mode ‘‘write’’;

• setting the document class;
• setting the preamble;
• generating the key contents in of the LATEX file, and
• closing the *.tex properly.

The procedure GenLaTeXFile inAlgorithm 20 demonstrates
the above steps clearly.

Algorithm 20 Generate LATEX source file *.tex for producing
the long table of Zernike circular polynomials, viz.TZernike ={
d j = [j,m, n,Nm

n ,Rmn (ρ)2m(θ)] : jmin ≤ j ≤ jmax
}

Input: String filename with the suffix .tex for LATEX
source file, struct variable tab with four members (viz.
ncols, atribname, alignctrl and caption), min-
imum single index jmin, maximum single index jmax

Output: LATEX source file with the name filename
1: function GenLaTeXFile(filename, tab, jmin, jmax)
2: fp ← Fopen(filename, "w"); // Create the

LATEX source file with the suffix *.tex
3: SetDocumentCalss(fp);
4: SetDocumentPreamble(fp);
5: GenKeyContentsInTeXFile(fp, tab, jmin, jmax);
6: Fclose(fp); // Close the LATEX source file
7: end function

5) LATEX COMPILING
Generally, the LATEX source code for editing should be com-
piled with the terminal of Unix/Linux/Windows operating
system or with an IDE such as TeXMaker or TeXStudio.
Fortunately, there are some application program interface
(API) for the operating system in high level programming
language. For example, in C/C++, we can use the built-in
function system(command_expr) to compile the source
file. Here the command_expr stands for the commands
of LATEX compiling with the type const char*. Typical
implementations for command_expr could be the

string "xelatex filename.tex" or "pdflatex
filename.tex".

V. CONCLUSION
For the ZCP Zj(ρ, θ) = Nm

n Rmn (ρ)2m(θ), our new theo-
rems show that the conversion of Noll’s single index j and
Born-Wolf’s double indices ⟨n,m⟩ can be implemented via
(24), (30), (31) and (32). The inter-conversion is simple,
complete and satisfactory. The symbolic expression of ZCP
can be automatically generated with the GenLaTeXFile in
Algorithm 20. For the convenience of theoretic analysis and
engineering design, a system architecture of generating long
table of mathematical expressions of ZCP is proposed with
the help of meta-programming & LATEX programming for
computer-output typesetting. The value of the new paradigm
for generating ZCP lies in three merits: editing mathemati-
cal expressions automatically instead of manually, avoiding
potential errors by algorithms and programs that are verified,
and saving the time overhead needed in manual operations.

As a useful reference, the mathematical expressions for{
Zj(ρ, θ) : 1 ≤ j ≤ 465

}
are provided on the GitHub site,

which would be sufficient for the purpose of R & D. For the
users without interest of the underlying principles and imple-
mentation details, they can just download the mathematical
table of ZCP released on the GitHub web site.

The implementation of our algorithms is based on the
C programming language and the API of OS (the standard
library function system in the standard C). It is easy to
implement the algorithms with other programming languages
which can deal with strings more conveniently such as C++,
Octave, MATLAB, Python and so on. The method for auto-
matically generating long table of mathematical expressions
for ZCP can be modified slightly so as to create various long
tables in optics engineering as well as in other science and
technology fields, which helps to make different kinds of
handbook involving massive tables.

In the sense of project-driven science-tchnology-
engineering-mathematics (STEM) education, the automatic
method for generating symbolic expressions of ZCP can be
used to create a comprehensive project for training college
students’ ability of solving complex problem by combining
multi-disciplinary knowledge and methods.

DATA AVAILABILITY STATEMENT
The code for automatically generating the table of Zernike
circular polynomials can be downloaded from the GitHub site
https://github.com/GrAbsRD/ZernikeSymbolicExpression.
For the readers who has no interest in the princi-
ples and implementation of the algorithms developed
in this paper, they can just download the pdf file
TableZernikePolynom-1-465.pdf or the LATEX
source file TableZernikePolynom-1-465.tex to
generate the long table of 465 Zernike circular polynomials
Zj(ρ, θ) such that 1 = jmin ≤ j ≤ jmax = 465 and
|m| ≤ nmax = 29. We believe that this table will satisfies
the requirements of optics design.

56492 VOLUME 11, 2023

H.-Y. Zhang et al.: Automatic Method for Generating Symbolic Expressions of Zernike Circular Polynomials

REFERENCES
[1] M. Born and E. Wolf, Principles of Optics, 7th ed. London, U.K.:

Cambridge Univ. Press, 1999.
[2] V. N. Mahajan, ‘‘Zernike annular polynomials for imaging systems with

annular pupils,’’ J. Opt. Soc. Amer., vol. 71, no. 1, pp. 75–85, Jan. 1981.
[3] A. J. E. M. Janssen, ‘‘Zernike circle polynomials and infinite integrals

involving the product of Bessel functions,’’ 2010, arXiv:1007.0667.
[4] B. H. Shakibaei and R. Paramesran, ‘‘Recursive formula to compute

Zernike radial polynomials,’’ Opt. Lett., vol. 38, no. 14, pp. 2487–2489,
Jul. 2013.

[5] J. A. Díaz andN. VirendraMahajan, ‘‘Orthonormal aberration polynomials
for optical systems with circular and annular sector pupils,’’ Appl. Opt.,
vol. 52, no. 6, pp. 1136–1147, Feb. 2013.

[6] R. J. Mathar, ‘‘Zernike basis to Cartesian transformations,’’ 2008,
arXiv:0809.2368.

[7] J. Bühren, Zernike Coefficients. Berlin, Germany: Springer, 2018,
pp. 1945–1946.

[8] C. G. Berger. Zernike Aberrations. Accessed: Aug. 18, 2022. [Online].
Available: https://opticsthewebsite.com/Zernike

[9] D. Malacara, Optical Shop Testing, 3rd ed. New York, NY, USA: Wiley,
2007.

[10] ZEMAX Development Corporation. (2008). EMAX: Optical Design Pro-
gram User’s Guide. [Online]. Available: www.zemax.com

[11] R. J. Noll, ‘‘Zernike polynomials and atmospheric turbulence,’’ J. Opt. Soc.
Amer., vol. 66, no. 3, pp. 207–211, 1976.

[12] C.-W. Chong, P. Raveendran, and R. Mukundan, ‘‘A comparative analysis
of algorithms for fast computation of Zernike moments,’’ Pattern Recog-
nit., vol. 36, no. 3, pp. 731–742, Mar. 2003.

[13] E. C. Kintner, ‘‘On the mathematical properties of the Zernike polynomi-
als,’’ Optica Acta, Int. J. Opt., vol. 23, no. 8, pp. 679–680, Aug. 1976.

[14] H.-Y. Zhang, Y. Zhou, and Z.-Q. Feng, ‘‘Balanced binary tree schemes for
computing Zernike radial polynomials,’’ 2022, arXiv:2212.02495.

[15] E. D. Knuth, The Art of Computer Programming, volume 1: Fundamental
Algorithms, 3rd ed. New York, NY, USA: Addison-Wesley, 1997.

[16] R. Graham, E. D. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, 2nd ed. New York, NY, USA: Addison-
Wesley Professional, 1994.

[17] S.-J. Zhang and J.-M. Jin, Computation of Special Functions. New York,
NY, USA: Wiley-Interscience, 1996.

[18] J. C. Wyant. Zernike Polynomials. Accessed: Aug. 10, 2022. [Online].
Available: http://wyant.optics.arizona.edu/zernikes/zernikes.htm

[19] N. V. Mahajan, Optical Imaging and Aberrations, Part III: Wavefront
Analysis. Washington, DC, USA: SPIE, 2013.

HONG-YAN ZHANG received the B.S. and M.S.
degrees in applied physics and telecommunica-
tion engineering from Xidian University, China,
in 2000 and 2003, respectively, and the Ph.D.
degree from the Institute of Automation, Chinese
Academy of Sciences, in 2011. Currently, he is
with the School of Information Science and Tech-
nology, Hainan Normal University, China. His
research interests include computer vision, data
analysis, STEM education, and mathematics for
engineering.

YU ZHOU (Member, IEEE) received the Ph.D.
degree in electronic engineering from The Uni-
versity of Newcastle, Newcastle upon Tyne,
in 2008. Currently, he is a Research Associate in
electronic engineering with Hainan Normal Uni-
versity, China. His research interests include algo-
rithms analysis and design, circuit design, logic
synthesis and CAD tools for asynchronous circuits
and systems, and STEM education.

FU-YUN LI received the B.S. degree in com-
puter science from Hunan University, in 1997, and
theM.S. degree in telecommunication engineering
from Hainan University, in 2009. She is currently
an Associate Professor in computer science. Cur-
rently, she is with the School of Information Sci-
ence and Technology, Hainan Normal University,
China. Her research interests include applications
of computer, engineering education, and speech
signals processing.

VOLUME 11, 2023 56493

