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ABSTRACT In this article, the ocean energy generator system is analysed. The need for sustainable renew-
able energy systems is continually growing, given the situation of the world’s energy supplies. Numerous
similar systems, including photovoltaic solar collectors, biomass, and wind turbines are used for energy
generation. The ocean energy generator system uses the magnetohydrodynamics transformation concept to
convert kinetic energy to electrical energy. Similar to conventional generators, an ocean generator requires
an applied magnetic field to generate current, making it a critical component of the system. To optimize
the performance and efficiency of ocean generators, various devices utilizing superconducting magnets have
been developed, including Hall current generators, rotating channels, rotating disc magnetohydrodynamics
generators, and helicoid generators. However, these systems also involve complex heat, momentum, and
mass transfer, which can be better understood throughmathematical modeling. The similarity transformation
are introduced to transform the mathematical model from partial differential equation system to ordinary
differential equation system. By adopting this approach, the numerical solution is significantly simplified
while still preserving numerous crucial physical aspects of the studied heat and material transport phenom-
ena. The physical characteristics of sea waves are governed by the three variables of seawater: temperature,
salinity, and pressure. Small dispersed particles also affect the generation of hydroelectric power from
surface water. The behaviour of velocity, temperature, and salinity profile is observed for the variations
of different parameters such as magnetic, Grashof number and heat source. The system is converted into an
optimization problem and solved by a neural network procedure. The solutions are compared with reference
solutions for validation. The errors, performance, testing and training data are also presented graphically.
The data is typically visualized using histograms, line graphs, and other visual aids. This allows for easier
comprehension and analysis of the data.

INDEX TERMS Computational analysis, magnetic field, energy generator, nonlinear systems, dynamic
parameters, neuro-computing, hybridization, heat transfer, machine learning.

I. INTRODUCTION
Many different types of sustainable and renewable energy
systems can be used to generate electricity or power homes,

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

businesses, and communities. Some common examples
include Solar photovoltaic (PV) systems, which use panels to
convert sunlight into electricity, Wind turbines, which gen-
erate electricity from the wind, Hydroelectric power plants,
which use the movement of water to generate electricity,
Biomass energy systems, which burn organic materials like
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wood or crops to generate electricity, Geothermal energy
systems, which use heat from the Earth to generate electricity.
The need for sustainable renewable energy systems is con-
tinually growing, given the situation of the world’s energy
supplies. Numerous similar systems, including photovoltaic
solar collectors, [1], wind turbines [2], recharged geothermal
reservoirs [3], and biomass [4], [5], have been invented and
enhanced. There has also beenmuch interest in marine energy
systems, especially in Asia. Thermal energy conversion in the
ocean, tidal power plants [6], [7], andwave energy conversion
devices [8] are just a few reliable methodologies that have
been developed. The MHD (magneto-hydrodynamic) saltwa-
ter generator is a very intriguing and practical endeavour,
although other alternative marine renewable concepts have
been put forth.

The device utilizes the MHD principle to transform kinetic
energy into electrical energy. The kinetic energy is obtained
from ocean/tidal current [9]. As a conventional generator,
the applied magnetic field is also an important factor in an
ocean generator. In terms of optimizing the performance and
efficiency of ocean generators. Many devices are described
such as Hall current generators [10], [11], rotating chan-
nels [12], [13], rotating disk MHD generators [14], and heli-
coid generators exploiting super-conducting magnets [15],
[16]. Different characteristics, such as heat, momentum, and
mass (salinity) transport, are intricate in these systems. These
characteristics are enhanced in mathematical and computa-
tional modelling. Seawater has three properties (temperature,
salinity, and pressure) which quantify the velocity of sea
waves physically. Small dispersed particles also affect hydro-
electricity generation from surfacewater [17], [18]. Khan et al
studied nanofluid flow of Maxwell model over a vertical
plate extending infinitely with ramped and isothermal wall
temperature and concentration [19], [20]. Researchers have
recently paid attention to inclined magneto-fluid dynamic
flow with and without mass and heat transfer. Numerous
multi-physical factors relevant to energy generation systems
have been considered in these studies. Srikanth et al. [21]
examined how radiative flux affected the convection flow of
magnetised nano-fluid from a porous inclined plate. A study
conducted by Ramesh et al. about the properties of momen-
tum and heat transfer in a hydro-magnetic flow of dusty fluid
over a stretched sheet that is inclined and has an imbalanced
heat source and sink, where the flow is caused by a linear
stretching of the sheet [22]. A stretched plate’s boundary
layer flows in a fluid-particle suspension. According to Kabir
and Al Mahbub [23], using the Nachtsheim-Swigert shooting
iteration technique and a sixth order Runge-Kutta integra-
tion scheme, the effect of thermophoresis on an unsteady
magneto-hydrodynamic (MHD) free convection flow over an
inclined porous plate with time-dependent suction in the pres-
ence of a magnetic field and heat generation has been taken
into consideration. Palani and Kim report the MHD free con-
vection flow across a semi-infinite inclined plate exposed to
a fluctuating surface temperature is investigated numerically.

The energy equation considers the effects of Joule heating
and viscous dissipation [24], [25]. Ramadan and Chamkha
in [26] did a numerical study on the issue of constant, laminar,
free convection flow of a particulate suspension across an
infinite, permeable, inclined, and isothermal flat plate when
a transverse magnetic field is present and affects of fluid heat
absorption are present. Most two-phase models do not take
into consideration the impacts of viscous particle flow. Wang
and Chen reported in [27] and [28], to study the boundary
layer flow (BLF) due to mixed convection over an inclined
wavy plate having transverse magnetic flux, the implicit
approaches spline alternating-direction and coordinate sys-
tem transformation are implemented. They also found that the
flow about leading brink over the wavy surface accelerates
as magnetic body force rises. On the other hand, the flow
slows down further away from the leading edge. The non-iso-
solutal and non-isothermal hydromagnetics free convection
properties of Joule and viscous dissipation from a porous
inclined surface were explored by Chen [27].

The researchmentioned abovemostly disregarded simulta-
neous species diffusion (mass transfer). Although, salinity is
a severe problem in study of MHD ocean generators. In such
transport devices, it is crucial to study the mass transfer,
and heat transfer in combined form [9], [29]. Following the
Fickian law [30], mass diffusion adds certain complicated
traits tomixed convection flows. Rashidi et al. considered vis-
cous, laminar mixed convection BLF across a horizontal wall
coupled with a chemical reaction. The controlling equations
are written in dimensional-less form. Group theory is used
to find these equations’ invariant solutions under a certain
continuous one-parameter group. The differential transform
method is then used to get series solutions for the velocity,
temperature, and concentration functions of the transformed
coupled system of equations [31], and Ferdows et al. [32]
analyse heat and mass transportation on moving nano-porous
wall in porous media with hydrodynamic and concentration-
dependent diffusivity, thermal slip boundary conditions,
accounting for the Soret and Dufour effects, and viscosity
depend on temperature. The research of Zueco et al. [33] is
fascinating, in which a mathematical model that describes
the heat and mass transfer of an electrically conducting fluid
across a perforated horizontal surface in the presence of
Joule (Ohmic) heating and viscous. The impact of chemical
reactions and entropy on Darcy-Forchheimer flow, involv-
ing H2O and C2H6O2 along with magnetised nanoparticles,
is being investigated for its significance in [34], [35], and
[36]. Makinde [37] employed network modelling to examine
varying thermo-physical effects in thermophoretic magneto-
convection. Although, many investigations do not consider
Soret and Dufour. Intending to assess the combined impacts
of heat and mass transfer in laminar boundary layer flows in
forced, and natural convection can be complex and require
the use of advanced numerical techniques to predict accu-
rately. Under the supposition that constitutive equations for
the heat and mass fluxes of diluted solutes follow linear
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forms in accordance with the thermodynamics of irreversible
processes, momentum, energy, and mass balance equations
are simultaneously solved by Abreu et al. [38]. Examining
Non-Linear Convective Heat Transfer through a Hybrid
Heuristic-Driven Neural Soft Computing Model: A Quanti-
tative Study [39], [40], [41]. T Gul reports flow of a hybrid
nanofluidwith radiative couple stress over an inclined stretch-
ing surface under the influence of non-linear convection and
slip boundary effects [42]. F Khan investigates unipolar elec-
trohydrodynamic pump flow using a hybrid metaheuristic
novel approach based on neurocomputing [43]. Theoretical
research was offered to look at the peristaltic pumping of
nanofluids over a deformable channel with double-diffusive
convection (thermal and concentration diffusive). The need to
investigate the impact of nanofluid dynamics flow of fluids
and solids through the body in biological vessels as shown
by the movement of waste products, food molecules, hor-
mones, ions and heat during blood circulation motivated the
development of the model and fraction blood flow [44], [45],
[46], [47], [48]. Using Mathematica, Anwar Bég and Tripathi
showed the significant impact, over peristaltic propulsion,
thermo-diffusion in deformable channels [49], [50], [51],
[52]. A Triboelectric Nanogenerator with Guided-Liquid
Hybrid Design for Efficient andOmnidirectional EnergyHar-
vesting from Ocean Waves study is reported in [53]. More-
over, many studies discussed the complex interaction between
wave amplitude, Soret and Dufour effects, and buoyancy
forces. Numerous studies have been published assessing the
cross-diffusion impact on double-diffusive BLF. Such as the
Graetz problem study by Coelho and Telles [54] in which
Soret and Dufour effects are considered while analysing
simultaneous heat and mass transmission between parallel
surfaces. Consideration is given to axial, transverse, and lon-
gitudinal advection, heat and mass transfer, and the MHD
Sakiadis flow in porous media research by Anwar et al. [55].
T Gul et al. investigate the heat transfer efficiency of nanoflu-
ids made from graphene oxide flowing in an upright channel
through a permeable medium [56]. Anwar Bég et al. [57]
implement a variational finite element (VFE) approach for
examination of cross-diffusion and micromorphic flow, tak-
ing porous medium into account. In porous media, Vasu et al.
looked into the effects of Soret and Dufour on the hydro-
magnetic transport from a spherical body. The effects of
mass flux, in dynamic laminar gas flow, on cross-diffusion
(Soret-Dufour) were also addressed by Vasu et al. [58] with
robust finite difference solutions. G Yao discussed principles
and control strategy of an innovative wave-to-Wire system
with embedded optimization for Ocean energy storage [59].
RN Silva investigate conceptual design of a combined energy
conversion system that utilizes both ocean currents and
waves, and is implemented on a single platform. The system,
named as Tidal-Waves Generator [60]. According to these
studies, due to the existence of density variation in flow, the
effects of soret of dufour are essential. These studies have also
highlighted that when heat transfer and mass transfer happen

simultaneously in a moving fluid, energy flux is created
that is caused by concentration gradients and temperature
gradients (‘‘composition gradients’’). In [61], the SCA-SQP-
ANN technique was utilized to conduct a numerical inves-
tigation of the heat transfer and boundary layer flow in the
MHDFalkner-Skan equation, which is caused by a symmetric
dynamic wedge. The Dufour effect refers reciprocal process
of Soret effect. It is energy that has transferred that difference
in concentration causes. The Soret or thermo-diffusion effect
is the mass transportation caused by variation in temperature;
it is a form of passive transport from one side of themembrane
to another.

The above investigations did not consider plate inclination
in MHD flow with thermo-diffusion and heat production
effects. This work investigates the impacts of heat production
and the transport phenomena in an MHD ocean generator by
means of a thermo-diffusion experiment in which particles
are injected into an inclined surface at a rate that depends on
both temperature and the inclination angle. Due to inclusion
of Soret effect, it has a significant role in transport phe-
nomena in saltwater solutions. With heat production presents
a steady-state model for seawater flow down over inclined
non-conducting plate that exhibits magnetohydrodynamic
double-diffusive convection. In order to simulate an ocean
energy generator, we first considered the governing equations
of the system. These equations can be written in a form that
is easily adapted to this purpose. Then, it will convert into
a system of coupled equations, and then show that several
thermodynamic parameters control the coefficients in these
equations, including the plate inclination,, the Grashof num-
ber (Gr ), a heat source parameter (ᾱ), the modified Prandtl
number (Ps), the Prandtl number (Pr ), the Soret number (Sr )
and magnetic body force parameter (M ).

The salient features of this work are categorically given
below:

• The ocean energy generator is considered under the
effect of Soret effects, which has a significant role in
saltwater.

• The impacts of heat production and thermo-diffusion on
the transportation over a surface with some inclination
in an MHD ocean energy generator.

• The model is transformed into an optimization problem.
• For solving the model NN-LMA technique is employed.
• The solution of model is found in the form of surrogate
solutions.

The rest of paper is organized as follows: section II - Formula-
tion of mathematical model: this section presents formulation
of mathematical model; section III - Transformation of the
model; discusses the transformation of model to a system
of ordinary differential equations; section IV - Methodol-
ogy - this section describes the research design, including
the methods used to collect and analyze data, section V -
Computational Experimentation: this section will present the
findings of the research, including any statistical analysis or
data visualization, results and explain their significance in
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FIGURE 1. Model of ocean magnetic energy generator.

FIGURE 2. Structure of nodes of ANN.

relation to the research question and literature review and
sectionVI - conclusions: this sectionwill summarize themain
findings and implications of the research, and suggest future
research directions.

II. FORMULATION OF MATHEMATICAL MODEL
Ocean thermal energy conversion (OTEC) systems offer
humanity a workable future. Engineers from Russia, France,
the United States, and Japan have all done numerous
ground-breaking studies into this type of renewable energy.
The basic idea of ocean energy generator with seawater as a
functioning fluid is summarised by a potential design with
the coordinate system in Figure 1. Seawater is considered
a functioning fluid in the basic idea of energy production
by ocean generators. The near-wall flow in these systems is
considered in simple two-dimensional form. The boundary
layer flow is upward along the X -axis, which is directed along

the generating channel plate; the Y-axis is inclined to it. The
inclination angle, α, is indicated here. At first, it is considered
that the temperature for plate and fluid, i.e. (T∞) and salinity
(S∞) throughout the fluid. The dynamic wall moves over
X -direction having constant velocity, and it is further con-
sidered that the wall of generator channel, i.e. plates and
fluid, is in rest position. Gradually, the temperature of the
plate increased to Tw (> T∞) and, similarly, species salinity
is increased to Sw (> S∞), and the values are maintained
subsequently. The temperatures over the wall are denoted
by Tw, and rate of salt, i.e. species salinity over wall Sw
and T∞, S∞, which denote these quantities at ends of the
wall [30]. Hall currents, energy conversion of a fluid flow
into heat due to the friction between fluid layers (viscous
dissipation) and heating of a material due to the flow of an
electrical current (Joule (Ohmic) heating) are not taken into
consideration. While a weak magnetic field is considered.
In the direction of Y , the intensity of applied magnetic is
Bo. The applied magnetic field is always at a right angle to
the wall. Whenever a magnetic field is applied, it is directed
away 90◦ about the plate. As a result, the magnetic field does
not change orientation, but the wall can. In relation to a wall,
the Lorentz force always moves in the same direction (plate).
For the mathematical equations of continuity, conservation of
momentum, species (salinity) conservation, and conservation
of energy, which includes heat production and thermal diffu-
sivity effects, can be demonstrated to take the following with
boundary layer approximation and Boussinesq assumptions:

∂U
∂X

+
∂V
∂Y

= 0 (1)
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(
U
∂U
∂X

+ V
∂U
∂Y

)
= ν

(
∂2U
∂Y 2

)
+ gβ (T − T∞) sinα

−
σB2o
ρ

U (2)(
U
∂S
∂X

+ V
∂S
∂Y

)
= Ks

(
∂2S
∂Y 2

)
+ Fs

(
∂2T
∂Y 2

)
(3)(

U
∂T
∂X

+ V
∂T
∂Y

)
= KT

(
∂2T
∂Y 2

)
+

QT
ρCp

(4)

The associated BCs are:

At Y = 0 : U = V = 0;T = Tw = T∞ + sinα;

S = Sw = S∞ + sinα As Y → ∞ :

U → 0, V → 0, T → T∞, S → S∞ (5)

here, the magnetic field strength is B0, and the kinematic
viscosity (fluid’s internal resistance) is ν. The constants rep-
resent the thermal diffusivity caused by salinity Ks = K/ρCs
and temperature KT = K/ρCs, respectively. The diffusion
rate of molecule (thermal diffusion coefficient) is Fs. Under
constant pressure, the specific heat is Cp, uniform velocity is
denoted by U , the electric conduction of fluids is σ , and the
acceleration brought on by gravity is g. The mass expansion
coefficient is beta∗ while the volume expansion (thermal)
coefficient is β. QT = (T − T∞)Q∗ represents heat pro-
duction, while fluid density is denoted by ρ. It is significant
to notice that equation enforces thermal and solid bound-
ary requirements equation (5) adheres to Gebhart’s et al. [30]
technique and represents the involvement of wall direc-
tion on the solutal (species concentration) fields and tem-
perature. Despite this, they are neither non-isothermal nor
non-isosolutal because the streamwise coordinates remain
constant. Although it is not taken into consideration in the
current study, this could offer future model development.
Particularly in MHD ocean generator conditions, it is impos-
sible to entirely regulate thermal and species impacts at the
wall. With the existing fluid dynamics methods, imitating
the whole spatial or temporal variety of such processes is
impossible. Some logical and verified assumptions must be
taken to construct a solid boundary value problem. These
assumptions are based on boundary-layer theory in accor-
dance with Gebhart [30]. This offers a credible estimation of
the phenomena of near-wall transport. Analytical solutions
are not possible for the BVP posed by the Eqs (1)-(4) under
BCs (5). Numerical solutions are the sole practical choice
for primitive variables. In terms of significant dimensionless
variables, even numerical methods to the fundamental bound-
ary value problem, including those based on finite elements
or finite differences, fail to solve the problem. The problem
is then made dimensionless by adding similarity transforma-
tions, which convert the mathematical model from a partial
differential equation (PDE) to a system of ordinary differ-
ential equations (ODE). This keeps many crucial physical
elements of the transport phenomenon under research while
considerably simplifying the numerical solution.

III. TRANSFORMATION OF MODEL
Defining the dimensionless variables before continuewith the
analysis is as follows:

η = y

√
U0

2νX
,

ψ =

√
2νU0Xf (η),

θ = θ (η) =
T − T∞

Tw − T∞

, φ = φ(η) =
S − S∞

Sw − S∞

u

=
∂ψ

∂Y
,

· · · ν = −
∂ψ

∂X
(6)

The notation section defines each parameter. These are intro-
duced into equations (1)-(4) to produce the system non-linear
DEs:

f ′′′
+ ff ′′

+ Grθ sinα −Mf ′
= 0 (7)

θ ′′
+ Pr f θ ′

+ Pr ᾱθ = 0 (8)

φ′′
+ Psf φ′

+ PsSrθ ′′
= 0 (9)

The BCs reduce to:

At f (0) = 0; f ′(0) = 0, θ(0) = sinα, φ(0) = 1

As η → ∞ : f ′
= θ = φ = 0 (10)

in above differential equations, the η is independent variable
and Gr = 2 gβ (Tw − T∞)X/U0

2 is Grashof number (ther-
mal), M = 2σβ02X/U0 is local MHD body force parameter,
Pr = νρCp/K is the Prandtl number, where the modified
Prandtl number, Ps = vρCs/K , the heat source parameter is
ᾱ = 2XQ∗/UoρCp, and the Soret number (thermodiffusion)

is Sr =
Fs
ν

(
Tw−T∞

Sw−S∞

)
. Surface shear stress (skin-friction coef-

ficient), Nusselt number (heat transfer rate), and Sherwood
number are engineering design parameters that are important
for energy systems (salinity transfer rate) which are computed
respectively by the following expressions:

Cf (Re)−1/2
= −f ′/(0)Nu (Re)−1/2

= −θ ′(0)Sh (Re)−1/2
= −φ′(0) (11)

where local Reynolds number is denoted by Re.

IV. PROPOSED METHODOLOGICAL APPROACH
Artificial neural networks (ANNs) model the structure and
operation of the human brain in a computer. These systems
are modelled on the biological cortex, which is dynamic and
distributed across hundreds of millions of tiny processors
called neurons. ANNs are composed of connected processing
components called nodes, which form numerous process-
ing stages called layers that are interconnected into layers
at various depths. These form complex processing circuits
that recognize patterns in data and produce responses. The
patterns can be learned by training to produce layers that
associate responses with incoming data in specific patterns
knowledge. The network learns through training, and when
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connected to other networks, it can learn by sharing informa-
tion. An ANN’s structure is made up of only an input layer,
a hidden layer that gets added first and then the output layer.
Various industries are using applications of Neural Networks
to solve economic, security, and other problems. Neural net-
works have opened new avenues for research and applications
in the data-intensive world. [62], [63]. For data analysis and
modelling, AI has recently been extensively used in social
science and the arts [64]. Artificial intelligence (AI) has been
recently implemented widely to solve optimization problems
in various contexts, including business and industrial produc-
tion and health care. It is one of the new technologies that can
benefit from deep learning [64], [65].

The field of artificial intelligence (AI) has advanced to
the point where ANNs have proven to be useful models
for classification, clustering, pattern recognition, and pre-
diction in various fields. The predictive power of machine
learning models is now competitive with that of traditional
statistical and regression models [66]. Currently, hotspots
and fascinating issues in information and communication
technology include AI (machine learning, neural networks,
deep learning, robotics), information security, big data,
cloud computing, the internet, and forensic science (ICT).
In terms of data analysis factors, including accuracy, pro-
cessing speed, latency, performance, fault tolerance, volume,
scalability, and convergence, ANNs’ complete applications
can be assessed [67], [68]. The high-speed processing offered
by ANNs in a massively parallel implementation has consid-
erable potential, which has increased the demand for study
in this area [69]. ANNs can be created and used for a variety
of tasks, including image recognition and natural language
processing. Artificial neural networks (ANNs) are a powerful
tool for solving a wide range of problems, including function
approximation. They are particularly well-suited for tasks
that require the ability to learn and adapt based on experience,
as they are able to ‘‘learn’’ from training data and improve
their performance over time. ANNs are also highly fault-
tolerant, as they can continue functioning even if some of
their components fail. Additionally, ANNs can capture non-
linear relationships in data, making them useful for modelling
complex systems. Finally, ANNs can map input to output
with a high degree of accuracy, making them useful for many
practical applications [70]. Interconnected neurons and nodes
make up the basic building blocks of ANNs. They aggregate
input in a specified fashion, accept input, and then perform
various nonlinear operations to produce output. The input,
weight, threshold, summing junction, and output of an ANN
are shown in Figure 2 as their architecture. The connection
weights are multiplied by the input tN in the fundamental
model of ANNs, and a bias is added to transform the inputs
into the desired outcomes. The net input is computed as
follows:

uk =

N∑
k=1

wk tk − βk (12)

To find solution of model i.e outputs f (ζ ), θ(ζ ) and φ(ζ ),
Log-sigmoid function is taken as activation function, given
in equation (13):

S(η) =
1

1 + e−η
, (13)

where N is the number of inputs. The output (OP) will be
become as

OPk = S (uk) (14)

with more simplified form it will get the shape

S(uk ) =
1

1 + e−(wk tk−βk )
(15)

A. TRAINING PROCEDURE OF WEIGHTS
This section discusses the training procedure of weights by
using Matlab neural net fitting tool (nf-tool) as a surrogate
model. A reference input is required for a surrogate model,
which is modelled to the targeted output. The reference input
is generated by built-in function of Mathematica NDSolve.
The working procedure of NDSolve is based on Runge-Kutta
order four (RK4). The reference input or solution is generated
between 0 to 1 for 1001 points by taking step size 0.001.
For proper validation, training and testing of the problem,
Levenberg-Marquardt soft computing technique is used. Fur-
thermore, the solution is evaluated by mean square error
(MSE), error histogram, absolute error and regression (R2).

MSE =
1
k

k∑
j=1

(
xj(t) − x̂j(t)

)2
, (16)

R2 = 1 −

∑k
j=1

(
x̂j(t) − x̄j(t)

)2∑k
j=1

(
xj(t) − x̄j(t)

)2 , (17)

and

AE =
∣∣xj(t) − x̂j(t)

∣∣ , j = 1, 2, . . . , k (18)

V. COMPUTATIONAL EXPERIMENTATION
In order to determine velocity profile, temperature, and salin-
ity profile (f ′), θ (φ), respectively, variations for the effects
of the magneto-hydrodynamic body force parameter (M ), the
Grashof number (Gr ), the Prandtl number (Pr ), the modified
Prandtl number (Ps), the heat source parameter (ᾱ), and the
Soret number (Sr ).

In this section, certain examples of the ocean energy gener-
ator are considered based on variation of various parameters.
The cases of the problem are given in table 1 discussed in this
paper.
Example I - Grashof Number: In this example, the vertical

plates are considered under the influence of Grashof number
(Gr ). The inclination of plate depends on angle α. The values
of rest of the parameters are given in table 1. By putting
values, the model becomes as given:

f ′′′
+ ff ′′

+ Grθ sin 90◦
−f ′

= 0 (19)

θ ′′
+ 0.125 f θ ′

+ 0.125θ = 0 (20)
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FIGURE 3. Example I: Effect of variations of Gr on velocity, temperature and salinity profile.

TABLE 1. Examples created by variation of parameters.

φ′′
+ 10f φ′

+ 10θ ′′
= 0 (21)

Example II - Heat Source Parameter: In this example
the vertical plates are considered under the influence of
heat source parameter ᾱ. The inclination of plate depend on
angle α. The values of other parameters are given in table 1.

The model is given as:

f ′′′
+ ff ′′

+ 4θ sin 90◦
−f ′

= 0 (22)

θ ′′
+ 0.5 f θ ′

+ 0.5ᾱθ = 0 (23)

φ′′
+ f φ′

+ θ ′′
= 0 (24)

Example III - Magnetic Parameter: In this example the ver-
tical plates are considered under the influence of Magnetic
parameterM . The inclination of plate depend on angle α. The
values of other parameters are given in table 1. The model is
given as

f ′′′
+ ff ′′

+ θ sin 90◦
−Mf ′

= 0 (25)

θ ′′
+ 0.125 f θ ′

+ 0.125 × 0.5θ = 0 (26)

φ′′
+ 10f φ′

+ 10θ ′′
= 0 (27)

A. RESULTS AND DISCUSSION
The network is trained using by taken 10 hidden networks
and 15% of data is trained and tested and 75% of data is val-
idated for the evaluation of performance of the network. The
performance is also evaluated by regression. The details of
each variable and its errors in validation, testing and training

57052 VOLUME 11, 2023



M. F. Khan et al.: Computational Study of Magneto-Convective Heat Transfer

TABLE 2. Training, testing and validation data.

TABLE 3. Training, testing and validation data.

TABLE 4. Example I: Numerical comparison of proposed results and RK4.

TABLE 5. Example II: Numerical comparison of proposed results and RK4.

is given in table 2 and 3. While the comparison of results are
reported in table 4 and 5.

In figure 3, the velocity, temperature and salinity pro-
files of Example I are given. The effect in these profiles is
due to variation in Grashof number (Gr ). In figure 3a, the
velocity profile increases and, by achieving its maximum
value, decreases. The behaviour of velocity profile gives the
parabolic shape. While the variation ofGr do not much effect
the temperature profile. And the salinity profile can observe
in figure 3c with increase in Gr value.
As in figure 3, for some distance from the plate surface into

the boundary layer, a large decrease in velocity coincides with
a rise in Grashof number. Gr = 2 gβ (Tw − T∞)X/U2

0 . The
parameter replicates the relationship between the buoyancy
(natural convection) and the viscosity in the region. Viscous

force is outweighed by buoyant force when Gr > 1. As a
result, the flow slows down closer to the plate surface as buoy-
ancy increases. The magnitudes of the velocity decrease with
increasing inclination angle as opposed to α = 90◦. It is obvi-
ous that the no change inGr will decrease the buoyancy force
as sin90(= 1) > sin120(= 0.8660). The buoyancy force over
vertical plate will be greater than the buoyancy force over
inclined plate, which will slow down the former. Therefore,
plate orientation is a crucial geometric factor that can be
used to alter the MHD ocean generating system’s transport
properties.

The performance of NN-LMA on example I is given in
figure 4. These data out of 100%, 15% is tested, 15% is
validated, and the rest of 70% is trained. From figures, it can
observe that the training, testing and validation converge
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FIGURE 4. Example I: Convergence graphs.

FIGURE 5. Example II: Effect of variations of ᾱ and Ps on velocity, temperature and salinity profile.

to the same point, which shows the best performance of
NN-LMA. The performance is evaluated by mean square

error (MSE). In figure 4a, b and c, the performance/MSE lies
in between 10−12-10−15.
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FIGURE 6. Example II: Case-A convergence graphs.

FIGURE 7. Example II: Case-B performance graph.

The velocity, temperature and salinity profiles of exam-
ple II are given in figure 5. A slight velocity increase is
observed with parameter ᾱ and Ps at an inclination of 90◦.
The velocity, temperature and salinity profiles are shown in
subfigure 5a, b and c, respectively.

In figure 6-8, the performance of example II is given each
sub-figure a, b and c shows the performance of variable f , θ
and φ. The performance of Case-A is given in figure 6. The
training, testing and validation converge to same point. The
best performance value of Case-A is between 10−09

−10−15,
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FIGURE 8. Example II: Case-C performance graphs.

FIGURE 9. Example III: Effect of variations of magnetic parameter on velocity, temperature and salinity profile.

the values of Case-B is between 10−10
− 10−14 and the

performance values of Case-C lies between 10−10
− 10−15.

The velocity, temperature and salinity profiles of example II
are given in figure 9. The performance of Example III is
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FIGURE 10. Example III: Case-A performance graphs.

FIGURE 11. Example III: Case-B performance graphs.

given in figures 10-12. The data of training, validation and
testing converges to the same point. Which shows the best
performance of the NN-LMA technique. TheMSE of Case-A

for each variable is between 10−11
− 10−15, the value for

Case-B lies between 10−12
− 10−15 and for Case-C MSE are

10−09
− 10−15.
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FIGURE 12. Example III: Case-C performance graphs.

FIGURE 13. Example I: Analysis of solution via regression obtain by NN-LMA.

B. EVALUATION OF NN-LMA BY REGRESSION
Regression is used to determine the strength of the data.
As much the regression value converges to 1; it indicates

better data. The data of validity, training, and testing is also
evaluated by regression. Each data that is validation training
and testing is evaluated separately, and this data is combined
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FIGURE 14. Example II: Case-B analysis of solution via regression obtain by NN-LMA.

FIGURE 15. Example II: Case-C analysis of solution via regression obtain by NN-LMA.

and analyzed. The analysis is given in the figures 13-18.
In figures, 13-18, in each subfigure, first, second and third
figure shows a regression for training, validation and testing,
respectively. While the fourth figure shows regression of
whole data.

The regression figure, for example I is given in figure 13.
In each case, it can be seen that the regression is 1, which
indicates the best performance of proposed procedure. Along
y-axis, the given expression is the surrogate solution, for
example I. In figure 14-15, the regression of example II
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FIGURE 16. Example III: Case-A analysis of solution via regression obtain by NN-LMA.

FIGURE 17. Example III: Case-B analysis of solution via regression obtain by NN-LMA.

is given. The two cases of example II are presented. The
regression in both cases is 1. The data of example II is also

split in training, validation and testing. The surrogate solution
is also given along y-axis for each case. The figures 16-18
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FIGURE 18. Example III: Case-C analysis of solution via regression obtain by NN-LMA.

FIGURE 19. Example I: Case-A training statistics.

are regression of performance of example III. All three cases
are given. Similarly, as in example I and example II, the data

of example III is also distributed in training, validation and
testing.
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FIGURE 20. Example II: Case-A training statistics.

FIGURE 21. Example II: Case-B training statistics.

C. TRAINING STATISTICS
This section is about the provision of statistic of solutions.
The statistics of each solution obtained by NN-LMA are

given in figures 19-24. The minimum mean square error,
validation check and number of iterations are shown in
figures.
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FIGURE 22. Example II: Case-C training statistics.

FIGURE 23. Example III: Case-A training statistics.

The statistic of example I is given in figure 19.
The gradient of each variable lies about 10−08 with

iteration from 152 to 235. The validation check for all
the variable f , θ and φ are zero and Mu lies between
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FIGURE 24. Example III: Case-B training statistics.

FIGURE 25. Example I: Case-B error graphs.

10−09 - 10−11. The statistics of example II are given
in figure 20-22. The gradient of each variable lies about

10−08
− 10−09. The solution of case-A is obtain by iteration

from 52 to 141. The validation check for all the variable f ,
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FIGURE 26. Example II: Case-A error graphs.

FIGURE 27. Example II: Case-B error graphs.

θ and φ are zero and Mu lies between 10−09 - 10−12.
For case-B, the iteration are 28-171 and Mu lies between

10−09 - 10−12. For case-C, the iteration are 35-138 and Mu
lies between 10−10 - 10−13. The statistics of example III
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FIGURE 28. Example II: Case-C error graphs.

FIGURE 29. Example III: Case-A error graphs.

are given in figure 23-24. The gradient of each variable lies
about 10−08. The solution of case-A is obtain by iteration

from 15 to 125. The validation check for all the variable f ,
θ and φ are zero and Mu lies between 10−12 - 10−14.
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FIGURE 30. Example III: Case-B error graphs.

For case-B, the iteration are 15-163 and Mu lies between
10−11 - 10−14.

D. ERROR HISTOGRAM
An error histogram represents the distribution of errors in a
dataset or model predictions. It provides a visual representa-
tion of the frequency or count of different error values. The
numerical meaning of an error histogram can vary depending
on the context, but it typically indicates the distribution of
errors, allowing to analyze the bias, variability, or overall
performance of a model. The error in training, validation and
training data is drawn using histogram. The drawn histograms
are given in figures 25-31. The histograms for all the exam-
ples are distributed in 20 Bins. The midline shows zero error.
The left side of zero error consists of errors from minimum
to maximum error, and negative side also shows errors from
minimum to maximum.

The histogram of example I case-B is given in figure 25.
The errors in each variable are given in separate figures. From
figure, it can be seen that all the errors are accumulated about
zero error. The error in f is about 10−5 and 10−7, in θ errors
lies in the range 10−7

− 10−8 and similarly, the errors in φ
are also about 10−7

− 10−8.

Based on the analysis of ranges of errors, the error his-
tograms in all figures shows that the errors are centered
around zero. This indicates, the model’s predictions are close
to the true values.

The histograms of example II are presented in
figures 26-28. In figure 26, the histogram of case-A can be
observed. The errors in f are spread over all 20 bins and lie
in a range 10−5

− 10−6. The errors in θ and φ are converged
toward zero errors and lies between 10−7

− 10−8.
In figure 27, the histograms of case-B are reported. The

errors in f lies in a range 10−5
− 10−7. The errors in θ

and φ are lies between 10−7
− 10−8 and the range of φ is

10−7
− 10−9. All the errors are accumulated about zero

errors. The histogram of case-C is given in figure 28. All
variables’ errors are in the range 10−5

−10−8. The histograms
of example II are presented in figures 29-31. In figure 29, the
histogram of case-A can be observed. The errors in f are lies
in a range 10−6

− 10−7. The errors in θ and φ are converged
toward zero errors and lies between 10−7

− 10−10.
Figure 30 presents the histograms of case-B. The errors in

f lies in a range 10−6
− 10−7. The errors in θ and φ are lies

between 10−7
−10−10 and the range of φ is 10−7

−10−8. All
the errors are accumulated about zero errors. The histogram
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FIGURE 31. Example III: Case-C error graphs.

of case-C is given in figure 31. All variables’ errors are in the
range 10−5

− 10−10.

VI. CONCLUSION
In this article, the ocean energy generator is considered with
Soret effect. The Soret effect has a significant influence on
salinity of water. The transportation over an inclined surface
is considered under the impact of heat production and Soret
effect (thermodiffusion). The ocean energy generator consists
of velocity, temperature gradient and salinity. The system is
modelledmathematically. For the numerical analysis, the sys-
tem is transformed into an optimisation problem. A numer-
ical technique, NN-LMA, is designed for the optimisation
pirocedure using Levenberg Marquardt algorithm and neural
network (NN-LMA). Using mean square error, the fitness
function is developed. The solution found by NN-LMA is
evaluated with reference solution of RK4. The performance
of NN-LMA is evaluated by different means, such as training,
validation and testing. The evaluation results are presented
graphically. The best performance of NN-LMA can be clearly
observed from regression graphs.

Moreover, histograms are used to illustrate the errors.
The NN-LMA algorithm consistently delivers reliable perfor-
mance. The domain of NN-LMA can be extended to various
physical and biological problems, allowing for investigation

of its potential integration with other renewable energy tech-
nologies, such as wind or solar power, to create more efficient
and sustainable hybrid systems. This may involve exploring
different methods for energy storage and distribution, as well
as developing new control and monitoring systems for the
integrated energy systems.

ABBREVIATIONS
NN Neural Network
ANN Artificial neural network
AI Artificial intelligence
Re Local Reynolds number
Sr Soret number
Pr Prandtl number
α Inclination angle
ᾱ Heat source parameter
Gr Grashof
RK4 Range-Kutta order four technique
LMA Levenberg Marquardt algorithm
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