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ABSTRACT A novel decentralized output-feedback controller is proposed in this paper for large-scale
uncertain general nonautonomous nonlinear systems without prior knowledge of the input gain’s sign.
The subsystems are considered to be completely unknown and nonautonomous, except for their known
full relative degree. The proposed controller uses a higher-order switching differentiator to estimate the
time-derivatives of the output tracking error, resulting in a low-complexity output-feedback prescribed
performance controller that compensates for uncertainties, including high-frequency gain sign and unstruc-
tured uncertainties. It is mathematically proven that the output tracking error and its time-derivatives are
all maintained within the prescribed regions. To demonstrate the effectiveness of the proposed controller,
numerical simulations of two interconnected inverted pendulums are conducted. To the best of the authors’
knowledge, this paper presents the first results on this problem.

INDEX TERMS Large-scale nonlinear system, decentralized controller, prescribed performance control,
unknown control sign.

I. INTRODUCTION
The study of Large-scale systems (LSSs) or interconnected
systems has garnered significant attention due to their
widespread prevalence in modern practical systems [1],
such as multi-agent systems, multi-machine power systems,
and contemporary mechanical systems, which all consist of
interconnected subsystems. In order to control these LSSs,
a decentralized control scheme is employed, utilizing only
the locally available states without the need for communica-
tion between remote subsystems, as opposed to a distributed
controller that necessitates the exchange of state information
between each subsystem. The decentralized controller is typ-
ically more practical, as the controller often lacks sufficient
knowledge of plant uncertainties and the interactions between
subsystems.
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The extensive research conducted in the area of control
for uncertain nonlinear systems [2], [3], [4], [5], [6], [7],
[8] has had a significant impact on the typical approaches
for controlling nonlinear large-scale systems with unstruc-
tured uncertainties, leading to the widespread adoption of
universal approximators [9], [10], [11], [12], [13], [14],
[15], [16], [17]. Universal approximators, such as fuzzy
logic systems (FLSs) and neural networks (NNs), are capa-
ble of capturing and compensating for unknown functions
in the controlled system dynamics, thus converting the
unknown function problem into an unknown parameter prob-
lem that can be addressed through conventional adaptive
control methods. However, control schemes that utilize uni-
versal approximators are encumbered by their computa-
tional complexity and high dynamic order of the controller,
which is the result of a large number of adaptively tuning
parameters. Additionally, in the context of strict-feedback or
pure-feedback systems, combining the backstepping scheme
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with real-time tuning approximators significantly increases
the complexity of the resultant control law [3], [5], [10]
[11], [15].

Recently, prescribed performance control (PPC) [18] has
been widely utilized to overcome the drawbacks of control-
ling uncertain nonlinear systems, and it has been applied to
large-scale interconnected systems [19], [20], [21]. In the
context of PPC, the complexity of the controller structure is
significantly reduced as the use of universal approximators
is not required. Nevertheless, the backstepping design steps
are still a necessary component of PPC schemes. In [22],
[23], state-feedback PPCs for uncertain strict-feedback non-
linear systems with unknown sign of the input gain have
been proposed, and an output-feedback controller is also
presented in [24]. The traditional method for addressing the
issue of unknown control direction employs the Nussbaum
gain technique [25].While a substantial number of algorithms
have been successfully developed using this technique (refer
to [26], [27] and references therein), it is important to note
that the Nussbaum gain technique consistently exhibits poor
transient responses, as commented in [28]. The schemes
in [22], [23], [24], [29] avoid this problem. In [29],
an output-feedback PPC scheme for even more general
nonautonomous nonlinear systems is proposed. However, all
of these PPC algorithms consider only single system control
problems.

A new approach to control uncertain nonlinear systems
has emerged in the form of differentiator-based controllers
(DBCs) [30], [31], [32], [33] more recently. These DBCs
present several benefits when compared to conventional
controllers for the control of uncertain nonlinear systems.
Firstly, the absence of a requirement for the use of FLSs
or NNs as estimators for unknown functions leads to a
considerable simplification of the control law and stability
proof. Additionally, the DBC does not rely on the back-
stepping design scheme, further reducing the complexity
of the overall control scheme. Secondly, as reported in
[33], the DBC can be applied to a wide range of nonlin-
ear systems and the design of output-feedback controllers
is made more feasible. The performance of the adopted
differentiator (or time-derivative estimator) ensures either
finite-time exact output tracking or asymptotic stability of the
tracking error.

Most research in this area has focused on strict-feedback
nonlinear systems, with limited research results available
for the decentralized output-feedback control of LSSs with
uncertain pure-feedback nonlinear subsystems [12], [13],
[16], [17]. Despite this, some control schemes in this area
adopt fuzzy logic systems (FLSs) or neural networks (NNs)
as approximators of the unknown functions for adaptive
observers or controllers. However, the use of these approx-
imators in the closed-loop system increases the dynamic
order of the control laws and makes stability analysis highly
complex. Additionally, all previous research in this field
[12], [13], [16], [17] has dealt with autonomous nonlinear
subsystems.

This paper addresses the issue of decentralized
output-feedback control for interconnected LSSs with uncer-
tain nonautonomous general nonlinear subsystems with
unknown sign of the input gain. Based on the author’s
previous work [29], [34], it is extended to the control
of interconnected LSSs. The adoption of the higher-order
switching differentiator (HOSD) [35] allows for estimation of
time-varying signal derivatives, resulting in maintaing output
tracking error within prescribed region. Unlike conventional
control approaches, the proposed controller does not require
the use of universal approximators, and avoids the occurrence
of severe chattering or peaking in the control input. In this
work, as in [24] and [29], the control strategy retains its
simplicity and continuity by not incorporating techniques
such as the Nussbaum-Gain method, the sliding-mode con-
trol method, or any tools for approximation, identification,
estimation, or switching. In [22] and [24], the controller was
designed by estimating the sign of the virtual control for
all state variables. However, the controller presented in this
paper has the advantage of being more concise since it only
estimates the sign of the input gain that appears in the last
transformed state equation. The advantages of the controller
presented in this paper compared to existing research can be
summarized as follows:

1) It considers a very general time-varying nonlinear sub-
system in the broadest category.

2) The output tracking controller designed using HOSD
guarantees prescribed performance.

3) The structure of the distributed controller and stability
proof is relatively simple since the sign of the input gain
is estimated only once in the last stage.

To the best of our knowledge, very few research results exist
on designing output-feedback controllers for time-varying
nonlinear subsystems as general as (1) without input gain sign
information. Even the most recent research result [24] deals
with a limited range of nonlinear systems with constant input
gain, while the system (1) dealt with in this paper belongs to
a much broader category.

II. PROBLEM FORMULATION
In the following sections, |x| denotes the 2-norm of vector x,
and |v| denotes the absolute value of scalar v. The notation
a(t) → 0 is a shorthand for limt→∞ a(t) = 0.
This paper is concerned with the analysis and control of

a general nonlinear system composed of N interconnected
subsystems. The system’s dynamics are uncertain, nonau-
tonomous, and nonaffine in the control. The dynamics of each
subsystem j can be expressed as follows:

ẋj = fj(xj, uj, t, x̃j)
yj = hj(xj, t)

}
, j = 1, 2, · · · ,N . (1)

Here, j ∈ 1, 2, · · · ,N is a unique index that identi-
fies each subsystem. The functions fj and hj are unknown
smooth functions, and xj = [xj,1, xj,2, · · · , xj,nj ]

T is the
state vector of the jth subsystem, where nj is the subsys-
tem’s dynamic order. The variables yj and uj represent the
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output and input of the jth subsystem, respectively. The vector
x̃j = [xT1 , · · · , xTj−1, x

T
j+1, · · · , xTN ]

T denotes the total state
vectors of remote subsystems, which is a collection of state
vectors except for the jth one.
It should be noted that the considered subsystem belongs

to a broader class of nonlinear systems, including both strict-
and pure-feedback systems, that are also nonautonomous.
The functions fj and hj are explicitly dependent on time. This
class of systems may encompass systems with time-varying
parameters and disturbances, either additive or multiplicative
in nature. The assumption is made that only the output yj of
the jth subsystem is available.

In practical engineering systems, it is desirable to main-
tain the states within prescribed bounded operational regions
and to restrict the control inputs within bounds imposed by
physical constraints.
Assumption 1: The open set �j, defined as

�j =

{
xj, uj

∣∣|xj| < λxj , |uj| < λuj

}
(2)

encompasses the entire operational region of the jth subsys-
tem (1), where λxj and λuj are positive constants.
The union of all �j’s constitutes the entirety of the set:

� = ∪
N
j=1�j. (3)

Assumption 2: All subsystems have full relative degree nj,
and the control input uj appears first in the y

(nj)
j equation for

all j = 1, · · · ,N .
The control objective is driving yj(t) to track the desired
output rj(t) within predetermined region while maintaining
all signals involved to be bounded. Let the tracking error be
zj ≜ yj − rj and error vector be zj = [zj, żj, · · · , z

(nj−1)
j ]T .

If the tracking error vector is regarded as a new state vector,
then the original system can be redescribed as the following
normal form

żj,1 = gj,1(zj, t) ≜ zj,2
żj,2 = gj,2(zj, t) ≜ zj,3

...

żj,n = gj,n(zj, uj, t) (4)

where zj,1 = zj, rj ≜ [rj, ṙj, · · · , r
(nj−1)
j ]T ,

gj,1(zj, t) =
∂h(zj + rj, t)

∂zj
fj(zj + rj, uj, t, x̃j)

+
∂hj(zj + rj, t)

∂t
− ṙj

gj,i(zj, t) =
∂gj,i−1(zj, t)

∂zj
fj(zj + rj, uj, t, x̃j)

+
∂gj,i−1(zj, t)

∂t
, i = 2, · · · , nj − 1

gj,nj (zj, uj, t) =
∂gj,nj−1(zj, t)

∂zj
fj(zj + rj, uj, t, x̃j)

+
∂gj,nj−1(zj, t)

∂t
(5)

The gj,i(·)s for i = 1, · · · , nj are also unknown smooth func-
tions, and the transformed system (4) is also nonautonomous.
Note that, although fj is a function of uj, the gj,nj (·) is the only
function of control input uj since all the original subsystems
are assumed to have full relative degrees.
Assumption 3: For the following control gain function

bj(zj, uj, t) ≜
∂gj,nj (zj, uj, t)

∂uj
(6)

there is a constant λbj that is not required to be known such
that |bj(x, u, t)| > λbj over 9 for t ≥ 0, and the sign of the
control direction function bj(·) is assumed to be unknown.
Assumption 4: The time-derivatives of the desired output

r (i)j (t) for i = 1, 2, · · · , nj + 2 are all bounded.
The proposed output-feedback controller adopts HOSD to
estimate time-derivatives of the tracking error zj(t).

A. TIME-DERIVATIVES ESTIMATOR
To facilitate the discussion of HOSD dynamics, we introduce
the following definitions. Let8 be a set of all strictly increas-
ing infinite time sequences such that

8 ≜ {(ti)∞i=0|t0 = 0, ti < ti+1∀i ∈ N0} (7)

where N0 = {0, 1, 2, · · · }. For a sequence T = (ti) ∈ 8, �T
denotes a set of functions that discontinuous at some or all ti.
Definition 1 [35]: For T = (ti) ∈ 8, define the set of

functions as follows:

�
L
T ≜

f (t)
∣∣∣f (t) ∈ �T , sup

ti≤t<ti+1
∀i∈N0

|f (t)| ≤ L < ∞

 (8)

where L > 0 is a constant. The functions in �
L
T are bounded

in the piecewise sense (BPWS) below L.
Park [35] proposed the original HOSD and its dynamics is

modified such that it has only one design constant in [33] as
the following Lemma.
Lemma 1 [33]: Suppose the time-derivatives of the track-

ing error of the jth subsystem zj(t) are BPWS such that

z(i+1)
j ∈ �

L∗
j,i
T for i = 1, 2, · · · , nj where L∗

j,is are positive

constants and T ∈ 8. z(n+2)
j is also assumed to be BPWS.

We define the HOSD dynamics as follows

α̇j,i = βiLjeαj,i + σj,i
σ̇j,i = Lj sgn(eαj,i )

}
, i = 1, 2, · · · , nj (9)

where eαj,i = σj,i−1 −αj,i with σj,0 = zj. Choosing the design
constants βi > 0 for all i and Lj > max{L∗

j,1, · · · ,L∗
j,nj}

ensures that

σj,i(t) → z(i)j , i = 1, 2, · · · , nj. (10)

The detailed proof of Lemma 1 is shown in [35]. In [33], the
constants βis up to i = 6 have been suggested as

β1=10, β2=7, β3=5.5, β4=4.8, β5=4.4, β6=4.2.

(11)
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The only design constant Lj in HOSD (9) must be increased to
improve the estimating performance of the HOSD. In Fact 3
in [35], it is proven that the following holds

σ̇j,i → σj,i+1 (12)

for i = 1, · · · , nj−1. Together the fact σj,nj → z
(nj)
j with (12)

for i = nj − 1, the following is trivially holds.

σ̇j,nj−1 → z
(nj)
j (13)

Compared to conventional time-derivative estimators, such
as HGO [36] or HOSMD [37], HOSD has the advantages of
asymptotic tracking performance and no peaking or chatter-
ing in the generated estimations.

B. REDEFINING OUTPUT-FEEDBACK CONTROL PROBLEM
From (10) for i = 1, żj → σj,1 holds and it can be rewritten
as

żj,1 = σj,1 + dj,1(t) (14)

where dj,1(t) is a time-varying function that decays asymp-
totically. From (12), it can be redescribed as

σ̇j,i−1 = σj,i + dj,i(t) (15)

for i = 2, · · · , nj − 1 where dj,i(t)s are estimation errors
that vanish asymptotically. Finally, combining (13) with (4),
we obtain

σ̇j,nj−1 = z
(nj)
j + dj,n(t)

= gj,n(zj, uj, t) + dj,nj (t) (16)

where dj,nj (t) is also an observation error that goes to zero
asymptotically. Equations (14), (15), and (16) together form
a new system with state vector

ẑj = [zj, σj,1, · · · , σj,nj−1]T . (17)

Equations (14), (15), and (16) constitute a pure-feedback
nonlinear system with respect to ẑj whose disturbances are
unmatched. Thus, low-complexity prescribed performance
control scheme in [22] can be applied.

C. CONTROLLER DESIGN
The predetermined tracking performance is

−cjkj,1(t) < zj(t) < kj,1(t), if zj(0) ≥ 0

−kj,1(t) < zj(t) < cjkj,1(t), if zj(0) < 0 (18)

where 0 < cj < 1 is a design constant, and

kj,1(t) = (k0j,1 − k∞

j,1)e
−µj,1t + k∞

j,1 (19)

with k0j,1 > k∞

j,1 > 0 and µj,1 > 0 are design constants. The
convergence rate is specified by µj,1 and the ultimate bound
of zj(t) is depicted by k∞

j,1. The overshoot of the tracking error
is specified to be less than cjkj,1(t).

To transform asymmetric constraint (18) into a symmetric
form, let us define

k j,1(t) = cjkj,1(t), k j,1(t) = kj,1(t), if zj(0) ≥ 0

k j,1(t) = kj,1(t), k j,1(t) = cjkj,1(t), if zj(0) < 0 (20)

and

pj,1(t) =
1
2
(k j,1(t) + k j,1(t))

δj(t) =
1
2
(k j,1(t) − k j,1(t))

ej,1(t) = zj(t) + δj(t) (21)

Then, it can be easily deduced that the following inequality

−pj,1(t) < ej,1(t) < pj,1(t) (22)

is equivalent to (18).
To proceed, the state errors are defined as

ej,i+1 = ẑj,i+1 − ζj,i, i = 1, · · · , nj − 1 (23)

where ζj,i is the intermediate control signal that will be
designed in what follows. The performance bounds of this
state errors are selected as

pj,i(t) = (p0j,i − p∞
j,i )e

−µj,it + p∞
j,i , i = 2, · · · , nj (24)

where the positive design paramters p0j,i and p
∞
j,i are chosen

such that |ej,i(0)| < p0j,i and p
∞
j,i < p0j,i hold.

To drive |ej,i(t)| < pj,i(t), ∀t ≥ 0, the control law is
determined as

ζj,i = −γj,iηj,i, i = 1, · · · , nj − 1 (25)

uj = γj,njv(ηj,nj )ηj,nj (26)

where γj,i s are positive control gains,

ηj,i = tan
(

πej,i
2pj,i

)
, i = 1, · · · , nj, (27)

and the function v(ηj,nj ) that estimates the control direction
is smooth with respect to ηj,nj and satisfies that there exist
positive constants aj,1 and aj,2 such that

lim sup
ηj,nj→∞

v(ηj,nj ) = aj,1 (28)

lim inf
ηj,nj→∞

v(ηj,nj ) = −aj,2. (29)

for example v(·) = sin(·) or v(·) = cos(·).
From (26)-(29), the following attributes of the control input

are evident

lim sup
(ej,nj−pj,nj )→0−

uj = +∞

lim inf
(ej,nj−pj,nj )→0−

uj = −∞ (30)

and

lim sup
(ej,nj+pj,nj )→0+

uj = +∞

lim inf
(ej,nj+pj,nj )→0+

uj = −∞. (31)

Lemma 2: For i = 1, · · · , nj − 1, ζ̇j,i remains bounded if
ej,i, ėj,i, and ηj,i are all bounded.
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Proof: From (25), the following is easily induced

ζ̇j,i = γj,iη̇j,i

= γj,i
π

2
ėj,ipj,i − ej,iṗj,i

p2j,i

1

cos2(πej,i
2pj,i

)
(32)

From (19) and (21)

pj,1 =
1
2
(cj + 1)kj,1

=
1
2
(cj + 1){(k0j,1 − k∞

j,1)e
−µj,1t + k∞

j,1}, (33)

the followings are easily induced.

2

(1 + cj)k0j,1
≤

1
pj,1

≤
2

(1 + cj)k∞

j,1
µj,1

2
(k∞

j,1 − k0j,1) ≤ ṗj,1 < 0. (34)

From (24), the followings are also easily derived.

1

p0j,i
≤

1
pj,i

≤
1
p∞
j,i

, i = 2, · · · , nj

µj,i(p∞
j,i − p0j,i) ≤ ṗj,i < 0, i = 2, · · · , nj (35)

And by defining θj,i =
πej,i
2pj,i

, from the boundedness of ηj,i and
the definition of (27), since it can be deduced that |θj,i| ̸=

mπ
2

for m = 1, 3, 5, · · · , which guarantees that 1/cos2θj,i is also
bounded. Together all these facts with the assumption that ej,i
and ėj,i are bounded, ζ̇j,is are concluded to be bounded. □
The following theorem summarizes the main result of the

proposed control scheme.
Theorem 1: Consider system (1) under Assumptions 1

through 3. The control input (26) using the HOSD (9) makes
the tracking error ej remain within a prescribed region.

Proof: By (21) and (14), we have

ėj,1 = ˙̂zj,1 + δ̇j

= ẑj,2 + dj,1 + δ̇ (36)

where ẑj,1 = zj. Using (23) and (15), we can write

ėj,i = ˙̂zj,i − ζ̇j,i−1

= ẑj,i+1 + dj,i − ζ̇j,i−1, i = 2, · · · , nj − 1 (37)

From (23) and (16), we obtain

ėj,nj = ˙̂zj,nj − ζ̇j,nj−1

= gj,nj (zj, uj, t) + dj,nj − ζ̇j,nj−1

= gj,nj (zj, 0, t) + dj,nj − ζ̇j,nj−1

+ gj,nj (zj, uj, t) − gj,nj (zj, 0, t). (38)

By the mean-value theorem and (6), there exists a ξj between
uj and 0 such that

bj(zj, ξj, t) =
gj,nj (zj, uj, t) − gj,nj (zj, 0, t)

uj
(39)

Using this, (38) becomes

ėj,nj = gj,nj (zj, 0, t) + dj,nj − ζ̇j,nj−1 + bj(zj, ξj, t)uj (40)

By redescribing (23) as

ẑj,i+1 = ej,i+1 + ζj,i, i = 1, · · · , nj − 1 (41)

equations (36),(37), and (40) can be rewritten as

ėj,i = φj,i + ζj,i, i = 1, · · · , nj − 1 (42)

ėj,nj = φj,nj + bj(zj, ξj, t)uj (43)

where

φj,1 = ej,2 + dj,1 + δ̇j

φj,i = ej,i+1 + dj,i − ζ̇j,i−1, i = 2, · · · , nj − 1

φj,nj = gj,nj (zj, 0, t) + dj,nj − ζ̇j,nj−1. (44)

Suppose there exists a time instance t1 > 0 in which an error
variable ej,i reaches the boundary pj,i first while other error
variables ej,m(m ̸= i) are maintained within their boundaries
such that

|ej,i(t1)| = pj,i(t1) (45)

|ej,m(t)| < pj,m(t), t ∈ [0, t1), ∀m ̸= i (46)

The necessary condition for (45) is that the followings hold

lim
(ej,i−pj,i)→0−

ėj,i ≥ ṗj,i, lim
(ej,i+pj,i)→0+

ėj,i ≤ ṗj,i (47)

Recalling (34) and (35), (47) further follows that

lim
(ej,i−pj,i)→0−

ėj,i ≥ hj,i, lim
(ej,i+pj,i)→0+

ėj,i ≤ −hj,i (48)

where hj,is are negative constants defined as

hj,1 ≜
µj,1

2
(k∞

j,1 − k0j,1)

hj,i ≜ µj,i(p∞
j,i − p0j,i), i = 2, · · · , nj (49)

Case 1 (i = 1, · · · , nj − 1): From the fact φj,i ∈ L∞ and

lim
(ej,i−pj,i)→0−

ζj,i = −∞, lim
(ej,i+pj,i)→0+

ζj,i = +∞ (50)

the following are trivially deduced

lim
(ej,i−pj,i)→0−

ėj,i = −∞, lim
(ej,i+pj,i)→0+

ėj,i = +∞. (51)

which evidently violate the necessary condition (48).
Case 2(i = nj): From the boundedness of φj,nj , the equali-

ties (30), and Assumption 2, it holds that

lim
(ej,nj−pj,nj )→0−

gj,nj (zj, ξj, t)uj = −∞

lim
(ej,nj+pj,nj )→0+

gj,nj (zj, ξj, t)uj = +∞ (52)

regardless of the sign of gj,nj (zj, ξj, t). Thus, the following are
deduced

lim inf
(ej,nj−pj,nj )→0−

ėj,nj = −∞,

lim sup
(ej,nj+pj,nj )→0+

ėj,nj = +∞. (53)

which also violate the necessary condition (48).
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FIGURE 1. Trajectories of x1,1(t) and r1(t).

FIGURE 2. Trajectories of z1,1(t), k1,1(t), and k1,1(t).

FIGURE 3. Trajectories of x1,2(t) and control input u1(t).

Therefore, considering case 1 and case 2 together, it can be
concluded that the time t1 at which an error variable reaches
its boundary does not exist. This means that all the errors
remain within their prescribed boundaries. □

Previous works [22], [24] required the determination of the
sign of the virtual control term for all state variables, which
necessitated a stability analysis at each iteration. In con-
trast, the technique introduced in this paper, as proven in
Theorem 1, facilitates the estimation of a single gain sign in

FIGURE 4. Trajectories of x2,1(t) and r2(t).

the final state equation of order nj, thereby streamlining both
the control formulation and stability verification process.
Furthermore, the scope of the system (1) examined in this
study surpasses that of the dynamic characteristic equations
scrutinized in [22] and [24], as it encompasses a broader range
of nonlinear time-varying systems.

III. SIMULATIONS
This section presents a numerical simulation of a sys-
tem comprising two interconnected inverted pendulums to
demonstrate the efficacy of the proposed controller design
methodology and its corresponding performance. The sys-
tem’s state-space equations are articulated as follows:

61 :



ẋ1,1 = x1,2

ẋ1,2 =

(
m1GH
J1

−
KH
2J1

)
sin(x1,1) +

KH
2J1

(l − D)

+
sat(u1)
J1

+
KH2

4J1
sin(x2,1) + 11(t)

y1 = x1,1

(54)

62 :



ẋ2,1 = x2,2

ẋ2,2 =

(
m2GH
J2

−
KH
2J2

)
sin(x2,1) +

KH
2J2

(l − D)

+
sat(u2)
J2

+
KH2

4J2
sin(x1,1) + 12(t)

y2 = x2,1

(55)

where the system outputs xj,1 (j = 1, 2) denote the vertical
angular displacements that can be directly measured. The
angular velocities xj,2 (j = 1, 2) are treated as unknown states.
The inputs uj (j = 1, 2) correspond to the torques generated
by the servomotors, while 1j (j = 1, 2) indicate external
disturbances that are not known a priori. The specific distur-
bances in this simulation are assumed to be11(t) = 0.1 sin(t)
and 12(t) = 0.2+0.1 cos(2t). The gravitational acceleration
is G = 9.8m/s2, the spring constant is K = 100N/m, the
height of the pendulum is H = 0.5m, the length of the spring
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FIGURE 5. Trajectories of z2,1(t), k2,1(t), and k2,1(t).

FIGURE 6. Trajectories of x2,2(t) and control input u2(t).

is l = 0.5m, themoments of inertia of the pendulums are J1 =

0.5kg·m2 and J2 = 0.625kg·m2, and the distance between the
hinges isD = 0.4m < l. The pendulummasses arem1 = 2 kg
and m2 = 2.5 kg respectively. The control inputs are subject
to saturation constraints of sat(uj) = sgn(uj) min(|uj|, λuj ),
where λu1 = λu2 = 25 represent the maximum torques that
can be generated by the servomotors.

The following design parameters have been chosen for the
system: the constant L for HOSDs is set to 20. For the con-
troller in the first subsystem, the values of c1, k01,1, k

0
1,2, k

∞

1,1,
k∞

1,2, µ1,1, µ1,2, γ1,1, and γ1,1 are 0.4, 2, 2, 0.05, 0.4, 1, 1, 0.4,
and 0.1, respectively. Similarly, for the second subsystem, the
values of c2, k02,1, k

0
2,2, k

∞

2,1, k
∞

2,2, µ2,1, µ2,2, γ2,1, and γ2,2 are
0.4, 2, 2, 0.05, 0.4, 1, 1, 0.4, and 1, respectively. It should
be emphasized that the dynamic equations and disturbances
affecting the system are unknown to the controller. There-
fore, to facilitate the illustration, the controllers have been
designed to regulate the outputs to their respective origins,
with the desired outputs r1(t) and r2(t) set to zero for all t ≥ 0.
The simulations have been carried out using Python with the
Scipy library.

In Figure 1, it can be observed that the output x1,1(t)
closely follows the desired output r1(t) = 0 after a short
transient period. In Figure 2, it is evident that the output
error z1,1(t) moves within the upper bound k1,1(t) and lower

bound k1,1(t), and asymptotically converges within the range
of (0.025, -0.05). Furthermore, Figure 3 displays that x1,2(t)
and the control input u1(t) are also well-bounded. For the 2nd
subsystem, the simulation results are illustrated in Figures 4
through 6.

IV. CONCLUSION
This paper addresses the problem of decentralized
output-feedback control for interconnected LSSs with uncer-
tain nonautonomous general nonlinear subsystems and
unknown input gain sign. This general class of intercon-
nected systems with subsystems that has no information on
high-frequency gain sign has not been previously examined
in the literature. The proposed controller employs HOSD to
estimate the time-derivatives of the output tracking error,
thereby maintaining the error within a prescribed region.
In comparison to existing research, the proposed controller
is more concise and avoids severe chattering or peaking in
the control input. Furthermore, the controller is applicable to
a very general time-varying nonlinear subsystem within the
broadest category and only estimates the sign of the input gain
that appears in the last transformed state equation. This results
in a relatively simple structure for the distributed controller
and stability proof.
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