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ABSTRACT In line with the development of Industry 4.0, surface defect detection/anomaly detection
becomes a topical subject in the industry field. Improving efficiency as well as saving labor costs has steadily
become a matter of great concern in practice, where deep learning-based algorithms perform better than
traditional vision inspection methods in recent years. While existing deep learning-based algorithms are
biased towards supervised learning, which not only necessitates a huge amount of labeled data and human
labor, but also brings about inefficiency and limitations. In contrast, recent research shows that unsupervised
learning has great potential in tackling the above disadvantages for visual industrial anomaly detection.
In this survey, we summarize current challenges and provide a thorough overview of recently proposed
unsupervised algorithms for visual industrial anomaly detection covering five categories, whose innovation
points and frameworks are described in detail. Meanwhile, publicly available datasets for industrial anomaly
detection are introduced. By comparing different classes of methods, the advantages and disadvantages of
anomaly detection algorithms are summarized. Based on the current research framework, we point out the
core issue that remains to be resolved and provide further improvement directions. Meanwhile, based on the
latest technological trends, we offer insights into future research directions. It is expected to assist both the
research community and industry in developing a broader and cross-domain perspective.

INDEX TERMS Industrial anomaly detection, unsupervised learning, deep learning.

I. INTRODUCTION
Industry 4.0 is an era of making use of information technol-
ogy to promote the industrial revolution, that is, the intelli-
gent era. It is the fourth industrial revolution dominated by
intelligent manufacturing. Adhere to the development trend
of Industry 4.0, it is the general trend to build a smart manu-
facture system.

Ideally, once a production link deviates from the standard
operation, an alarm signal will be sent, and the producer can
make positive improvement response in the shortest time.
This transparent and efficient information based production
process can minimize production costs and also avoid wast-
ing materials. In the long run, smart manufacturing mode
based on artificial intelligence technology [1] can reduce
the requirements on human decision, such as dependence on
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technical experts, by mining and depositing relevant knowl-
edge, so that labor costs can be saved.

Material anomaly extensively exists in industrial produc-
tion [1], [2], [3], and more and more safety problems are
caused by material defects. Hence people pay more attention
to the detection of material anomalies. There are a lot of
defects images in the industrial scene. Examples of surface
defects are shown in Fig. 1. The traditional method of surface
anomaly detection and localization relies on the manual oper-
ation by qualified specialists, which is not only inefficient but
also depends on the subjective judgment of operators, making
it difficult to ensure the accuracy of detection. The production
mode of anomaly detection equipment combined with indus-
trial production line ensures the quality of products, reduces
the cost of manual testing, and improves the efficiency of
production as well. With the rapid rise of computer image
processing technology, many algorithms have been gradually
applied to the field of material anomaly detection, improv-
ing the accuracy of material anomaly detection. In recent
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years, deep learning [4], [5] has also been applied to material
anomaly detection and achieved extraordinary performance.

Current deep learning-based supervised algorithms have
certain limitations. Model training requires a large amount of
labeled data [5], while images with defect labels are not easy
to obtain. And the lack of defect samples makes it difficult
to bring the models online, which also limits the application
of deep learning in the industrial detection field. Therefore,
a new solution is urgently needed - unsupervised algorithms,
which need no labeled data. This paper provides a review
of some recently proposed unsupervised methods, whose
innovation points and frameworks are described in detail.
Note that we only concentrate on industrial vision anomaly
detection algorithms. Particularly, the industry uses the terms
defect detection, visual anomaly detection, and surface detec-
tion, which we all count in our research. Meanwhile, pub-
licly available datasets for industrial anomaly detection are
introduced, with experimental results displayed. This review
offers different contributions that distinguish it from other
reviews.

• We discuss the inadequacies of the current algo-
rithms and dataset tailored to the requirements of
actual industrial scenarios, such as edible oil impurity
detection.

• Based on the current research framework, we suggest
that the conflict between FAR (false alarm rate) and
MAR (missed alarm rate) is the core issue that remains
to be resolved. We also provide further improvement
directions to current methods, like integration of diverse
technologies.

• We offer insights into future directions based on the
latest technological trends, such as foundation model
and multimodal learning.

The subsequent content of the article is organized as fol-
lows: related works in Section II, visual anomaly detec-
tion methodology in Section III, comparison and analysis
of methodologies in Section IV, introduction to industrial
datasets in Section V, challenge and discussion of research
actuality and future development direction in Section VI,
conclusion in Section VII.

II. RELATED WORKS
A. PREVIOUS ALGORITHMS
We only focus on the surprising success and dominance of
anomaly detection in industrial images but exclude other
areas such as action recognition [6], [7] and video anomaly
detection [8]. Although some of the strategies have been
validated in the above scenario, real industrial images lack
prior knowledge of action images and video sequence infor-
mation, which makes it difficult for models to generalize
across different domains.

For some existing methods of visual anomaly detection,
the development and changes in technology are introduced
below. Initially, anomaly detection relied on statistical meth-

1http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_database.html

ods. Statistical approaches assess the geographic distribution
of pixel values by extracting statistical information from
defect images. Histogram information [9], [10], [11], [12],
[13], [14], co-occurrence matrices [15], [16], [17], [18], [19],
[20], and local binary patterns (LBP) [21], [22], [23], [24],
[25], [26] have all been presented as statistical methods for
defect detection. Statistical approaches can present anomalies
in an intuitive and discriminative manner, and they are simple
to model, interpret, and display. However, they frequently
make assumptions, such as separable defect regions, that can-
not be satisfied in all scenarios. Later, hand-extracted features
can describe the structure of the image. In structural methods,
defect feature is characterized by texture elements [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37]. As a result,
the structural approaches’ goals are to extract the texture
elements of defects, which are used to represent the spatial
placement rules. The geometrical feature can be found using
structural approaches. This approach is easier to implement
and better suited to random textured defects. However, the
majority of them are sensitive to the shape and size of defects,
and defect images should be aperiodic.

In the field of image processing, filter-dependent meth-
ods are also used for anomaly detection. Filter-based meth-
ods apply some filter banks on defect images and calcu-
late the energy of the filter responses [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50]. Common
filter-based methods include Sobel operator, Canny operator,
Gabor operator, Laplacian operator, wavelet transform, and
Fourier transform, which can be further divided into spatial
domain, frequency domain, and spatial-frequency domain
methods. In vision-based anomaly recognition, filter-based
approaches are widespread. The cross-domain methods can
aid the model in extracting more meaningful information.
Furthermore, they are affine transformation invariant and can
handle multi-scale defects. While, they may not be appropri-
ate to random textured images, and some of them may be
influenced by feature correlations and noises.

With the development of neural networks and machine
learning, a large number of supervised algorithms have
appeared. Supervised Neural Networks [51], [52], [53], [54],
[55], [56], [57], [58], [59], [60], [61], [62], Support Vec-
tor Machines (SVM) [63], [64], [65] and k-Nearest Neigh-
bors [66], [67], [68], [69], [70], [71], [72] are the most com-
mon supervised algorithms. Recently, deep learning-based
algorithms are becoming popular. The majority of deep
learning-based visual anomaly detection is data-driven.
To build the visual anomaly detection model, supervised
methods take two means. The first one trains an image-level
classification model, which requires a labeled training set
including both normal and abnormal samples. The second
conducts refined object localization. Containing more infor-
mation, supervised methods should theoretically yield higher
detection rates than semi-supervised and unsupervised meth-
ods. However, because of lacking training dataset that covers
all defect locations and erroneous labeling, there still exists
certain technical difficulties.
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FIGURE 1. Examples of defects of various materials in datasets.

B. PREVIOUS SURVEYS
As an important research area, there have been already many
reviews researching it. Table. 1 enlists some existing surveys
in the industrial anomaly detection field, which have different
focus from our research. Specifically, the review [73] starts
with formulations of themost classical algorithms of different
schools. The paper [74] surveys traditional methods, and also
introduces deep learning-based methods. For each type of
method, the characteristics of each method are listed in a
general way. The article [75] represents an introduction to
traditional methods, deep learning-based methods, and an
introduction to hardware and software devices is involved in
the meantime. For the introduction to deep learning-based
methods, it mainly focuses on the supervised domain and
introduces milestone algorithms by timeline. The survey [76]
groups the relevant approaches given their underlying prin-
ciples and discusses their assumptions, advantages, and dis-
advantages. The study [77] focuses on specific solutions for
visual processing methods and, in particular, visual inspec-
tion approaches for metallic, ceramic, and textile surfaces
in industrial applications. The methods in literature [78] are
divided into categories based on the types of detection mate-
rials used. Some studies focus only on anomaly detection on a
particular material. A thorough survey [1] is provided of both
two-dimensional and three-dimensional surface defect detec-
tion systems for various common metal planar material prod-
ucts such as steel, aluminum, copper plates, and strips. The
review [79] presents a detailed overview of histogram-based
approaches, color-based approaches, image segmentation-
based approaches, frequency domain operations, texture-
based defect detection, sparse feature-based operations, and
imagemorphology operations for fabric defect detection. The
article [80] investigates supervised and semi-supervised deep
learning algorithms. As for the unsupervised aspect, more
attention is paid to the different network architectures used

by different types of algorithms. The article [81] focuses
on the intersection of different research fields, providing
extended cross-cutting ideas, exhaustively introducing the
algorithms and frameworks of some typical methods, de-
emphasizing methodological schools and blurring domain
boundaries. It intends to bring these fields closer together.
The article [82] focuses only on GAN-based algorithms.

In practice, it is more biased towards the needs for the
unsupervised domain in the current industrial context. To our
best knowledge, no review has been done for the recently
emerged unsupervised methods. The article will provide a
comprehensive and in-depth summary of the state-of-the-art
algorithms for visual industrial anomaly detection, whichwill
be divided into a systematic categorization listed as III-A
Reconstruction-based, III-B Normalizing Flow (NF)-based,
III-C Representation-based, III-D Data augmentation-based,
and III-E Algorithm enhancements. This comprehensive
summary is expected to contribute to the implementation and
practice of the industrial field.

III. METHODOLOGY
A large part of the traditional visual anomaly detection algo-
rithms belong to the category of supervised learning [83],
[84], which requires collecting enough samples of different
defect categories and accurate labeling, such as the category
of the image, the location of the defects in the image and
the category information of each pixel. However, in many
application scenarios, it is difficult to collect a sufficient
number of samples [85]. For example, in the surface defect
detection task, most of the images collected actually belong
to normal defect-free samples, while only a small amount
belong to defect samples. With diverse types of defects to be
detected, the number of defect samples available for training
is very limited.
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TABLE 1. Summary of previous reviews.

Unsupervised visual anomaly detection algorithms can
build detection models without any annotated samples, which
makes it very suitable for the scenarios described above.
In anomaly detection tasks, the difficulty in collecting normal
images is much lower than that of anomalous images, which
can significantly reduce the time and labor cost of detection
algorithms in practical applications. Moreover, unsupervised
visual anomaly detection models detect anomalous samples
by analyzing the differences between normal samples and
abnormal samples, allowing the algorithm to detect a wide
range of abnormal samples, even brand new sorts of flaws.
Comparison of framework diagrams of supervised and unsu-
pervised algorithms is shown in Fig. 2.
There are some highlighted approaches worth mentioning

among the algorithms with great performance, which will
be described in detail in this section. We categorize the
existing research into five types: reconstruction-based meth-
ods, normalizing flow-based methods, representation-based
methods, data augmentation-based methods, and algorithm
enhancement. An overview and summary of these categories
is listed in Table 2.

A. RECONSTRUCTION-BASED METHODS
To learn the distribution pattern of normal images, the core
idea is to conduct encoding and decoding on the input nor-
mal images and train the neural network with the aim of
reconstruction. With the help of the trained networks, the

FIGURE 2. Comparison of framework diagrams of supervised and
unsupervised algorithms.

differences between the images before and after reconstruc-
tion are analyzed to detect anomalies in the detection stage.
With anomaly score usually represented by reconstruction
error, the anomalous images are easy to be found because
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TABLE 2. An overview and summary of different categories of anomaly detection algorithms.

FIGURE 3. The basic flow of reconstruction-based method. The image is
input into a reconstructor such as AE and GAN, to output the
reconstructed image and compare it with the original input image. The
difference between the two is used to get an anomaly map so as to
realize anomaly detection.

they cannot be reconstructed well. Classical methods based
on reconstruction include autoencoders (AE [116], [117]),
variational auto-encoders (VAE [118]) and generative adver-
sarial networks (GAN [119]), which can generate samples
from the manifold of the training data. During the training
phase, only normal data without anomalies are conventionally
modeled. In testing phase, anomaly scores are calculated with
the difference between the input image and the reconstructed
image. Based on the assumption that by training only on
normal images, the model will not be able to reconstruct
abnormal images correctly, and the anomaly scores will
be higher. The basic flow of reconstruction-based method
is shown in Fig. 3. Typical auto-encoder and GAN based
anomaly detection approaches mentioned above have some
limitations, including:

Uncertain threshold. Autoencoders and GAN based
approaches use a thresholded pixel-wise difference between
the input and reconstructed image to localize anomalies.
However, the use of anomalous training images, which may
not be available in real-world situations, is required for these
approaches to determine class-specific thresholds.

High computational cost. Autoencoder and GAN based
anomaly detection approaches often require large amounts of
computational resources to train and evaluate. This can be a
bottleneck for real-time applications that require fast anomaly
detection.

Difficult to interpret. The representations learned by
autoencoders and GANs may be difficult to interpret, making
it challenging to understand why a particular instance was
classified as an anomaly. This can make it difficult to diag-
nose and fix problems in the system.

Sensitivity to hyperparameters. The performance of
autoencoder and GAN based anomaly detection approaches
can be sensitive to the choice of hyperparameters, such as the
number of layers, the learning rate, and the batch size. It can
be challenging to select the optimal hyperparameters for a
given dataset, and the performance can degrade significantly
if the hyperparameters are not tuned properly.

To improve the reconstruction ability, in method
CAVGA [86], VAE, GAN and other means are combined
and an attention mechanism is introduced for the first time

VOLUME 11, 2023 55301



Y. Cui et al.: Survey on Unsupervised Anomaly Detection Algorithms for Industrial Images

FIGURE 4. Schematic overview of STPM [89]. A student network’s feature pyramid is trained to match the counterpart of a
pre-trained teacher network. If the features from the two models disagree significantly, a test image (or pixel) gets a high
anomaly score. STPM approach can detect anomalies of various sizes with a single forward pass owing to the feature
pyramid matching scheme.

into the anomaly detection field. The framework encourages
the attention map to cover the entire normal region, while
suppressing attention maps corresponding to the anomaly
classes in the training images. Two modes of unsupervised
and weakly supervised are provided. 1. Unsupervised mode:
GAN is used as the overall architecture, VAE is used as
the codec and attention map is generated by Grad-CAM.
Loss function consists of three parts: VAE, adversarial loss,
and attention part. 2. Weakly supervised mode: Compared
with mode 1, classifiers are added to distinguish normal and
abnormal samples. Loss function consists of four parts: VAE,
adversarial loss, complementary guided attention loss, and
classification loss. However, one potential drawback is that it
relies on the assumption that anomalies in images are always
visually distinct from the background or normal regions. This
may not always be the case, as certain types of anomalies may
be visually similar to the background, making them harder to
detect using this method.

Classical methods like GAN and Autoencoder compare
the input and its difference from the output to pinpoint the
anomaly. However, coarse reconstructions produce excessive
image differences, which prevents the detection of anomalies.
To address this problem, the approach UTAD [87] proposes
an unsupervised visual anomaly detection method for nat-
ural images by combining mutual information, GAN, and
autoencoder. A two-stage framework (i.e., IE-Net, Expert
Net) is utilized to generate high-fidelity and anomaly-free
input reconstructions for anomaly detection tasks.

Aiming at the anomalies in small and confined regions
of images, DFR method [88] suggests an effective unsu-
pervised anomaly segmentation approach, which utilizes the

transformed hierarchical CNN features to build dense dis-
criminative multiscale feature representations for every local
region of the images via a specially designed regional feature
generator. DFR also proposes to detect possible anomalous
regions in images by deep feature reconstruction, i.e. recon-
structing the multiscale regional features via a deep yet effi-
cient convolutional autoencoder(CAE). The regional feature
generator takes the multi-scale feature maps as input and
turns them into a relatively large single feature map, which
is then reconstructed by a deep CAE. By calculating the
reconstruction error and the anomaly score map, anomalies
will be segmented if any score on the anomaly map is greater
than the estimated value or a user-defined threshold.

Some attempts utilize pre-trained model of image
classification task. Nevertheless, the problem of the incom-
pleteness of transferred knowledge and the complexity of
handling scaling has not yet been resolved. Thus, STPM [89]
introduces a novel feature pyramid matching technique and
incorporates it into the student-teacher anomaly detection
framework. Fig. 4 shows the overview of STPM. The algo-
rithm employs multiple layers of features extracted from a
powerful network pre-trained for image classification tasks as
the teacher to guide a student network with the same structure
to learn the distribution of anomaly-free images. The student
network learns the distribution of images by matching the
features of the anomaly-free images with the pre-trained
network, and this step of transmission seeks to retain as much
critical information as possible. In the training phase, the
teacher network is a mature network trained on ImageNet,
and the image input network generates multi-layer feature
maps. The student network is trained with a fraction of the
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training set, approximating the multi-layer feature trained by
the teacher network as much as possible. In the testing phase,
samples are put into both teacher and student networks, the
differential loss between which is computed. A high anomaly
score will be assigned if the features of a test image (or pixel)
deviate significantly between the two models. If any pixel in
the image is anomalous, the image is judged as anomalous.

The RSTPM [90] approach is a generalization of the
Student-Teacher frameworkmethod STPM,whichwas devel-
oped previously. The new approach differs from prior STPM
in threeways: student network for reconstruction, an attention
mechanism from the teacher network to the student network,
and a different teacher network structure from the original
STPM.

T-S model typically uses similar or identical architec-
tures. To improve the T-S model’s representation diversity on
unknown, out-of-distribution samples, a novel T-Smodel [91]
with a teacher encoder and student decoder is suggested,
along with a straightforward yet powerful reverse distillation
paradigm. Instead of receiving raw images directly, the stu-
dent network takes the teacher model’s one-class embedding
as input and targets to restore the teacher’s multiscale rep-
resentations. It is the first approach to adopt an encoder and
a decoder to construct the T-S model. This strategy differs
from existing ones due to the heterogeneity of the teacher
and student networks and reversed data flow in knowledge
distillation.

Previous methods suffer from the similarity of student
and teacher architecture, such that the distance is undesir-
ably small for anomalies. To tackle this problem, AST [92]
proposes asymmetric student-teacher networks, which train
a normalizing flow for density estimation as a teacher and
a conventional feed-forward network as a student to trigger
large distances for anomalies.

Explicitly leveraging the networks’ multi-layer composi-
tion, MOCCA [93] exploits the output of a deep model at
different depths to detect anomalous input in the one-class
setting. WithMOCCA, the training technique is split into two
stages in which the autoencoder is trained on the reconstruc-
tion task only, and then only the encoder is utilized to detect
anomalies by exploiting a one-class-like objective applied to
different layers of the network.

OCR-GAN [94] reconsiders the distinction between
normal and abnormal images from the frequency domain
perspective and proposes a novel framework for anomaly
detection based on omni-frequency reconstruction. Specifi-
cally, FDmodule is proposed to decouple the input image into
various frequencies and model the reconstruction process as
a combination of parallel omni-frequency image restorations.

VT-ADL [95] combines the classic reconstruction-based
methods with the benefits of a patch-based approach. Visual
transformer networks contribute to preserving the spatial
information of the embedded patches, which is later coped
with a Gaussian mixture density network to localize the
anomalous areas.

FIGURE 5. The basic flow of the Normalizing Flow (NF)-based method.
The features are first extracted by a feature extractor and then fed into NF
module to estimate the probability density. The probability value is
employed as the anomaly score in testing phase.

Self-organizingmap for anomaly detection (SOMAD) [96]
makes use of pre-trained CNN to extract the features of
patches and leverages the SOM to maintain the neighbor-
hood relationship of embedding vectors in topology space.
It greatly reduces the search space by mapping the normal
feature space into 2-dimensional space through SOM.

B. NORMALIZING FLOW (NF)-BASED METHODS
Normalizing Flows (NF) [120] are neural networks that
are able to learn transformations between data distributions
and well-defined probability density functions. Their special
property is that their mapping is bijective and they can be
evaluated in both directions. The property of normalizing
flows to serve as a suitable estimator of probability densities
for the purpose of detecting anomalies has not drawn much
attention yet. Here we summarize some recently emerged
NF-based visual anomaly detection algorithms to provide
ideas for future study.

There are methods [97], [98] adopting normalizing flow to
estimate distribution through a trainable process that maxi-
mizes the log-likelihood of normal image features. Normal
image features are embedded into standard normal distri-
bution and the probability is used to identify and locate
anomalies. The basic flow of the Normalizing Flow (NF)-
based method is shown in Fig. 5.
The method [99] detects and locates defects based on

density estimates of featuremaps extracted from input images
of different sizes. Cross-connections between scales are made
by jointly processing multiscale feature maps using a fully
convolutional normalizing flow.

However, in order to estimate the distribution, the original
one-dimensional normalizing flow model must flatten the
two-dimensional input feature into a one-dimensional vector,
which destroys the inherent spatial positional relationship
implied by the two-dimensional image and constrains the
NF model. FastFlow [100] expands the original normalizing
flow model to two-dimensional space to address the con-
cerns mentioned above. As shown in Fig. 6, the algorithm
is summarized: the visual features are first extracted by a
feature extractor and then fed into FastFlow to estimate the
probability density. In the training phase, FastFlow is trained
with normal images to transform the original distribution into
a standard normal distribution in a 2D manner. In inference
phase, the probability value of each position on the 2D feature
is employed as the anomaly score.
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FIGURE 6. (a) shows the whole framework of FastFlow [100] algorithm. (b) is one flow step of FastFlow.

FIGURE 7. The basic flow of representation-based method. Pre-trained
deep neural networks are used as feature extractor to extract meaningful
vectors describing the input image, and the anomaly map is usually
represented by the distance between the test embedded vectors and the
reference vector representing normality from the training dataset.

C. REPRESENTATION-BASED METHODS
For representation-based methodology, deep neural networks
are used to extract meaningful vectors describing the entire
image, and the anomaly score is usually represented by the
distance between the embedded vectors of the test images and
the reference vector representing normality from the training
dataset. The basic flow of representation-based method is
shown in Fig. 7. The core idea is to train a deep neural
network as a feature extractor to make the distribution of
feature vectors extracted from normal images as compact
as possible, i.e., the intra-class distance of the samples is
reduced as much as possible. Contrary to reconstruction-
based algorithms, representation-based methods do not call
for a dedicated training stage, which introduces no parameters
other than the backbone. The concept of distance metric
learning techniques is comparable to clustering.

In the testing phase, most methods calculate the distance
between the features of the sample to be tested and the normal
features as a metric to perform anomaly detection. Typi-
cal algorithms mainly include SPADE [101], PaDIM [102],
PatchCore [103], GP [104], etc. To record anomaly score
and generate a score map, all these approaches employ dif-
ferent distance measurements (loss functions). PatchCore

uses a maximally representative memory bank of nominal
patch-features to integrate embeddings from ImageNet mod-
els with an outlier detection model. The framework of Patch-
Core [103] is shown in Fig. 8

PaDiM makes use of a pre-trained convolutional neural
network (CNN) for patch embedding, and multivariate Gaus-
sian distributions to get a probabilistic representation of the
normal class. It also exploits the correlations between differ-
ent semantic levels of the CNN to better locate the anomalies.

Based on alignment between an anomalous image and a
constant number of similar normal images, SPADE [101]
uses KNN andmultiscale feature pyramid for defect detection
and localization of anomalies. The following steps make up
SPADE algorithm: i) image feature extraction ii) K-nearest-
neighbor normal image retrieval iii) pixel alignment with
deep feature pyramid correspondences.

With a coarse-to-fine alignment technique, FYD method
[105] seeks to learn dense and compact distribution of nor-
mal images. In both picture and feature levels, the coarse
alignment stage normalizes the pixel-level position of objects.
After that, the fine alignment stage maximizes the simi-
larity of features across all corresponding locations in a
batch.

In terms of the scale of image processing, the methods
can be divided into image level, patch level and pixel level.
Gaussian-AD [106] extracts discriminative feature vectors
from normal images. Algorithms like Patch SVDD [107],
PatchCore [103] and PaDIM [102] extract discriminative
feature vectors from normal image patches. SPADE [101]
extracts discriminative features which are used for pixel-level
image alignment. From different process levels, these meth-
ods extract features of normal images and model the distri-
bution with statistical methods. Based on the assumption that
abnormal samples have different distributions, more promis-
ing results for anomaly detection are yielded.
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FIGURE 8. The overall framework of PatchCore. During training, normal samples are decomposed into a memory bank of neighborhood-aware patch-level
features. To reduce redundancy and inference time, this memory bank is downsampled via greedy coreset subsampling algorithm. During test time,
images are classified as anomalies if at least one patch is anomalous, and pixel-level anomaly segmentation is generated by scoring each patch feature.

Based on distribution-augmented contrastive learning,
DisAug CLR algorithm [108] first learns self-supervised rep-
resentations from one-class data, and then builds one-class
classifiers on learned representations.

The method Semi-orthogonal [109] is a generaliza-
tion of the prior work’s random feature selection method
PaDIM [102]. It extends the random feature selection to
semi-orthogonal embedding as a low-rank approximation of
precision matrix for the Mahalanobis distance.

Albeit simple and efficient, most of these methods require
manual specification of feature centers in advance, and addi-
tional tasks need to be designed in the training stage to avoid
model degradation. The approach of setting only one global
feature centroid imposes some constraints on the image con-
text. In the changeable scenes of medical images or natural
images, it may be challenging to map all images to the same
target point under the condition of guaranteeing generaliza-
tion ability.

Previous studies focused on approximating the distribu-
tion or extracting features with pre-trained CNNs of normal
data, which may make the normality of abnormal features
overestimated. CFA [110] performs transfer learning on the
target dataset as a solution to alleviate this problem. CFA
first acquires multiscale feature maps with biased CNN to
generate a patch memory bank. Through transfer learning
and the feature adaptation of patch descriptor associated with
the memory bank, CFA achieved successful target-oriented
anomaly detection.

D. DATA AUGMENTATION-BASED METHODS
In the unsupervised setting, the training data are all anomaly-
free data. Hence, there are some algorithms [108], [111],
[112], [113], [115] that adopt the method of creating anoma-
lies. To overcome the limitation of insufficient data, aug-
mentation algorithms [121], [122] have been widely used
in deep learning scheme. The basic flow of the data
augmentation-based method is shown in Fig. 9.
In DRAEM [111] method, noise generation method is

adopted to create anomalies and superimpose them on normal

FIGURE 9. The basic flow of the data augmentation-based method. The
normal image is augmented to obtain synthetic abnormal image. Both
normal samples and synthetic abnormal samples are input into the
model for training. The difference generated after the test sample input
into the model is regarded as anomaly map.

images. The proposed method learns a joint representation
of a normal image and its synthetic anomalous image, while
simultaneously learns a decision boundary between normal
and anomalous examples.

The method NSA [112] is a naturally synthetic anomaly
approach that proposes a way to create anomalies by selecting
patches of different sizes at different locations and blend-
ing them into anomaly-free images. Specifically, it is a
self-supervised task to create diverse and realistic synthetic
anomalies with Poisson image editing to seamlessly blend
multiscale patches of various sizes in different images. This
produces awide range of synthetic anomalies, which aremore
similar to natural sub-image irregularities.

CutPaste [113] is also an synthetic anomaly method
designed to produce augmentations to synthesize anomalous
samples by operating on normal image patches, including
cropping, rotating, transforming and overlaying. The distance
between the normal samples and the generated anomalous
samples is then measured. An overview of CutPaste method
for anomaly detection and localization is shown in Fig. 10.

The method [114] proposes a self-supervised predictive
convolutional attentive block (SSPCAB), which can be easily
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FIGURE 10. Overview of CutPaste [113]. (a) The CutPaste method creates an abnormal image by cropping a random area of the defect-free image and
superimposing it on the normal image. Then the CNN classifier is trained jointly with normal samples and synthetic anomalous samples. (b, top)
Image-level inference process. Gaussian density estimator(GDE) is adopted to compute anomaly scores via one-class classifiers. (b, bottom) Patch-level
inference process. Features are extracted from local patches to produce anomaly score map, which is then max-pooled for detection or upsampled for
localization.

incorporated into various state-of-the-art anomaly detection
methods, such as DRAEM [111] and CutPaste [113]. It aims
at reconstructing masked information with contextual infor-
mation, so as to realize performance improvements.

AnoSeg [115] is a segmentation model which combines
three techniques: self-supervised learning with hard augmen-
tation, adversarial learning, and coordinate channel connec-
tivity. It is directly trained for anomaly segmentation tasks
with synthetic anomaly data generated by hard augmentation.
In addition, anomaly regions sensitive to positional relation-
ships are more easily to be detected by means of coordinate
vectors representing the pixel position information.

E. ALGORITHM ENHANCEMENTS
Some algorithms provide some enhancements [107],
[123], [124], [125], such as improved loss functions or
interpretability.

IGD [123] employs reverse-interpolated training sam-
ples to train a class of Gaussian anomaly classifiers that
describe representative normal samples for effective normal-
ity. Current state-of-the-art models learn a compact normality
description by hyper-sphere minimization, but they are prone
to overfitting. To solve this problem, interpolated Gaussian
descriptor (IGD) approach is introduced. Methods that can
locate anomalies generally are suitable for a specific anomaly
size and structure, which may result in missing anomalies
outside of that size and structure range. To avoid this prob-
lem, IGD is designed to detect multiscale structural and
non-structural anomalies to improve the accuracy of anomaly
localization.

Classical unsupervised anomaly detection algorithms such
as support vector data description (SVDD [126]) and Deep-
SVDD (DSVDD [127]) can hardly explain why an image is
anomalous. Therefore, FCDD [124] explores converting the
final comparison vector of the previous DSVDD model into
a two-dimensional matrix (explanation heatmap) to enhance
the interpretability of the algorithm. For most traditional fully
connected convolutional networks, images are mapped to the
feature map of 1 ∗U ∗V . It is mentioned in this paper that an
important attribute of the convolution layer is that a pixel of
the feature map only has a fixed receptive field corresponding
to the input. A heatmap upsampling algorithm is proposed in
this paper, so that the abnormal score of the feature map can
be mapped back to the position of the original image, i.e.,
spatial information is reserved.

A new loss function is proposed which can over-
come failure modes of both center-loss and contrastive-
loss methods [125]. Furthermore, it is combined with
a confidence-invariant center loss, which replaces the
Euclidean distance used in previous work, i.e., a distance that
is sensitive to prediction confidence. The improvements yield
a new anomaly detection approach, based on mean-shifted
contrastive loss, which is both more accurate and less sensi-
tive to catastrophic model collapse than previous methods.

In the field of anomaly detection, attention mecha-
nisms [86], [128] are often used for algorithm improvement.
Another kind of methodology utilizes multiscale features to
enrich semantic information capture [88], [89], [93], [97],
[98], [99], [101], [102], [106].

There are other methods try brand new ways to solve
anomaly detection task. For the first time, RFS Energy
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TABLE 3. Comparison between supervised and unsupervised algorithms.

TABLE 4. Complexity comparison in terms of inference speed (FPS),
additional inference time (millisecond) and number of additional
parameters (M) for various backbones. A.d. Time means the additional
inference time and A.d. Parmas is the number of additional parameters
compared with backbone network.

algorithm [129] solves the challenge of unsupervised
anomaly detection using keypoint detection and an energy
model.

IV. COMPARISON AND ANALYSIS
Both supervised and unsupervised algorithms are used in the
field of anomaly detection, and the advantages and disadvan-
tages of each are summarized in Table 3. Although the super-
vised approach possesses high accuracy, there are limitations
in the acquisition of labeled data, which requires a large
amount of work, and sometimes it is impossible to acquire
enough labeled defect samples. The process of training the
network also has many parameters to optimize, which leads
to inefficiency. Classification is not possible for defects that
do not appear in the training set. The classes of methods intro-
duced above in this paper are all unsupervised algorithms that
do not require category labels, which can save a lot of cost and
effort in practical applications. NF-based methods require
expensive training computational resources, while undefined
defect detection is supported and inference efficiency is high.
Reconstruction-based methods require expensive training for
the related task and deep generative models are not robust
enough, and their performances for anomaly detection are
not stable whereas the model has good generalization abil-
ity. Representation-based methods do not need to introduce
parameters other than backbone, which is beneficial for effi-
ciency. However, because backbone is usually biased towards
ImageNet, it does not have good generalizability for some
images, such as medical images. Data augmentation-based
methods are designed to resemble the anomalies, which are
data-dependent and non-automatic.

As far as complexity is concerned, we take time complex-
ity and memory complexity into account. Time complex-
ity. For representation-based algorithms, the training time
complexity scales linearly with the dataset size. However,

contrary to the methods that require training deep neural
networks like reconstruction-based methods, representation-
based algorithms use a pre-trained CNN, and, thus, no deep
learning training is required which is often a complex proce-
dure. Hence, it is very fast and easy to train on small datasets
like MVTec AD. Conversely, take SPADE as an example,
it computes and stores in the memory before testing all the
embedding vectors of the normal training images. Those vec-
tors are the inputs of a KNN algorithmwhichmakes SPADE’s
inference speed very slow. While for reconstruction-based
methods, after training stage, their inference phase can be
quite fast. NF-based methods avoid the time-consuming
k-nearest-neighbor-search process, while it still needs to per-
form a more complex inference phase than reconstruction-
based methods. Memory complexity. Representation-based
algorithms like SPADE and Patchcore perform KNN cluster-
ing between each test feature of each image patch and the
gallery features of normal image patches, and they do not
need to introduce parameters other than backbone. But they
require large memory allocation for gallery features.

We make an efficiency analysis of some representative
methods from aspects of inference speed, additional inference
time and additional model parameters, ‘‘additional’’ refers to
not considering the backbone itself. The hardware configura-
tion of the machine used for testing is Intel(R) Xeon(R) CPU
E5-2680 V4@2.4GHZ and NVIDIA GeForce GTX 1080Ti.
The analysis results are shown in Table 4.

V. DATASETS
Datasets are the base for research work. A good dataset is
more conducive to the discovery and summary of problems,
so as to facilitate the solution. There are now some quality
inspection/anomaly detection datasets in the industry field.

A. BTAD
BeanTech Anomaly Detection dataset [95] (BTAD1) contains
a total of 2830 real-world images of 3 industrial products
showcasing body and surface defects. The training set con-
sists of only normal images, while the testing set has a
mixture of both normal and abnormal images. Product 0, 1,
and 2 of this dataset contain 400, 1000, and 399 training
images respectively. This dataset is often used for unsuper-
vised defect/anomaly detection. The AUROC (area under the
receiver operator curve) metrics of the SOTAmethods on this
dataset are summarized in Table 5, where the bold parts are
the best-performing results.

B. SOLAR PANEL DATASET: ELPV
The dataset ELPV2 [133], [134], [135] contains 2624 8-bit
grayscale image samples of 300 × 300 pixel functional and
defective solar cells, with varying degrees of degradation
extracted from 44 different solar modules. Defects in anno-
tated images are internal or external types of defects known

1http://avires.dimi.uniud.it/papers/btad/btad.zip
2https://github.com/zae-bayern/elpv-dataset
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TABLE 5. Anomaly localization results measured by pixel-wise AUROC on
BTAD dataset.

TABLE 6. Image-level anomaly detection AUROC results on the AITEX and
ELPV datasets.

to reduce the power efficiency of solar modules. With every
image annotated with a defect probability (a floating point
value between 0 and 1), this dataset can be used to solve
unsupervised tasks.

C. FABRIC DEFECT DATASET: AITEX
The collection AITEX3 [136] contains photos of seven dif-
ferent fabric textures with a resolution of 4096 × 256 pixels.
There are 140 defect-free images in the dataset, 20 images
for each type of fabric. In addition, there are 105 images of
12 different types of fabric defects commonly found in the
textile industry. It can be used to solve unsupervised tasks.
The AUROC metrics of the SOTA methods on ELPV dataset
andAITEXdataset are summarized in Table 6, where the bold
parts are the best-performing results.

D. MTD-SURFACE DEFECT SALIENCY
In magnetic brick surface defect dataset4 [143], a total of
1344 images are taken, the ROI (region of interest) of the tiles
is cropped and classified into six subsets according to defect
type, which are respectively porosity, crack, wear, fracture,
non-uniformity (caused by the grinding process) and free
(defect-free), each with a pixel-level label. To simulate the
manufacturing process on an actual assembly line, images
are captured under a variety of lighting conditions for each
given brick. It can be used to solve unsupervised tasks. The
experiment results of AUROC on this dataset are summarized
in Table 7, where the bold parts are the best-performing
results.

E. KolektorSDD
KolektorSDD [150] consists of 399 images of electrical
commutators, where 52 defected images are annotated for

3http://www.aitex.es/afid/
4https://github.com/abin24/Magnetic-tile-defect-datasets

TABLE 7. Experiment results of AUROC on MTD dataset.

TABLE 8. AUROC performance on KolektorSDD dataset.

TABLE 9. AUROC performance on DAGM dataset.

microscopic fractions or cracks on the surface of the plastic
embedding in electrical commutators. The dataset represents
a real-world problem of surface-defect detection for an indus-
trial semi-finished product where the number of defective
items available for the training is limited. Table 8 shows
AUROC performance on KolektorSDD dataset in terms of
several SOTA algorithms.

F. DAGM
DAGM5 [156] is a well-known benchmark dataset for sur-
face defect detection. It contains images of various surfaces
with artificially generated defects. Surfaces and defects are
split into 10 classes of various difficulties, such as scratches
or spots. It is a weakly supervised dataset, and there are
8,050 training and testing sets each, and the ratio of positive
and negative samples for each type is approximately 1:7. The
experiment results of AUROC on this dataset averaged over
ten categories are summarized in Table 9, where the bold part
is the best-performing result.

5https://conferences.mpi-inf.mpg.de/dagm/2007/prizes.html
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TABLE 10. Anomaly detection and localization performance on MVTec AD dataset with the format (image-level AUROC, pixel-level AUROC).

FIGURE 11. Example images of the MVTec AD dataset. For each category, the top row shows an anomaly-free image. The middle row shows an
anomalous example. In the bottom row, a close-up view that highlights the anomalous region is provided.

TABLE 11. Challenges in anomaly detection. Different datasets illustrate the challenges in the industry anomaly detection field.

G. MVTec AD
MVTec AD dataset6 [157] has a total of 15 categories, with
5 of them being distinct types of textures and the remaining
10 being different sorts of objects. In total, 3629 photos are
utilized for training and verification, while 1725 images are
used for testing in this dataset. The training set contains
solely non-defective images, whereas the test set contains
both non-defective and defective images of various types.
This dataset is often used for unsupervised defect/anomaly
detection. Example images of MVTec AD dataset are shown
in Fig. 11. Under the metrics of image-level AUROC and
pixel-level AUROC, the detailed comparison results of all
categories are shown in Table 10.

6http://www.mvtec.com/company/research/datasets

H. SUMMARY
There are many challenges in visual industrial anomaly
detection scenarios. Take the datasets we listed for example,
as shown in Table 11, there are problems such as small
amount of anomalous data, small size of defects, object
appearance variability, texture differences, etc.

VI. CHALLENGES AND DISCUSSION
A. LACK OF COMPREHENSIVE OPEN DATASETS
Currently, the existing open datasets merely cover a limited
number of scenarios, which is not comprehensive enough.
The actual industrial scenarios are rich and diverse, resulting
in a domain gap with the scenarios presented by the open
datasets. Although the AUROC of existing methods on open
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FIGURE 12. Examples of defects of different industrial materials.

datasets is high, it is not sufficiently instructive. In industrial
quality inspection scenarios, defects are complex and diverse,
and the current study is only the tip of the iceberg. In the
actual industrial scenario, there are also cases such as edible
oil impurities, wine impurities, bearing defects, engine lining
defects (3D internal), etc., as shown in Fig. 12. There are still
some problems that are not well solved by current methods.
Taking abnormal detection of edible oil in the actual industrial
scene as an example, we verify the anomaly detection of
image level with existing SOTA algorithm Patchcore and
AST as shown in Table. 12, but the experimental results are
not ideal and far from the results reported on MVTec bench-
mark. It further explains that the data in the actual industrial
scenario is more complex, and the benchmark data is too
simple and not rich enough. On the other hand, the lack of

TABLE 12. Experimental results of existing SOTA methods on edible oil
data.

types and quantities of testing samples can not fully verify the
proposed model is reliable, which hinders the generalization
ability of themodel. Therefore, it is necessary to launch richer
datasets with diverse scenarios and testing samples.

B. CONFLICT BETWEEN FAR AND MAR
In industrial applications there are intractably practical prob-
lems, FAR and MAR being a pair of contradictions. Corre-
spondingly, the algorithm should be optimized to achieve a
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FIGURE 13. Future model pipeline. Input image and text prompt, and the
model can output classification or defect segmentation.

reduction in both false alarm rate and missed alarm rate. Oth-
erwise missed alarms can lead to the production of inferior
products, which will cause commercial loss, whereas a high
rate of false alarms can lead to increased costs for manual
confirmation.

C. COMBINATION OF DATA DISTRIBUTION LEARNING
AND DATA AUGMENTATION
Normalizing flow (NF)-based methods transform a simple
distribution, such as a Gaussian distribution, into a more
complex distribution by applying a series of invertible trans-
formations. For unsupervised anomaly detection, NF is used
to learn the distribution of normal samples [100]. There are
other approaches [158] also based on the idea of learning data
distribution. Considering the idea of learning data distribution
in combination with data augmentation, NF can also be used
to learn the distribution of artificially augmented defective
samples. The joint learning of normal and artificial anomaly
samples is beneficial to improve the generalization ability of
the model.

D. FURTHER RESEARCH ON FOUNDATION MODEL
Represention-based methods apply a pre-trained model to
extract image features for anomaly detection, which demon-
strates the effectiveness of the pre-trained model. As data
volume and model scale evolve, foundation model [159],
[160] shows great potential as a member of pre-trained mod-
els. Foundation models are trained on massive amounts of
data, which enables them to capture a broad range of pat-
terns and relationships. By fine-tuning the model on specific
tasks, it can quickly adapt to new domains and produce high-
quality representation. The foundation model has striking
strengths in representing ability and adaptation efficiency,
and it has been started to be utilized in the field of computer
vision [161], [162]. While the relevant research in the field of
industrial anomaly detection still needs further exploration.

E. MULTIMODAL INDUSTRIAL ANOMALY DETECTION
Multimodal learning can facilitate deeper understanding by
providing multiple perspectives and facilitating connections
between different modalities. With the development of multi-
modal learning, models have shown great potential in dealing

with image and textmodalities, likeGPT-4 [163], CLIP [164],
stable diffusion [165], SAM [166], OFA [167] and Unified-
IO [168]. In future research on industrial anomaly detection,
it is expected to accept image and text prompt inputs and pro-
duce specified results, such as normal/abnormal classification
or defect segmentation, as shown in Fig. 13.

VII. CONCLUSION
Deep learning has inspired a surge of interest in the visual
industrial anomaly detection problem in recent years, result-
ing in a wide range of creative solutions. We present a com-
plete review of newly proposed methodologies for visual
industrial anomaly detection in the literature in this study.
We categorize the relevant approaches based on their fun-
damental principles and describe their assumptions, benefits,
and drawbacks, which may be of interest to practitioners as
well as academic researchers. We hope to assist academics in
better understanding the common principles of visual indus-
trial anomaly detection systems and identifying interesting
research directions in this area. The unsupervised anomaly
detection algorithm is still under continuous research and
development, and we will continue to track the progress in
the follow-up work.
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