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ABSTRACT Autonomous localization and operation of tunnel boring machines in perceptually degraded
roadways is essential for intelligent upgrading of tunneling. Tunneling robots are far less intelligent than
anticipated owing to the darkness, dust, vibration, and geometrically degraded roadways. We presented
a multi-engine state estimation method for mapping and localizing tunnel boring machines (TBM-MSE).
TBM-MSE designed a novel inertial enhancement model that maintains a global consistent posture in violent
vibrations. TBM-MSE constructed lever arm error compensation terms for the total station and inertial
component to improve the accuracy of position constraints. Meanwhile, the multi-engine framework of the
TBM-MSE adaptively adjusts the weight of the multiple sensors in dusty environments. TBM-MSE was
tested on dust-free and dusty roadways. The results demonstrate that TBM-MSE was more suitable for the
state estimation of tunnel boring machines than LINS and RRR-MF. TBM-MSE estimation accuracy meets
actual excavation requirements. In addition, the ablation experiments further confirm the effectiveness of
inertial enhancement in handling perceptually degraded environments.

INDEX TERMS Multi-engine estimation, inertial enhancement, multisensor, perceptually degraded road-
ways, tunnel boring machine.

I. INTRODUCTION
Compared with coal mining, tunneling mechanization devel-
opment in China is stagnant. Accurate state estimation of
a tunnel boring machine (TBM) is essential for achieving
intelligent tunneling. Mainstream posture estimation tech-
nologies for TBM include a laser pointer, machine vision,
ultra-wideband (UWB), and simultaneous localization and
mapping (SLAM). Researchers constructed an automatic
laser navigation system using a machine body, laser, target
prism, and earth coordinate system to calculate the yaw
of a TBM [1]. Some researchers established a six-degree-
of-freedom (6-DOF) detection model based on machine
vision and laser targets [2]. A UWB pose detection system
(UPDS) for TBM was designed, which realizes the remote
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posture measurement in a narrow and long enclosed road-
way space [3]. The above studies should fully consider sen-
sor posture perception accuracy. With the breakthrough of
SLAM in robot pose estimation [4], [5], [6], multi-legged
robots or unmanned aerial vehicles (UAVs) can deal with
the underground environment without GPS. However, SLAM
still faces many problems in TBM state estimation, such
as the vibration noise of the oil pump motor and crawler-
traveling devices during the inertial measurements; as well
as the effects of roadway dust on LiDAR odometry.

The sensor errors are amplified by dust, darkness, and
geometrically degraded rock walls. LiDAR odometry drifts
during violent LiDAR motion; Darkness renders the camera
ambiguous and tends to distort the global map; The con-
fidence level of the inertial odometry decreases over the
long-term work of the tunneling robot; Due to the excava-
tion direction limitations of tunneling robots, loop closure
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methods are unable to deliver local optimization information
for odometry. Therefore, improving the validity of sensor
information in abnormal environments is an urgent problem
to be solved [7]. Accurate sensor information is critical for
state estimation. The primary methods for improving the
performance of state estimation are two-sensor information
complementation and multi-sensor fusion systems.

Researchers have used the complementary nature of sen-
sors to improve LiDAR registration effectiveness. Motion
prediction of inertial components ensures accurate conver-
gence of LiDAR odometry [8], [9], even though the LiDAR
is in motion. Fast-LIO [10] proposed a back-propagation
process to compensate for the LiDAR distortion. Compen-
sated feature primitives have rotational invariances, such as
edges and surfaces [11]. Using curvature labels to extract
these features can increase the validity of point cloud regis-
tration [12]. Based on the complementarity of sensor infor-
mation, researchers have explored multisensor fusion models
to integrate two or even more types of perception infor-
mation. The fusion systems involving LIDAR and inertial
components can be divided into loosely coupled and tightly
coupledmethods. Loosely coupled systems ignore high-order
errors and linearization site selection during the independent
state estimation of each sensor, which reduces the estimation
accuracy. On the other hand, the feature fusion that fully con-
siders the inherent relationship between sensors is referred
to as tightly coupled [13], [14], [15]. The iterated extended
Kalman filter (IEKF) methods [16], [17], [18] are commonly
used for tightly coupled that correct linearization errors.
The tightly coupled INS integration has achieved significant
advancements in eliminating a tremendous amount of redun-
dant computation in the prediction process [19], correcting
sensitivity to measurement errors [20], and improving fusion
performance [21].

To reduce the risk of loosely coupled or tightly coupled
single-engine estimation, multi-sensor distribution fusion has
increasingly drawn attention from researchers. The main-
stream technical route of multi-sensor data fusion com-
bines local decentralized fusion and optimal global fusion to
improve the accuracy and reliability of integrated navigation
systems [22], [23]. Recently, LiDAR has gradually become
a primary sensor of posture perception. Multi-sensor data
fusion combined with Lidar odometry has also become a
popular research direction. Super Odometry [24] was the
first to propose an estimation framework that considers both
loosely coupled and tightly coupled methods. The iner-
tial navigation estimation of Super Odometry was loosely
coupled, while vision-inertial and LIDAR-inertial odometry
components were tightly coupled methods. RRR-MF [25]
adhered to the concept of multi-engine fusion. An error state
Kalman filter (ESKF) fused the inertial component and total
station data; the filtered result was treated as a factor and
added to the factor graph along with the LiDAR odometry
factor. The LiDAR-centric SLAM framework is a reliable
localization method for autonomous robots in GNSS-denied

environments [26]. However, dust roadway challenges the
accuracy of LiDAR measurements. Inertial navigation esti-
mation constitutes the primary means for removing LiDAR
distortions. Therefore, inertial estimation needs to be robust
and may even make a significant contribution to the
results.

However, inertial components are typically regarded as
auxiliary sensors with low-weight factors when information
complementarity or multi-sensor fusion systems are utilized
under complex conditions. Researchers have investigated the
effects of complexity and instability of external vibration
on inertial navigation estimation, enhanced the reliability
of inertial measurement, and improved the weight of the
fusion system. Currently, the primary methods of enhanc-
ing the effectiveness of inertial measurement include dis-
crete wavelet threshold filtering (DWTF) and empirical mode
decomposition (EMD). The researchers proposed theWavelet
Packet Transform-Chaos Particle Swarm Optimization-Back
Propagation Neural Network (WPT-CLSPSO-BP) method to
decompose the signal containing vibration noise and fully
reconstruct the valuable information [27]. To remove the
jitter and interference caused by the inertial measurement
unit (IMU) at the speed over group and course over group,
the researchers implemented the EMD noise reduction algo-
rithm for trajectory reconstruction [28]. DFA-EMD com-
bined detrended fluctuation analysis (DFA) and empirical
mode decomposition (EMD) to reduce fiber optic gyro-
scope (FOG) random noise and drift [29]. A neural network
(NN) prediction model and wavelet packet transform (WPT)
technology were simultaneously incorporated into the EMD
method to improve the denoising ability [30]. Although the
aforementioned techniques effectively reduced drift errors,
the vibration noise generated by oil pumpmotors and crawler-
traveling devices posed a challenge to these methods. There-
fore, this paper proposes a novel multi-engine estimation
method with an inertial enhancement model to improve pos-
ture perception accuracy and attain globally consistent state
estimation.

Motivated by the aforementioned discussion, this paper
presents the development and implementation of an inertial
enhancement-centric multi-engine estimation, which serves
as a critical enabler for TBM localization in perceptually
degraded environments. An overview of our framework is
shown in Figure. 1. The primary contributions of TBM-MSE
are as follows:

1. TBM-MSE creates an inertial enhancement model to
reduce vibration and non-exchangeable errors from the oil
pump motor and crawler-traveling devices.

2. TBM-MSE designs an INS/total station coupled filter
with lever arm error compensation terms to enhance the
independence and accuracy of the position constraint.

3. TBM-MSE proposes multi-engine estimation to ensure
the validity of LiDAR registrations and the global con-
sistency of the estimated state in perceptually degraded
roadways.
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FIGURE 1. An overview of the TBM-MSE.

For the purpose of enhancing the validity of state per-
ception, there is a coherent relationship between these three
contributions, forming a more robust and accurate TBM state
estimation system. The inertial enhancement model primarily
enhances the precision of attitude estimation (roll, pitch,
yaw), and the error compensation of the lever arm focuses on
the correction of position estimation (x, y, z). Together, they
form an INS/total station coupled filter to deliver an improved
6-DOF state estimation of the TBM. Environmental charac-
teristics markedly influence LiDAR, but LiDAR odometry
can rectify the outcomes produced by the INS/total station
coupled filter in favorable working conditions. Additionally,
the multi-engine estimation can maximize the advantage of
LiDARwithout cumulative error, further enhancing the entire
system’s accuracy and reliability.

The remaining paper is organized as follows: We present
the details of each key component in Section. II. The exper-
imental results are presented in Section. III. We design
the ablation experiment in Section. IV. The conclusions in
Section. V.

II. METHODOLOGY
A. INERTIAL ENHANCEMENT MODEL
TBM-MSE minimizes nonlinear and nonsmoothed vibration
noise produced by oil pump motors and crawler traveling
devices by an inertial enhancement that consists of inertial
measurement pre-processing and inertial navigation system
mechanization optimization.

Pre-processing techniques of the TBM-MSE include oil
pump noise compensation and internal parameters recalibra-
tion. The time-domain and frequency-domain analyses of
the TBM vibration characteristics reveal that static measure-
ments are destroyed by oil pump noise, such as the fluctua-
tions of X-axis specific force and X-axis angular velocity in
Figure. 2.

TBM-MSE adopts a novel empirical mode decomposition
to rapidly sift and reconstruct the intrinsic mode functions
(IMFs) [31]. TBM-MSE converts rawmeasurements x(t) into
IMF components and trend terms. Autonomously discrimi-
nates the boundary parameters M of IMFs by the Euclidean

distance. The
∧

x(t) indicates the initial reconstruction result.

x(t) =

n∑
i=1

IMFi + rn(t) =

n∑
i=1

Si(t) + rn(t) (1)

Ẑk (t) =

n∑
i=k

Si(t) + rn(t) (2)

M = argmin
1≤k≤n−1

[
1
N

N∑
i=1

[
∧

Zk+1(ti) − Ẑk (ti)]2] (3)

∧

x(t) =

n∑
i=M

Si(t) + rn(t) (4)

where N is the number of sampling points and ti is the
sampling moment. Based on the TBM vibration noise char-
acterization, TBM-MSE uses a soft threshold to optimize the
signal.

∧

Si(zij) =


Si(zij)

∣∣∣Si(r ij )∣∣∣ − Ti∣∣∣Si(r ij )∣∣∣ ,

∣∣∣Si(r ij )∣∣∣ > Ti

0,
∣∣∣Si(r ij )∣∣∣ ≤ Ti

(5)

Ti =

√
2
σ̂i 2Ln(N ) (6)

∧
σ
i

=
median(|Si(t)|)

0.6745
(7)

where zij = [zij, z
i
j+1] is the jth zero-crossings interval in

the ith IMF, r ij is the single extremum in zij = [zij, z
i
j+1].

The σ indicates the noise variance. After suppressing the
vibration noise of the oil pump, TBM-MSE re-calibrates the
Gaussian white noise b and random wandering noise w [32].
Assuming that the inertial system (i) coincides with the

carrier coordinate system (b), T bi = I ; T iTS represents the
relative transformation from total station prism (TS) to the
inertial component (i), T iTS = T bTS ; T

i
L indicates external

parameters of LiDAR and the inertial component (i), T iL =

T bL . This paper adopts the North-East-Down (NED) coordi-
nate system (n).

The inertial navigation system mechanizations optimiza-
tion contains two components: error compensation of crawler
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FIGURE 2. Fluctuation in INS mechanization after the oil pump working.

traveling devices and static attitude correction. The state dif-
ferential formula can be solved by the Peano-Baker approx-
imation, which ignores the nonexchangeable error of the
actual attitude change. Increasing the output frequency of
dead reckoning can effectively avoid the cone error impact.
After experimental testing and evaluation, the output fre-
quency was raised to 475Hz.

The equivalent rotation vector φk is created by the double
sampling of the angular velocity vector ωib (t) [33], 1θk
indicates the angular increment in [tk , tk+1]. Updating the
direction cosine matrixCn

b(k) in a discrete-time system, TBM-
MSE ignores the transformation of navigation coordinate
systems during the movement. φk× represents the skew-
symmetric matrix of φk .

φk =

∫ tk

tk−1

ωib (t) dt +
1
12

∫ tk−1

tk−2

ωib (t) dt

×

∫ tk

tk−1

ωib (t) dt

= 1θk +
1
12

1θk−1 × 1θk (8)

Cn
b(k) ≈ Cn

b(k−1)C
b(k−1)
b(k) (9)

Cb(k−1)
b(k) = I +

sinφk

φk
(φk×) +

1 − cosφk

φ2
k

(φk×)2 (10)

The influence of the paddle effect is reduced by double
sampling both angular velocity vector ωib (t) and specific
force vector f (t), 1vk indicates the velocity increment in
[tk , tk+1]. The position pnk update depends on the velocity v

n
k .

vnk ≈ vnk−1 + Cn(k−1)
b(k−1) (

∫ tk

tk−1

f (t) dt

+
1
2

∫ tk

tk−1

ωib (t) dt ×
∫ tk

tk−1

f (t) dt

+
1
12

(
∫ tk−1

tk−2

ωib (t) dt ×
∫ tk

tk−1

f (t) dt

+

∫ tk−1

tk−2

f (t) dt ×
∫ tk

tk−1

ωib (t) dt))

≈ vnk−1 + Cn(k−1)
b(k−1) {1vk+(

1
2
1θk ) × (1vk )

+
1
12

[(1θk−1) × (1vk ) + (1vk−1) × (1θk )]} (11)

pnk = pnk−1 +
vnk + vnk−1

2
(tk − tk−1) (12)

The motion characteristics of TBM increase the sensitivity
of gyroscope measurements. Attitude update methods that
rely on gyroscope measurements are unreliable. According to
the TBM kinematics and sensors error characteristics, TBM-
MSEmodifies attitude by static acceleration value. We estab-
lish the attitude accelerometer correction term 1q′

acc based
on the orientation filter [34]. In this paper, the parameters of
adaptive gain α in 1q′

acc are optimized to match the actual
accelerometer output of TBM. The α = L(em) adaptively
adjusts state estimation weights of the accelerometer and
gyroscope for different motion states of TBM.

α = L(em) = 0.991/(1 + e
2500em−370

40 ) (13)

em =

∣∣∥∥f + [0, 0, gp]T
∥∥ − gp

∣∣
gp

(14)

where ∥∥ denotes the norm of the acceleration vector, gp =

9.81m/s2.When f changes dramatically, α is close to zero and
1q′

acc approaches
[
1 0 0 0

]T ; otherwise, α is almost equal
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to 1, 1q′
acc corrects attitude q

b(k−1)
b(k) . The gain α = L(em) of

TBM-MSE increases the smoothness of the output.

Correctionqb(k−1)
b(k) = qb(k−1)

b(k) ◦ 1q′
acc (15)

B. INS/TOTAL STATION COUPLED FILTER
Due to the complexity of roadway environments, this paper
proposes a multi-engine coupling state estimator. TBM-MSE
is composed of loosely coupled filters and tightly coupled
filters. TBM-MSE considers the inertial error model and
simplifies the observations, and compensates for lever arm
errors between the prism and inertial component.

1) STATE DEFINITIONS
Based on operations ‘‘⊞’’ and ‘‘⊟’’ defined in [35], the
relationships between the actual stateXntrue and error state δXn

are as follows:

pn = pntrue + δpn

vn = vntrue + δvn

Cn
b = Cn

b,true ⊞ exp(φ)

w
b

ib = wbib,true + δw
b

ib

f b = f brue + δf b

δXn
=

[
(δpn)T (δvn)T φT (bg)T (ba)T

]T
, (16)

where pn, vn, and Cn
b are outputs of inertial enhancement

model; w
b

ib and f b are the actual measurements. The sensor
error model includes bias b and Gaussian white noise w:

δwbib = bg + wg, δf b = ba + wa (17)

where wg and wa are Gaussian white noise of the gyroscope
and accelerometer. To overcome the effect of the roadway on
the random bias error, accelerometer bias ba and gyroscope
bias bg are considered first-order Markov processes in the
time interval T :

•

bg =
1
T
bg + wgb,

•

ba =
1
T
ba + wab (18)

where wgb and wab denote the driven white noise of the
gyroscope and accelerometer, respectively.

2) ERROR STATE EQUATIONS
The differential formula of the error state δX is

δẊ = FkδX + GkW (19)

Fk =


0 I3×3 0 0 0
0 0 (Cn

b f
b
true)× 0 Cn

b
0 0 −(ωn

in×) −Cn
b 0

0 0 0 1
T I3×3 0

0 0 0 0 1
T I3×3

 ,

Gk =


0 0 0 0
0 Cn

b 0 0
−Cn

b 0 0 0
0 0 I3×3 0
0 0 0 I3×3

 ,

W =
[
wg wa wgb wab

]T (20)

where

ωn
in

=

[
ωe cosϕ +

vE
RN+h

−vN
RM + h

−ωe sinϕ −
vE tanϕ

RN + h

]T
,

ωn
in represents the projection of the angular velocity vector

under the navigation system, RM and RN are curvature radius
of the meridian and prime vertical, angular velocity of earth
rotation we = 7.2921 × 10−5rad/s.

3) PROPAGATION EQUATIONS
The discrete propagation model and the covariance matrix of
error state are as follows,Qw denotes system noise covariance
that is computed off-line during recalibration:δ

∨

Xk = (I + Fk1t)δ
∧

Xk−1
∨

Pk = (I + Fk1t)
∧

Pk−1(I + Fk1t)T + (Gk1t)Qw(Gk1t)T

(21)

4) TOTAL STATION MEASUREMENTS
Only independent position errors are considered observations
when the TBM-MSE enhances posture constraints in a GPS-
denied roadway.Meanwhile, TBM-MSE proposes a compen-
sation model for lever arm error of the prism and inertial
component, which reduces the Z-axis drift of the position
estimation. The z is position errors betweenmeasurement and
observation,

z ≈ δ
∨

pn +(Cn
b l
INS
TS ×)

∨

φ +nTS (22)

where δ
∨

pn and
∨

φ are estimation errors, lINSTS represents the
three-dimensional vector pointing from inertial component
to prism, lINSTS =

[
0.0918m -0.8221m -0.384m

]T , as shown
in Figure. 3; The measurement error of the total station nTS
is modeled as a white noise sequence, nTS ∈ N (0,QTS ).
Creating an observation matrix HTS for position errors from
total station data, HTS =

[
I3 03 (Cn

b l
INS
TS ×) 03 03 03 03

]
.

5) UPDATE

Kk =
∨

PkHT
TS,k (HTS,k

∨

PkHT
TS,k + QTS )−1 (23)

δ
∧

Xk = δ
∨

Xk + Kk (zk − HTS,kδ
∨

Xk ) (24)
∧

Pk = (I − KkHk )
∨

Pk (25)

The INS/total station coupled filter adjusts the weight of
redundant errors between predictions and observations byKk .
insXn

k indicates the output of inertial estimation and eXn
k is

the output of INS/total station coupled filter in the navigation
coordinate system:

eXn
k =

insXn
k ⊞ δ

∧

Xk (26)
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FIGURE 3. The relative position of the total station prism and inertial
component on the TBM.

C. ITERATED ERROR-STATE KALMAN FILTER
1) PROPAGATION EQUATIONS
The propagation equations of iterated Kalman filter are the
same as INS/total station coupled filter.

2) LIDAR MOTION DISTORTION COMPENSATION
TBM-MSE inputs eXn

k as an initial value into the iterated
error-state filter. The oil pumpmotor and the crawler traveling
devices cause TBM to shake violently, which exacerbates
the LiDAR nonuniform motion. TBM-MSE compensates for
movement distortion by eXn

k . The ti is adjacent to the times-
tamps τj and τj+1 in eXn

k . These corresponding postures T
n(k)
b,j

and T n(k)b,j+1(T = {C, p}) are used to estimate the pose T n(k)b,i at

ti [36].

T n(k)b,i =
ti − τj

τj+1 − τj
T n(k)b,j+1 +

τj+1 − ti
τj+1 − τj

T n(k)b,j (27)

The T n(k)b,end is the end posture of the kth LiDAR scan. Cal-
culating T endi is the essence of eliminating motion distortion.
Then the point kpi is projected into the NED, represented by
kpni .

T n(k)b,i = T n(k)b,end (T
end
i ) (28)

kpni = (T n(k)b,end )(T
end
i )T bL (

kpi) (29)

TBM-MSE extract line and surface features by magnitude
relationship between the eigenvalues. Assume xj(j = 1, 2·····

·, n) are the nearest point clouds to pi, S represents covariance
matrix,

S3×3 ≈ YY T (30)

where Y =
[
y1 . . . . . . yn

]
, yj = xj − pi. The λ indicates the

eigenvalue of S. The u is the corresponding eigenvector of S.
If λ1 ≥ λ2 ≥ λ3,

|λ1−λ2|
|λ2−λ3|

≤ γ , pi belongs to Fplane, λ3 and u3

FIGURE 4. Hardware. The modified drilling arm was attached to the right
side of the TBM. All sensors were mounted in the middle of the TBM. The
LiDAR was located above the inertial component.

are retained; when |λ1−λ2|
|λ2−λ3|

≥ 0, pi belongs to Fedge, λ1 and
u1 are retained. The Fedge and Fplane are used to construct
the local map mappi. According to the experimental results,
γ = 0.37, 0 = 2.1.

3) LiDAR MEASUREMENTS
TBM-MSE fuses LiDAR observation with the error state
(δ

∨

Xk ,
∨

Pk ). To obtain dense mapping results and efficient
dynamic data updates, TBM-MSE maintains a map by ikd-
Tree [17]. The kpni can search for corresponding feature prim-
itives in the local map mappi. TBM-MSE takes eigenvectors
to construct distance residuals:

z(Xn
k , 0)


∣∣mapui,1 × ((mappi) − (kpni ))

∣∣∣∣mapui,1∣∣ kpni ∈ Fedge∣∣∣mapui,3 · ((mappi) − (kpni ))
∣∣∣ kpni ∈ Fplane

(31)

The actual point cloud gt,kpni contains LiDAR measure-
ment noise nL . The corresponding residuals are represented
as z(Xn

k , nL). The following expression is obtained by approx-
imating residual z(Xn

k , nL) with first-order approximation at
rXn

op,k .

gt,kpni =
kpni − nL (32)

z(Xn
k , nL) ≈ z(rXn

op,k , 0) +
rMk · (Xn

k ⊟ rXn
op,k ) + uL (33)

rMk =
∂z(Xn

k , nL)
∂Xn

k

∣∣∣(rXnop,k ),0 (34)

rδXk = Xn
k ⊟ rXn

op,k (35)

where r denotes the number of iterations, uL ∈ N (0,QL)
comes from LiDAR measurement noise nL . rXn

op,k is the
optimal state in iteration, its initial state is eXn

k .
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FIGURE 5. Time domain variation curve of specific force after inertial enhancement. In the three motion
states of the TBM, the fluctuation of the specific force is significantly reduced and the bias is also corrected.

4) RESIDUAL COMPUTATION
Based on the initial state of the INS/total station coupled filter
and observation residuals, TBM-MSE treats the error state
update as an optimization problem. The following formula is
constructed via Mahalanobis distance:

min
δx

(
∥∥rδXk

∥∥2
(rPk )−1 +

∥∥∥z(rXn
op,k , 0) +Mk

rδXk

∥∥∥2
(QL )−1

)

(36)

5) ITERATED UPDATE
Formula (36) can be solved by the following formulas,

rDk =
∂z(rXn

op,k , nL)

∂kpni
·

∂kpni
∂δXk

(37)

rJk =
∂z(rXn

op,k , nL)

∂kpni
·
∂kpni
∂nL

(38)

rKk =
rPk rDTk (

rDk rPk rDTk +
rJkQLrJTk )

−1 (39)
r+1δXk =

rδXk ⊞ iKk (rDk (rδXk ) − z(rXn
op,k , 0)) (40)

r+1Pk = (I −
rKk rDk )rPk (I −

rKk rDk ) +
rKkQLrKT

k

(41)

where the initial state of rPk is
∨

Pk . If formula (36) converges,
the error state rδXk and the optimal estimation state r+1Xn

op,k
stop updating.

r+1Xn
op,k =

rXn
op,k ⊞ r+1δXk (42)

III. EXPERIMENT RESULTS
A. SYSTEM HARDWARE
The system hardware included a LiDAR (Velodyne), an iner-
tial component (FOSN II), and a total station (TS60),
as shown in Figure. 4. TBM-MSE was deployed on a tunnel
boring machine (EBZ160M-2).

FIGURE 6. The working environment of the tunnel boring machine.
TBM-MSE was deployed on a modified TBM and tested in a simulated
roadway, 25m × 5m × 4 m.

TABLE 1. Effect of vibration on initial attitude.

TABLE 2. Initial attitude after inertial enhancement.

B. THE RESULT OF INERTIAL ENHANCEMENT
Static initialization results and dynamic measurement stabil-
ity demonstrated the necessity of inertial enhancement. The
vibration noise of the oil pump interferes with the accuracy
of the static initialization, as shown in Table 1, the yaw error
was about 0.4◦. After inertial enhancement, the error of the
yaw initialization result was reduced by 81.57 %, as shown
in Table 2.
TBM-MSE recalibrates internal parameters. The results

were, as shown in the equation at the bottom of the next
page.

55984 VOLUME 11, 2023



Y. Liu et al.: TBM-MSE: A Multi-Engine State Estimation Based on Inertial Enhancement

FIGURE 7. The position estimation results of TBM-MSE, LINS, and RRR-MF in a dust-free roadway.

With inertial enhancement, inertial measurements can
resist external vibrations during the three motion states:
continuous straight forward, turning, and intermittent back-
ward. Taking specific force as an example, Figure. 5 dis-
played the change after inertial enhancement. Combining
the static initialization results and dynamic inertial measure-
ments, the inertial enhancement model improves the robust-
ness of inertial estimation.

C. STATE ESTIMATION IN DUSTFREE ROADWAYS
Based on our previous work [25], TBM-MSE only uses
independent position errors to solve the Z-axis drift problem.
The TBM is set to move forward 4.70 m and then return
to the starting position, as shown in Figure. 6. TBM-MSE
was compared with LINS [16] and RRR-MF [25] in terms of
trajectory estimation, as shown in Figure. 7.
By analyzing the trajectory curves of the three meth-

ods, we can accurately evaluate the posture initialization
and real-time position estimation accuracy. The actual ini-
tial position in the carrier coordinate system was (0m, 0m,
1.5m). The trajectories of the TBM-MSE and RRR-MF
differed by a few millimeters. LINS was the most signif-
icant Z-axis drift, with an error range of ±0.10 m. The
Z-axis position estimation errors of the TBM-MSE and
RRR-MF were nearly identical, which were 3/20 of LINS.
At the same time, the average error in the Y-axis for LINS
exceeded 0.25 m. In the dust-free roadway, the localization
capabilities of TBM-MSE and RRR-MF were equivalent.
RRR-MF is an optimization-based algorithm that relies on
the accuracy of LiDAR odometry to ensure consistent global
estimation.

FIGURE 8. The dust removal system. To simulate the real working
environment of TBM, the simulated roadway is filled with dust, and the
concentration of dust exceeds 200mg/m3.

D. STATE ESTIMATION IN DUST ROADWAYS
The dust weakens the accuracy of LiDAR odometry. We pro-
posed a multi-engine coupling framework to lessen reliance
on LiDAR odometry. We established a dust removal system,
as shown in Figure. 8. TBM-MSE was compared with LINS
and RRR-MF in terms of mapping, position estimation, and
attitude estimation in dusty, as shown in Figure. 9, Figure 10,
and Figure 11.
The significant estimation drift of RRR-MF led tomapping

failure in the dust. The RRR-MF has no comparative value
because of the significant estimation errors. The mapping
results of TBM-MSE outperform LINS in terms of map
accuracy and density. There were significant mistakes in
LINS mapping, which marked objects at the same height
in reality with different colors, as shown in Fig. 9(c). The
LINS mapping only had 19 sub-maps and TBM-MSE’s map
consists of 940 submaps.

[
bg ba wg wa

]
≈

 9.2319 × 10−5 1.4079 × 10−2 3.8473 × 10−7 1.0486 × 10−4

4.1794 × 10−6 6.1506 × 10−1 5.4798 × 10−8 5.8065 × 10−3

3.8778 × 10−5 7.3013 × 10−3 1.2390 × 10−7 3.8272 × 10−5


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FIGURE 9. The mapping results of RRR-MF, LINS, and TBM-MSE.

FIGURE 10. Position estimation of TBM-MSE and LINS. LINS drifts more
than 2m in the three axes.

The average drift of the LINS Z-axis trajectory increased
to 3.263m, indicating that the dust further amplified the state
estimation error. However, there was no apparent drift in the
TBM-MSE mapping or the position estimation. Compared
with the TBM-MSE, the attitude angle of LINS fluctuated
more than 50◦, as shown in Figure. 11. The bottom of the dust
roadway was generally flat, so the roll and pitch estimated by
LINS are unrealistic.

FIGURE 11. Attitude angle estimation of TBM-MSE and LINS in the dust.

FIGURE 12. APE between TBM-MSE and LINS.

FIGURE 13. RPE between TBM-MSE and LINS.

This paper quantifies the difference in localization between
TBM-MSE and LINS in dust by absolute pose error (APE)
and relative pose error (RPE), using the result of TBM-MSE
as a reference, as shown in Figure. 12 and Figure. 13. The
error indicators for LINS were illustrated in Table 3 and
Table 4.
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TABLE 3. APE indicators of TBM-MSE and LINS.

TABLE 4. RPE indicators of TBM-MSE and LINS.

FIGURE 14. The mapping of TBM-MSE∗. TBM-MSE∗ produced ghosting in
the mapping after a left turn.

Dust caused huge posture estimation errors in RRR-MF,
while LINS was also impacted by dust, and its estimation
results demonstrated more severe drift than the dust-free
roadway. In conclusion, TBM-MSE is the most effective
framework for real-time TBM state estimation in perceptually
degraded roadways.

IV. ABLATION EXPERIMENT
The essence of the TBM-MSE is to make the inertial
estimation more robust under challenging environments.
TBM-MSE without an inertial enhancement model was
distinguished by ∗ to investigate the effect of inertial
measurement pre-processing and inertial navigation system
mechanization optimization in initialization, mapping, and
localization. The results are shown in Figure. 14 and15.
The position estimation error of the TBM-MSE∗ led

to ghosting in mapping, as shown in Figure. 14(a) and
Figure. 15(a). TBM-MSE∗ had huge initialization errors.
At the beginning of state estimation, there were significant
fluctuations in the Z-axis position, roll, and pitch. TBM-
MSE∗ was affected by the TBM vibration, so the pitch and

FIGURE 15. The posture estimation of TBM-MSE∗ and TBM-MSE.

roll amplitude changes were more dramatic. In summary, the
localization of TBM benefits from the inertial enhancement
model.

V. CONCLUSION
This paper introduces the TBM-MSE, a novel multi-engine
estimation method that focuses on inertial enhancement for
autonomous localization in coal mine roadways, specifically
designed for applications on TBM. A robust inertial enhance-
ment model has been developed and validated, improving
the accuracy of posture perception. Ablation experiments
have demonstrated that this model can suppress vibration
noise caused by the oil pump motor and crawler traveling
devices, reduce attitude initialization errors, and enhance the
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ability to constrain the Z-axis during dynamic estimation.
The multi-sensor distribution fusion incorporates total station
lever arm error compensation and adaptive adjustments to
LiDAR odometry weights. Compared to the single-engine
method, LINS and RRR-MF, TBM-MSE excels in state esti-
mation across different coal mine scenarios. After ablation
and comparative experiments, the multi-engine estimation
framework of TBM-MSE is validated as the optimal choice
for TBM localization. TBM-MSE is capable of achieving
globally consistent state estimation, even when operating in
dusty and vibration-prone environments.
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