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ABSTRACT This paper introduces a multiscopic cyber-physical-social system (CPSS) to bridge the gap
between independent rehabilitation in physical and cognitive aspects. Specifically, we focus on hand—object
interaction (HOI) recognition with visual attention for the block-design test (BDT). The proposed framework
utilizes three levels which consist of microscopic, mesoscopic, and macroscopic models. In the microscopic
model, a hand-tracking vision captures hand-skeletal data and finger joint angle features, enabling the
estimation of physical hand postures. In the mesoscopic model, an egocentric vision with an eye tracker
records to hand and eye movements, allowing for the symbolic representation of hand-eye coordination
through hand gestures and visual attention focus during the test. An evaluation vision system employs color
feature classification in the macroscopic model to determine whether the design matches the given task.
Through the first eight designs of WAIS-IV BDT with two scenarios, the system successfully measures
human behavior from the physical to the cognitive domain. The experiment involving eight healthy par-
ticipants investigates the relationship between physical measurement and cognitive evaluation. Regression
and correlation analyses between the dominant and non-dominant hands reveal that evaluation indices
(task completion time, skewness-kurtosis of hand posture, attention to pattern and blocks) can indicate
improvement during BDT. The outcomes of this study have significant implications for clinicians and
researchers, providing valuable information that is typically unavailable in clinical settings. The proposed
multiscopic CPSS framework holds promise for advancing independent rehabilitation practices. Code and
datasets are available online at https://github.com/anom-tmu/bdt-multiscopic.

INDEX TERMS Kohs blocks design, self-rehabilitation, visual attention, hand-eye coordination.

I. INTRODUCTION

Physical and cognitive rehabilitation is crucial in recovering
patients with neurological conditions like stroke. However,
this rehabilitation process faces challenges, especially for
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hand stroke survivors who often experience eyesight impair-
ments. These impairments, such as visual field loss and
double vision, significantly affect hand movements, leading
to difficulties in daily activities like reaching and grasping
objects [1]. With the convenience and safety concerns brought
about by the COVID-19 pandemic, patients have increas-
ingly opted for home-based rehabilitation. However, limited
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TABLE 1. The research and development of technology for block design test (2018-2022).

No. Research Application (Sensor Types) Methods (Contributions)
1. Cha et al. (2018) [15] Overhead video camera. Automate classification using machine learning.
5 Rogers et al. (2019) Elements virtual rehabilitation. Access the efficacy qf Vlrtu'al rehabilitation approach using
[30] Elements for upper-limb skills.

Averbukh et. al. . .
3. (2019) [29] Virtual reality.

Analyze the influence of the present experience in virtual
reality on the key of intelligent tasks and the fundamentals of
visualization system user activity.

4, Cha et al. (2020) [28]

Overhead video camera and wearable eye

Combine scene with gaze cameras using supervised learning

tracker. algorithms to measure critical behaviors automatically.
5 Wikstrom et al. Virtual realit Create a collaborative block design task intended to evaluate
) (2020) [31] ¥ and quantify pair performance.
6. Dunn et al. (2021) [27]  Wearable eye tracker. Detect gaze location and frequency of consulting the pattern.
Shigenaga and Virtual reality, eye tracker, and hand Measure the eye and hand actions during the test ina VR
7.
Nagamune (2022) [32]  tracker. space.
8. Our proposed method Hand tracker, wearable eye tracker, and HOI with visual attention using a multiscopic approach to

over-table camera.

support physical-cognitive rehabilitation.

therapist availability, long distances, and privacy concerns
have hindered in-person visits [2], highlighting the need for
remote rehabilitation solutions. While telemedicine enables
therapists to monitor patients remotely, the existing sensor
technology and measurement systems do not adequately sup-
port remote rehabilitation.

Previous studies have explored cyber-physical systems
(CPS) [3] to track hand therapy progress individually. Most
studies have relied on contact methods where patients wear
specialized devices to collect accurate data using flex,
accelerometers, and hall-effect sensors [4]. However, these
contact-based approaches have drawbacks, including high
equipment costs and limitations in their usability. Noncon-
tact techniques using computer vision systems for detect-
ing human action recognition [5] have been investigated as
an alternative. Nevertheless, these methods often overlook
important social aspects such as privacy concerns, clinical
justification, and user experience, which are critical for user
acceptance. To overcome these limitations, egocentric vision,
such as smart glasses, has emerged as a potential solution.
Egocentric vision offers advantages such as privacy pro-
tection, mobility monitoring, and attention tracking during
activities [6]. In post-stroke therapy, the egocentric vision has
shown promise in hand-object interaction (HOI) recognition,
outperforming full-body human interaction detection [7].
By analyzing images captured by cameras on the body, ego-
centric vision simplifies HOI recognition by focusing on
hands and objects.

However, extending HOI recognition to 2D images poses
challenges, particularly in accurately detecting hand-object
contact. The lack of depth data in 2D images makes
determining the precise location of hands and objects dif-
ficult. Although approaches like interaction point learn-
ing [8] have been proposed to address this issue, they
are often limited to recognizing specific types of objects
and may encounter difficulties detecting multiple objects.
Moreover, these approaches do not consider individuals
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with visual impairments who face challenges performing
hand movements and utilizing their recognition abilities
effectively.

To overcome these challenges, we propose using cyber-
physical-social systems (CPSS) [9] that seamlessly integrate
physical and social spaces while harnessing data in the cyber
domain. In rehabilitation, egocentric vision based on CPSS
can potentially simultaneously monitor physical and cogni-
tive aspects. This vision system utilizes hand skeleton estima-
tion [10] and kinematic finger models [11] to assess an indi-
vidual’s physical condition. Additionally, an eye-tracking-
equipped camera captures data on visual attention [12], [13],
providing insights into cognitive abilities. Therefore, atten-
tion to hand movements and vision plays a significant role in
understanding how individuals handle objects effectively.

This research focuses on the cube object used in the
block design test (BDT) [14], a widely used neuropsy-
chological assessment for evaluating visuospatial abilities.
Traditionally, a neuropsychologist observes a person’s accu-
racy, completion time, and overall problem-solving strategy
and errors during the BDT [15]. However, subjective and
qualitative assessments from a single perspective may be
unreliable, calling for measurements from multiple perspec-
tives. Table 1 highlights recent technological advancements
related to the BDT. Therefore, we propose a new frame-
work integrating multiple Al-based vision systems to provide
additional information for neuropsychologists conducting
BDT assessments. The framework incorporates HOI recog-
nition with visual attention based on a multiscopic CPSS
approach.

The study significantly contributes by applying vision sys-
tems from three perspectives to analyze hand behavior in
three binding domains. (1) In the microscopic model, the
feature extraction process utilizes hand-tracking vision to
collect data on hand skeleton and finger joint angles, allowing
for the estimation of physical hand postures. (2) In the meso-
scopic model, symbolic interpretation is constructed using
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FIGURE 1. Multiscopic CPSS framework based on HOI recognition with visual attention for independent BDT.

egocentric vision with eye tracking. This model enables the
analysis of hand-eye coordination by measuring the distance
between the fingertips and the visual center of attention dur-
ing block interaction. (3) The macroscopic model incorpo-
rates cognitive ability assessment through evaluation vision,
which classifies color features in each block and determines
the compatibility of the design with the given task. An eight-
design scenario was conducted to validate the comprehen-
sive approach, successfully measuring human behavior in
reaching and grasping blocks from multiple perspectives.
Figure 1 shows a multiscopic CPSS framework based on HOI
recognition with visual attention for independent BDT.

The article is structured as follows: Section II discusses
related works in monitoring the BDT for physical and cog-
nitive assessments. Section III presents the proposed method
for enhancing the current measurement approach through a
multiscopic framework. Section IV discusses the findings
obtained from the study and justifies the effectiveness of the
proposed framework. Finally, Section V offers concluding
remarks and outlines potential future directions for further
research.

Il. RELATED WORKS

Recent advancements in rehabilitation research have shown
a growing interest in leveraging multiple vision systems to
analyze hand movements. Researchers have explored various
applications, including fingertip detection during therapy ball
usage [16], monitoring hand movements in patients with
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spinal cord injuries [17], [18], and stroke patients [1], [19].
Computational challenges have also been addressed, such
as the high cost of additional equipment and pixel-level
observation [20] and issues like occlusion, inference, and
contact [21]. Egocentric approaches using wearable cam-
eras like GoPro and datasets such as Deeplab-VGG16, Ego-
Hand, EPIC-ADL, and multi-datasets have been widely
employed [22]. However, existing studies primarily focus
on the physical evaluation of hand movements, with limited
integration of cognitive abilities [23], [24]. On the other
hand, hand-eye coordination research that predicts the next
active object [25] rarely combines with physical assessments.
To address this gap, we propose an innovative approach that
combines the measurement of physical hand movements with
the assessment of cognitive function using the BDT.

The BDT is a widely used neuropsychological assessment
tool that evaluates visuospatial reasoning skills [26]. It is
commonly included in standardized intelligence tests and is
particularly valuable for describing cognition in individuals
with neurological or developmental disorders. During the
BDT, participants are tasked with recreating a pattern using
red and white blocks. The accuracy of their reproduction
and the time taken to complete the task is typically used
to score their performance. However, additional measure-
ment features derived from a person’s BDT performance can
provide valuable insights into their cognitive abilities [27].
Initially, the scoring system focused on tracking the number
of block movements, but this approach proved challenging.

VOLUME 11, 2023
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FIGURE 2. The experimental setup of multiscopic CPSS framework for independent BDT.

As a result, researchers began parameterizing BDT mistakes
by analyzing the sequence of block movements, incorrect
block placements, and the nature or severity of qualitative
errors. Consequently, there is a need for the development
of measurement technologies that can aid neuroscientists in
analyzing BDT performance from various perspectives.

Cha et al. introduced a novel framework that combines
vision systems and artificial intelligence (A.l.) approaches to
enhance the knowledge obtained by neuropsychologists from
the BDT and similar tabletop evaluations [15]. They demon-
strated how machine learning techniques could automatically
categorize and provide a detailed description of the person’s
activities and the status of the block task throughout each test.
In 2020, the measurement method was further refined to cap-
ture more specific behavioral measurements [28]. Integrating
scene and gaze cameras with supervised learning algorithms
successfully quantified important behaviors during the block
design exam, a widely used assessment of visuospatial cog-
nitive abilities.

Averbukh et al. addressed the challenges of utilizing virtual
reality in scientific visualization [29]. They experimented
with evaluating how different phenomena presented in vir-
tual reality environments affect the completion of intellectual
tasks and explored user behavior in visualization systems.
Rogers et al. validated these findings by developing Ele-
ments virtual rehabilitation, which incorporates goal-directed
and exploratory upper-limb movement exercises to pro-
mote motor and cognitive recovery after stroke [30].
The study demonstrated significant training effects, the
durability of improvements during follow-up, and the poten-
tial applicability to everyday activities, providing promis-
ing evidence for the effectiveness of virtual rehabilitation
methods.
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In a study by Wikstrom et al., a collaborative block design
assignment was developed to assess and quantify perfor-
mance in pairs [31]. The findings revealed that pair perfor-
mance was normally distributed and strongly correlated with
visuospatial abilities while not significantly associated with
other participant-specific background variables. Dunn et al.
provide a comprehensive overview of various independent
and dependent variables explored in published BDT studies
across multiple fields of cognitive science [27]. They also
suggest areas of interest for future BDT research, especially
with the availability of improved recording methods such as
wearable eye trackers.

Recent research has raised concerns about using virtual
reality (V.R.) in BDT. Shigenaga and Nagamune evaluated the
effectiveness of BDT by recreating the test in a V.R. environ-
ment and analyzing participants’ hand-eye movements during
the test [32]. By administering the conventional BDT and
V.R. to three healthy adult males, they concluded that the
current V.R. implementation restricts gripping actions and
suggests a more realistic system. However, physical simu-
lation is considered one of the closest approaches to repli-
cating natural human systems compared to V.R. applications.
Promoting independent hand rehabilitation that encompasses
both physical and cognitive aspects is crucial. This promo-
tion is supported by studies demonstrating a relationship
between the fine motor performance of the hand and cognitive
abilities [23], [33].

Previous research conducted in our laboratory has focused
on developing a musculoskeletal-based human physical sim-
ulation. We successfully implemented human skeleton track-
ing using multiple cameras to minimize occlusion [5].
The captured skeleton angles were then utilized to gener-
ate the musculoskeletal model, providing a comprehensive

58191



IEEE Access

A. R. A. Besari et al.: Multiscopic CPSS for Independent Block-Design Test

Able to rake Able to grasp Able to pinch
rake palmar radial palmar radial digital inferior pincher pincher
2 3 4

4-6 months 6-8 months

3-4 months

9-10 months

8-9 months

FIGURE 3. The development of human handling ability from the rake, grasp, and pinch.

understanding of human anatomy. Additionally, we con-
ducted a study investigating a person’s intentions and capa-
bilities while reaching and grasping objects [7]. This research
emphasized the significance of supporting existing systems
from an egocentric perspective.

As in our previous work on the chopsticks manipula-
tion test (CMT), we conducted a multiscopic approach to
examine the importance of combining finger joint angle
estimation and visual attention measurement in hand reha-
bilitation [34]. This study further supported the use of mul-
tiscopic methods to address dynamic locomotion in legged
robots [35], cognitive memory systems for continuous ges-
ture learning [36], and the application of CPSS for activ-
ity daily living (ADL) [37]. Building upon these insights,
we propose a multiscopic approach to develop a CPSS for
HOI recognition based on visual attention specifically for
the BDT.

Ill. MULTISCOPIC CPSS

This study introduces a novel CPSS framework for advancing
BDT research, utilizing a multiscopic approach. To address
various technical challenges, we propose a three-level system
that encompasses the following components:

1) In the microscopic model, we employ a hand-tracking
optical sensor to collect hand skeleton data and finger
joint angle features, enabling us to estimate the physical
hand posture accurately

2) Inthe mesoscopic model, we leverage egocentric vision
with an eye tracker to analyze hand-eye coordination.
Specifically, we measure the distance between the fin-
gertips and the visual center of attention during inter-
actions with the block.

3) In the macroscopic model, we utilize over-table vision
to evaluate cognitive ability. By classifying the color
features in each block, we can determine whether the
design aligns with the given task.

The experimental setup of the multiscopic CPSS framework
for independent BDT is depicted in Figure 2, showcasing the
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integration of these three models to facilitate comprehensive
assessment.

A. MICROSCOPIC MODEL: FEATURE EXTRACTION

The BDT relates to the International Classification of Func-
tioning, Disability, and Health (ICF) in hand activities such as
reach, grasp, handling, and manipulation. The BDT requires
participants to rearrange blocks with specific color patterns
related to ADLs, such as self-feeding [38]. Thus, the BDT
results can affect drinking and eating activities. Our previous
work has categorized basic motion primitives like reaching,
grasping, and handling [7]. In this study, we plan to further
categorize the motion primitives of object handling based on
human development.

The development of a grasp is a significant milestone in
infants’ growth, typically occurring between six months and
one year. Initially, babies use a raking approach that leads
to palmar placement, allowing them to manipulate objects,
explore them by bringing them to their mouths, and switch
hands to grasp additional items. Around 7-8 months, the
object is rotated radially, resulting in a radial palmar and
radial digital grasp. The scissor grasp resembles the radial
digital grasp. When the block can be grasped with the dis-
tal finger and thumb, the thumb presses the object into the
side of the index finger, forming an inferior pincer grasp.
Subsequently, around ten months later, the index finger and
thumb joined to form a pincer grasp. Figure 3 illustrates
the development of human handling abilities, including rake,
grasp, and pinch.

We focus on feature extraction in the microscopic model
for the experimental setup of grasp action. Feature extrac-
tion is crucial for data acquisition and attribute retrieval.
We utilize the Ultraleap Stereo Infra-Red 170 (SIR170) [39],
the next Leap Motion optical hand tracking sensor version,
to capture hand position data in 3D coordinates. SIR170
employs cameras and infrared pattern projection to generate
a three-dimensional image of the user’s hand. It offers a
larger field of view, extended tracking range, lower power
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FIGURE 4. Physical finger representation: a) relationship between the joints using a directed graph; b) message-passing mechanism.

consumption, and a compact form factor. The sensor is
installed on the table’s top at a 15° angle facing downwards
for optimal results to extract the features.

This study proposes 3D hand posture estimation using a
kinematic finger model to represent the physical hand in BDT
and obtain the physical embodiment [40]. A finger consists
of three joints: A (metacarpal and proximal), B (proximal
and intermediate phalanges), and C (distal phalanges and
intermediate phalanges). As the thumb lacks metacarpals,
we simplify the physical hand representation using kinematic
finger models. The framework incorporates joint rotation
configuration to validate finger motion specific to each indi-
vidual accurately [11].

We have derived a formula to calculate the finger’s joint
angle based on the human hand’s physical relationship [34].
To simplify the physical hand representation, we introduce a
feature that replaces the joint’s position with the angle formed
between the joints of two adjacent bones. We standardize
the position data of the joints to remove any outliers. Next,
we employ a vector-to-joint-angle conversion technique to
obtain the finger feature, performing this conversion for
three positions. We comprehensively represent the physi-
cal hand by transforming the three-dimensional coordinate
points into angles. The equation below illustrates how we
calculate the angle between two vectors in three-dimensional
coordinates.

B=B-A )

BC=C-B )

AR BC = &R B¢ cose o
AB - BC

6 = arccos H}H HB_C) “4)
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To calculate the angle between vectors m and B—é,
we need the coordinates of three points, namely A, B, and C.
By applying the right-hand rule and employing dot prod-
ucts, we can determine the angle formed by the sequence

—> —>
A — B — C. Additionally, the lengths of AB and BC,

—> —> . )
denoted as ”ABH and HBC H respectively, play a crucial role

in this calculation. E)sing these values, we can calculate
the dot product for AB - BC. By rearranging the equation,
we can solve for 0, representing the angle between the two
vectors. These joint angle values serve as features in the data
graph representation. We depict the physical finger represen-
tation, including the relationship between the joints, using a
directed graph and a message-passing mechanism, as shown
in Figure 4.

We then employ GNN to classify six different postures for
cube handling. GNN is a neural network architecture widely
used for learning representations of graph data and has gained
popularity in prediction tasks involving nodes, graphs, and
links. The underlying concept of GNN is to learn appropriate
representations of graph data for neural networks. It is essen-
tial to delve into computer science’s fundamental mathemat-
ical principles of graph-structured data [41]. In GNN, all the
graph data is used as input, including node features and the
connections stored in the adjacency matrix. A graph G can be
a part of a set of attributed graphs G defined by the following
equation:

G=(V,E,X), GedG. ®)
Let V. = {v,...,v,} represent a set of nodes and E =
{ea,b, ces e j} represent a set of ordered pairs that indicate

connections between two nodes in V. Each node is associated
with a set of node attributes, X = {x,} , where v € V.
In the context of GNN, a new representation called embed-
dings is generated for each node, capturing the structural and

58193



IEEE Access

A. R. A. Besari et al.: Multiscopic CPSS for Independent Block-Design Test

Grasp Pose Dataset Feature Extraction

Hand 3D Positions
0: rake

Finger_2
Finger_1

1: palmar

2: radial
palmar 7
604020 0
3: radial
digital

Graph Representation

4: inferior
pincher

PRAEN

5: pincher

GNN for Graphs Classification

—
Xu, — — —
’ —> Yo
—» — —»
—>
; .
— o~ ™ G>J. > N1
P
R S
>
@ -
5 ] = g >
> = < c %) -~
5 o <) ] > ArGmax> Y
— B + =} c
= 3 = Em— s
- o
2N B ROl
N N N N
o o IS} S > Vi
- firg
—> —> —>
P — s
— ]
5 —> —> —>
xvn
i —
k=20 k=1 k=2 k=3

FIGURE 5. Microscopic model design using a three-layer GNN for hand posture classification.

feature information from other nodes in the graph. These
node embeddings play a crucial role in making predictions.
To obtain these embeddings, we perform multiple rounds
of message passing. This process consists of three steps: ini-
tialization, aggregation, and update. During the initialization
step, each node v at layer k = 0 undergoes the first round of
message passing, which can be represented by the following
equation:

K, vev.

(6)

= Xy,

Let h(C];()v represent the node embeddings for a vertex v at the
k-th layef, where the node features x,, come from all nodes v €
V in graph G. In the next step, we apply the neural message
passing scheme to perform aggregation on each node v using
the following equations:

k) _ p(k)

k—1
md, =t (h5."). 1=k=k. )
1
k=1 . , . ..
= E Wi ih , , 1 <i,j<|V].
INO)| ijnG.u i#j i,j<1V|

ueN (v)

®

Using the neighborhood N (v) of node v in graph G, we iter-
. (k—1

atively aggregate and store the node features Ay, of all

nodes u € N(v) in m((l;)v using the aggregation function

fg];g. Here, N (v) CV denotes the neighborhood of v € V.
The aggregation function is shared by all nodes within an
iteration. Depending on the specific requirements, the sum
operation can be replaced by average, degree-normalized
sum, or coordinate-wise min or max.

In the final step of the neural message passing scheme,
we update the node features hg‘;l) of allnodes v € V in graph

G iteratively using the aggregaﬁon results obtained from their
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neighbors N (v). This update process is performed using the
following equations:

) _ &) (p(k=1)
=Jfup (hG’v ,m
k)

Y
G,v

()

(k
e Gov )

k—1) (10)

—0c (Wi,,-hG’v +m ) . 0<i<|VI
The update function f[(;;) typically involves a weighted com-
bination with learnable weight matrices. These update func-
tions are implemented as fully connected layers, which con-
sist of alternating linear transformations and coordinate-wise
nonlinear activations o, such as ReLU, tanh, or sigmoid. This
allows for the incorporation of nonlinearity and the integra-
tion of information from neighboring nodes in the graph.
The final representation of a node, hgi, is obtained at the
last layer, which can be concatenated with a linear classifier
for specific tasks. In cases where a graph-level prediction
is desired, all node embeddings can be aggregated into a
single graph embedding, H, g(), using the function freaq. One
commonly used method is to compute the average of the
node embeddings. This method is achieved by summing up
the node features of all nodes, hg?, in the K-th layer and
dividing the sum by the total number of nodes, as shown in

the following equation:

He = fiea (15 - (an
1
(K)
Hg = T Dy h). (12)

Finally, to determine the class that corresponds to the input
graph with the highest probability, we apply a linear trans-
formation using a fully connected layer with Wy as the
weight projection. The arg max function is then used to select
the class with the maximum probability, as shown in the
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following equation:

yi = HgWproj. (13)
§ = arg max . (14)
i

We utilize the Pytorch Geometric (PyG) [42] as the devel-
opment framework for our GNN. We perform mini-batching
on the small graph classification datasets to ensure efficient
GPU utilization before inputting them into the GNN. PyG
automatically handles the batching process by combining
multiple graphs into one large graph. Figure 5 illustrates
the design of our GNN with three layers for hand posture
classification in the microscopic model.

We collected 1000 data samples for each hand posture
in various orientations for our experiments, resulting in
6000 graphs. We divided these graphs into 4800 for training
and 1200 for testing. Each data graph consists of 16 nodes
connected by 15 edges. The input layer of the graph com-
prises 15 nodes representing joint angles and one node rep-
resenting the wrist, which serves as the center of the finger
connection. The output layer consists of 6 nodes representing
different grasping postures. We train a final classifier on the
graph embeddings obtained from the GNN.

Before applying the final classifier, we apply the Rectifier
Linear Unit (ReLU) activation function to generate localized
node embeddings. The GNN consists of three layers, and the
training cycle involves constructing an optimizer, feeding the
model inputs, computing the loss, and optimizing the model
using autograd. We employ a linear transformation layer and
the arg max function to classify the input and determine the
grasping posture with the highest probability. The training
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and testing outcomes will be discussed in detail in this study’s
results and discussion section.

B. MESOSCOPIC MODEL: SYMBOLIC INTERPRETATION
Symbolic interpretation involves acquiring and analyzing
information in the mesoscopic model, considering the inter-
dependency of various tasks. In our previous research [43],
we established the concept of task dependency, which refers
to the relationship between a task and the sequence of rules
that need to be executed. In the BDT activities context, this
task dependency arises when hands and fingers interact with
multiple blocks, picking up, rotating, and placing them back
in their original positions. To assess this ability, we devised
a set of task-dependent rules by combining hand features
extracted from the microscopic model with visual attentional
features.

To capture the visual information and get the perceptual
representation, we employed egocentric vision using Tobii
Pro Glasses 3 smart glasses [44]. The participant wearing
these smart glasses faced the table and the blocks directly.
These glasses have a high resolution of 1920 x 1080 pixels
and a frame rate of 25 frames per second. With a wide field of
view of 106° (95° horizontal and 63° vertical), the camera in
the glasses effectively captures the hands and objects within
its range. Accurate visual attention detection occurs when the
hand and the block are within the camera’s field of view.

We utilize the YOLOV5 model [45] to extract object loca-
tions from the image frame, which perception is represented
by bounding boxes and labels. To enhance this detection
process, we employ the Simple Online Real-time Tracking
(SORT) technique [46]. This framework is highly effec-
tive in representation learning and has proven valuable for
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FIGURE 7. Visualization of BDT in the mesoscopic model in one task: (a) looking at the task; (b) reaching the block; (c) moving the block; (d) looking at
the pattern; (e) looking at the block; (f) complete the task.

object recognition and tracking applications. Additionally,
we employ MediaPipe hand tracking [47] to obtain approx-
imate hand posture data. This method is designed for com-
plex perceptual channels and enables fast real-time inference.
By incorporating hand posture prediction as supporting data,
we validate the recognition of HOL

The combination of object detection and hand estima-
tion provides two crucial pieces of information. Firstly,
we can identify objects within a given image by search-
ing for their presence. Secondly, we can accurately deter-
mine the hand’s location and associated features in the two-
dimensional image. The experimental design encompasses
the system setup and implementation of an egocentric view
for HOI recognition with visual attention. Figure 6 illustrates
the mesoscopic model design for multivariate time-series
classification, highlighting the approach of object-centered
coordinates with visual attention in HOI recognition, which
is compared with the traditional method.

We outline the critical steps in developing symbolic
interpretation in the mesoscopic model, focusing on trans-
forming object-centered coordinates and validating HOI
recognition through the reach-to-grasp cycle specific to
the task. We perform a coordinate transformation cen-
tered around the object to simplify the validation process
and obtain a reduced dataset. This transformation aims to
relocate the initial image coordinates (0,0) to the object’s
center.
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For each new frame, we determine the new center and
identify the position of the new coordinates. This approach
applies to any pixel coordinate (x,,, y,) in the image plane.
By considering the joint finger position in the new coordinate
plane and the object’s length (ay) and width (bg), we can
define the inner and outer borders of the object using the addi-
tional bounding box location information. With the help of the
Pythagorean equation, we estimate the distance d,, between a
point (a,, b,) and the center of the object coordinates (0,0).
This distance d,, represents the distance between the fingertip
or finger joint information, we utilize the properties a,, by,
and d,,. These properties enable us to confirm the interaction
between the hand and the object and validate the recognition
of HOL

The validation of HOI recognition is specifically focused
on the reference grasp defined in the approved hand usage
section of the ICF for hand rehabilitation, particularly con-
cerning the reach-to-grasp cycle [48]. This validation proce-
dure consists of four distinct tasks, each defined separately.
The first is the wonder task, where the user moves their hand
freely without reaching for the object. This initial state serves
as a baseline. The second task is the reaching task, where
the subject extends their arm and opens their hand towards the
object, simulating the reaching motion. Following that is the
grasping task, where the participant grasps the object in any
position, representing the perception when gripping. The task
then transitions into the transport state when the user begins to
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move the object they are holding. Finally, the fourth task is the
release task, completed when the user withdraws their open
palm away from the object, simulating the release action.

In the initial stage of our study, we focus on a single block
as a reference object, which exhibits various hand postures.
To capture the relevant features, we measure five elements:
the distance of each fingertip to the center of the object
d,,d1, d2, d3, dy), four elements representing the distance
of each fingertip to the thumb fingertip (e, €2, €3, es4), and
one visual attention feature (fp). We collect ten frames per
sample using our computer specifications, which serve as
our benchmark for estimating the length of a data stream.
We analyze ten data points in real-time within each picture
capture series. This data is utilized as input for our neural
networks in the learning system.

We employ a recurrent neural network (RNN) architec-
ture, specifically a multi-layer gated recurrent unit (MGRU),
to classify multivariate time series [49]. This design allows
for flexibility in adjusting variables such as the number of
layers, input size, hidden size, and recurrent layers. The
MGRU-based RNN computes each element in every layer
using the following functions:

re = o (Wirxe + biy + Wirha—1) + ba,r), (15)
2 = 0 (Wixt + bi s + Wy hg—1) + b z), (16)
ny = op(WinXe + bin + re x (Wy ,hi—1 + bnn)),  (17)
he = (1 —z¢) % ng + 2z % ey (18)

In the above equations, ¢ represents time. The hidden states
are denoted by /;, the inputs by x;, and the hidden states of the
previous layers at time ¢ — 1 by s, or the initial hidden states
at time ¢ = 0. Additionally, r;, z;, and n; represent the reset,
update, and new gates, respectively. The sigmoid function
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is denoted by o, and the % symbol represents element-wise
multiplication. In the MGRU, the input x,(l) of the / -th layer
(I>= 2) is obtained by multiplying the hidden states hglil) of
the previous layers by the dropout, (St(l_l), where each (St(l_l)
is a Bernoulli random variable with a dropout probability.
Figure 7 provides a visualization of the mesoscopic model
of BDT in one task.

Once we have constructed the MGRU-based RNN archi-
tecture, the next step is to create a dataset for evaluating
the recognition of HOI for each action. We recorded video
sequences of 1-2 seconds in duration, capturing at least
50 frames per sample. Our dataset consists of 100 videos
depicting hands interacting with various objects. The videos
were divided as follows: 25 for the wonder task, 25 for the
reaching task, 25 for the task involving grasp and transport,
and 25 for the release task. We randomly split the data into
training and validation sets using an 80:20 ratio to ensure
a reliable evaluation. We made this division considering
the subjective nature of the obtained data. In this experi-
ment, we involved a responder who performed the actions.
The training set comprised 80 videos, while the remaining
20 videos were used for testing. The results and discussion
section presents the outcomes of the training and testing
process.

C. MACROSCOPIC MODEL: KNOWLEDGE DISCOVERY

Knowledge discovery is the process of finding functional
patterns in large datasets using techniques like data min-
ing. It combines statistics and computer science to extract
knowledge. This section focuses on the macroscopic model
and evaluates cognitive skills as knowledge using the BDT.
The BDT assesses an individual’s ability to perform tasks
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FIGURE 9. Visualization of BDT in the macroscopic model for eight tasks from easy to complex.

based on given designs. Specifically, we utilized a camera
positioned on the table to capture a top-down view of the
block. We then executed several steps, including detecting
the top surface of the block, recognizing the design, matching
the design key with the task key, and calculating the time
needed to complete each task. Figure 8 illustrates the knowl-
edge discovery in the macroscopic model, which involves
block detection and design recognition.

To identify the top surface of the blocks, we utilize the
YOLOVS5 model, which extracts locations through bound-
ing boxes and labels from the image frame. We classify
the color features of each block into two classes: full-side
and diagonal-side. However, simultaneously distinguishing
all six features can be challenging since object detection may
struggle with similar features and color variations caused by
varying lighting intensities. To address this issue, we simplify
block detection into two classes and train the model using
multiple datasets. For the full-side class, we consider two
block colors: red (1) and white (2). As for the diagonal-
side class, we consider four combinations of red and white
colors (3, 4, 5, and 6). This approach allows us to simul-
taneously overcome the difficulties of distinguishing all six
features.

After the system successfully detects a block in the full-
side category, we calculate its middle part’s average color
composition at coordinates (50%, 50%). If the color is closer
tored (R), we assign it a value 1. Conversely, if it is closer to
white (W), we assign a value 2. The approach differs when
the system detects a block in the diagonal-side category. For
diagonal-side blocks, we divide the block into four zones:
zone A, located at the top coordinate (25%, 50%); zone B,
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located at the right coordinate (50%, 75%); zone C, located
at the bottom coordinate (50%, 75%); and zone D, located at
the left coordinate (25%, 50%).

We calculate the average color composition for each zone
and store it in an ordered list based on its proximity to red
or white. The order list determines the assigned value. For
example, if the order list contains (R, R, W, W), the block is
given a value of 3. Similarly, if the order list is (W, R, R, W),
the block is assigned a value 4. Other combinations include
(W, W, R, R) for a value of 5 and (R, W, W, R) for a value
of 6. This process is applied to all block detection systems.
By implementing this methodology, we can accurately deter-
mine the color composition and categorize each block based
on its color characteristics.

Once four blocks are successfully detected, the next step
is design recognition, where we aim to identify the design
formed by these blocks and match it with the given task
design. At this stage, we already have four values that repre-
sent the arrangement of the blocks. However, before we pro-
ceed with the matching process, we need to validate the posi-
tion of each block to one another. To accomplish this, we cal-
culate the distance between the centers of the four blocks,
denoted by coordinates (x;, y,), and the coordinate (0, 0).
This distance is represented as d,,, where n = 1, 2, 3, 4 cor-
responds to the randomly assigned block detection numbers.
The distance d,, can be computed using the Pythagorean the-
orem, which involves taking the square root of the sum of the
squares of the x, and y, coordinates. After obtaining the four
distances, we store them in a list [d, d3, d3, d4] and sort the
values in descending order. The resulting order, represented
by the list index, determines the arrangement of the four block
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values in the essential design list. By organizing the block
values in this manner, we establish a consistent cognitive
representation that allows us to compare the formed design
with the task design effectively.

In the final stage of the process, we compare the design
key obtained through design recognition with the task key
associated with each specific task. If the design key matches
the task key, it indicates that the participant has completed the
design for that particular task. Upon successful completion,
the participant can proceed to the next task in the sequence.
Additionally, we measure the time required to complete each
task. The timing begins when the task starts and continues
until the subsequent task is completed. It is important to note
that time is not counted when the task is already detected or
has been detected multiple times. Instead, the timing starts
when the task begins and is undetected. This task ensures
that the time measurement accurately reflects the duration of
the participant’s active engagement in completing the task.
Figure 9 provides a visual representation of the macroscopic
model of the BDT, illustrating the eight tasks arranged in
order of increasing complexity, ranging from easy to chal-
lenging.

IV. RESULT AND DISCUSSION

The experiment conducted in this study involved participants
engaging in tabletop activities using the Wechsler Adult Intel-
ligence Scale-IV (WAIS-IV) BDT [26]. Our framework was
designed to assess both physical hand function and cogni-
tive function simultaneously. Before testing the system for
rehabilitation, we obtained ethical approval from the Eth-
ical, Legal, and Social Issues (ELSI) committee at Tokyo
Metropolitan University (TMU), Japan. The initial testing
was conducted on healthy student participants in selected
laboratories. Eight healthy students participated in the study,
aged 20 to 40 years. Before their involvement, all partici-
pants provided informed consent for the study. The following
outlines the standard operating procedure that was followed
during the BDT experiments:

1) Experimental Ethics: The researcher informs the partic-
ipants about the data collection process, including the
recording and processing egocentric vision, upper table
video, and eye-tracking data. It is emphasized that this
will be done under the data transparency policy [50].

2) BDT Trial: Once participants have consented, they
are given one minute to familiarize themselves with
the WAIS-IV BDT No.1 guidelines with eight designs
commonly used to assess cognitive function in elderly
individuals.

3) Preparation and Setup: The preparation and setup
process involves several steps: (i) positioning the
blocks in the designated ““all-white’ construction area,
(i1) having participants wear the eye trackers, with the
option of requesting additional lenses if needed, and
(iii) wirelessly connecting the computer system to the
eye tracker and calibrating it using a calibration card.
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4) Experiment: With participants ready for the investiga-
tion, they are tasked with completing two scenarios:
one using their dominant hand and the other using
their non-dominant hand. In each scenario, participants
arrange four blocks according to a given pattern. This
results in a total of eight patterns/designs created. The
system records a video of the participants as they com-
plete each design.

5) Closing: After the session, participants remove the
eye tracker and return it to its original location
while the researchers reset the blocks to their initial
“all-white” design, preparing the equipment for the
next participant.

It is important to note that throughout the experiment, the
privacy and confidentiality of the participant’s personal infor-
mation and data were strictly maintained under ethical guide-
lines and regulations. The results obtained at the microscopic,
mesoscopic, and macroscopic models are then described,
followed by a discussion of critical points that must be
emphasized in developing the multiscopic system for future
improvements.

A. MICROSCOPIC MODEL EVALUATION

Initially, we focused on developing the microscopic model
of our system, which involved designing a feature extraction
method using hand-tracker vision to analyze hand and finger
postures. To estimate these features, we utilized the kinemat-
ics of the finger [34] and hand model [51]. However, not all
feature extractions yielded accurate results due to the varying
angles at which fingers are positioned relative to the camera.
To address this challenge, we devised a solution combining
the hand estimation results from hand-tracker vision and a
dual Kinect camera [5]. We achieved more reliable outcomes
by incorporating the data obtained from the skeleton Kinect.
This approach created a cohesive hand skeleton model as a
directed graph structure. The graph data encompassed the
connections between the joint angles of the hand and fingers,
providing a comprehensive physical representation of the
hand.

The GNN learning process focused on classifying six hand
postures within a directed graph structure. Initially, the acqui-
sition system gathered input data from the hand-tracker vision
and stored it in the database. This dataset was then utilized
to train the GNN model using 1000 epochs. The training
phase demonstrated that the GNN model, when applied to
supervised classification, yielded promising results worthy of
discussion. The testing phase was conducted to validate the
performance of the classification system. The testing dataset
was integrated into the GNN model, and the accuracy of the
model’s predictions was compared to that of traditional mod-
els, specifically the multi-layer perceptron (MLP). The GNN
model achieved an impressive testing accuracy of 97.5% for
the six hand postures. In contrast, the MLP network achieved
a testing accuracy of 82.0%. This comparison highlights the
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FIGURE 10. Result of eight participants during BDT in the mesoscopic model for completing all tasks: a) Non-dominant hand, b) Dominant hand, c)
Sample data of one participant with non-dominant hand in time series, d) Sample data of one participant with dominant hand in time series.

superior performance of the GNN model in accurately recog-
nizing hand postures.

Furthermore, the results indicate that the dataset of hand
postures used in the experiment contains crucial character-
istics for adequate classification. Specifically, the MLP net-
work struggled to distinguish between similar hand postures,
such as radial digital grasp and inferior pincher. However,
adding a three-layer GNN to the MLP significantly improved
the accuracy, as demonstrated by the higher testing accuracy
achieved by the GNN model.

After establishing the accuracy of the feature extraction
system, we proceeded to classify the hand postures in the
BDT activity. This classification was tested on eight healthy
participants. Figure 10 displays the results of the eight par-
ticipants in the microscopic model as they completed the
eight tasks in the BDT. The figure illustrates the varia-
tions in hand postures between different individuals. In the
dominant-hand scenario, hand postures 2 (palmar radial),
3 (digital radial), and 4 (inferior pincher) were observed to
be more frequently used compared to postures 1 (palmar)
and 5 (pincher). However, in the non-dominant hand scenario,
hand postures varied across the eight healthy participants.
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The comparison of hand postures in the dominant hand
showed a more diverse distribution compared to the
non-dominant hand scenario.

In our statistical analysis, we introduce two main param-
eters to assess the non-normality of the hand posture dis-
tribution: skewness of hand posture (SHP) and kurtosis of
hand posture (KHP). [52]. SHP quantifies the asymmetry of
the distribution of the five hand postures, including grasping
and pinching. An SHP value of zero indicates a symmet-
ric distribution around the mean, characteristic of a normal
distribution. Positive SHP indicates a longer right tail in
the distribution, while negative SHP indicates a longer left
tail.

On the other hand, KHP measures the peakedness of the
hand posture distribution. A KHP value of 3 corresponds to
a distribution that is neither flat nor highly peaked, indicative
of a normal distribution. Higher KHP values indicate a more
peaked distribution, while lower KHP values indicate a flatter
distribution. Further analysis, such as regression and correla-
tion, will be conducted in the statistical analysis sub-chapter
to delve into these parameters and explore their relationships
in more detail.
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FIGURE 11. Result of eight participants during BDT in the mesoscopic model for completing all tasks: a) Attention to Pattern Value (APV), b) Attention
to Block Value (APV) c) Sample data of one participant with non-dominant hand in time series, d) Sample data of one participant with dominant

hand in time series.

B. MESOSCOPIC MODEL EVALUATION

We have also focused on the mesoscopic model, which
involves investigating the symbolic interpretation using ego-
centric vision. We aim to understand the progress in behav-
ioral performance and the visual strategies employed in
acquiring grasp skills [34], [53]. To achieve this, we con-
ducted a task-specific reach-to-grasp cycle experiment and
built upon the egocentric vision capabilities discovered in
our previous research [51]. However, during the system’s
deployment, we encountered significant technical challenges
with the feature extraction process. Firstly, we observed that
MediaPipe’s hand position evaluation and YOLOvV5 object
identification showed lower accuracy when dealing with spe-
cific hand postures and occlusions. To address this issue,
we developed a multi-vision system [5] that combines dif-
ferent visual techniques to enhance accuracy.

The second issue was the lack of depth information in
the collected data, represented in 2D pixel units. Since the
egocentric approach requires three-dimensional understand-
ing, we believe using an RGB-D camera can provide more
consistent and detailed depth perception results [54]. Further
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research on incorporating sensory depth data could improve
the effectiveness and applicability of this low-cost applica-
tion. By addressing these technical challenges and exploring
additional depth sensory research, we aim to enhance the
capabilities and performance of the egocentric vision system
in the mesoscopic model.

We evaluated the testing results of the symbolic inter-
pretation in the task-specific reach-to-grasp action. For this
purpose, we trained two recurrent neural networks (RNN)
models: MGRU and long short-term memory (LSTM) [7].
The goal was to assess the system’s accuracy in recogniz-
ing the actions performed. The evaluation revealed that the
MGRU model achieved the best recognition results, with an
average accuracy of 97.0%, while the LSTM model achieved
an accuracy of 94.0%. Additionally, the MGRU model
exhibited a shorter training time than LSTM, with MGRU
taking approximately 13.03 seconds and LSTM taking
20.48 seconds.

To further explore the symbolic interpretation, we utilized
an MGRU-based RNN to address a multivariate time-series
classification problem. The MGRU model outperformed the
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vanilla-RNN and LSTM models in terms of accuracy. Pre-
vious studies have demonstrated that the MGRU model can
integrate information rapidly and improve time-series iden-
tification performance compared to the basic model [55].
Despite using a limited number of features for training,
we achieved satisfactory accuracy in our experiments. These
results highlight the effectiveness of the MGRU-based RNN
model in capturing the dynamics of the task-specific reach-
to-grasp action and its potential for advancing symbolic inter-
pretation capabilities.

After confirming the reasonable accuracy of the symbolic
interpretation, our focus shifted to classifying the reach-to-
grasp behavior and eye movements in the BDT activity.
We collected data from eight healthy participants, explicitly

58202

capturing the timing of reaching, grasping, moving, manipu-
lating, and releasing the blocks. This data provided insights
into the participants’ gaze patterns and block interaction dur-
ing the design process. Figure 11 illustrates the results of the
eight participants during the BDT activity in the mesoscopic
model while completing all the tasks. The figure highlights
the variations in symbolic interpretation among individuals.
Each participant exhibited different durations of focus on the
patterns and blocks during block manipulation.

To quantify human attention during the BDT activity,
we propose two main parameters for statistical analysis:
attention to pattern value (APV) and attention to block value
(ABV), building upon previous research [28], [56]. APV rep-
resents the frequency of a person’s gaze on the pattern during
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the test. It can be calculated by dividing the accumulated
frames where the total number of frames detected the pattern.
Similarly, ABV indicates the gaze frequency on the blocks
during the test. ABV is obtained by dividing the frames where
the total number of frames detected blocks. These two values,
APV and ABY, will be further analyzed for regression and
correlation relationships in the subsequent statistical analysis
subsection.

C. MACROSCOPIC MODEL EVALUATION

In addition to the microscopic and mesoscopic models,
we developed a macroscopic model to evaluate cognitive
ability using upper table vision. Our objective was to assess
cognitive skills in the BDT activity, where participants per-
form tasks based on the eight patterns provided. To enable
comprehensive knowledge discovery, we extended the capa-
bilities of YOLOvS. We incorporated functionalities such as
full-side and diagonal-side classifications, detecting red or
white colors, and block orientations on the diagonal side.
This enhancement allowed us to simultaneously recognize
and analyze six color features across multiple blocks.

However, we conducted the recognition process in stages
due to limitations in the current object detection system.
This process was necessary because the system faced chal-
lenges in accurately determining the similarity of features
and color differences, primarily influenced by variations in
lighting intensity [57]. By addressing these technical issues,
we aimed to provide a more robust cognitive assessment of
the macroscopic model of our framework.

After conducting several real-time experiments, we imple-
mented the BDT upper-side classification method. Once we
confirmed our evaluation system’s accuracy, we measured the
participants’ activity during the BDT activity. We captured
the duration for each pattern to be completed by the eight
healthy participants. Additionally, we recorded the informa-
tion regarding the return of all the blocks to the block bank
(B), which can be further analyzed using the Block and Box
Test [58]. Figure 12 illustrates the results obtained from the
eight participants during the macroscopic model of the BDT
activity, encompassing the completion of all tasks.

The result highlights the variations in cognitive skills
among the participants. Notably, all participants could com-
plete the eight BDT patterns within a relatively short time
frame. Participants who predominantly used their dominant
hand exhibited slightly better performance than those using
their non-dominant hand, with a noticeable difference in com-
pletion time [59]. Conversely, participants who excelled with
their non-dominant hand exhibited slightly lower completion
times than those using their dominant hand. These findings
shed light on the interplay between cognitive skills and hand
dominance during the BDT activity.

The macroscopic results obtained from this study offer
valuable preliminary insights for cognitive therapists,
enabling them to conduct further analysis. Mainly, these
results serve as a foundation for understanding hand postures
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in individuals undergoing rehabilitation. Gathering personal
datasets, especially from rehabilitation patients, is crucial
to recognize and assessing various hand postures accu-
rately [60]. By employing the proposed technology, therapists
can gain valuable insights into a person’s behavior during the
grasping process, which can inform the design and imple-
mentation of tailored rehabilitation systems.

Considering individual constraints and specific issues
when developing rehabilitation systems is essential. Each per-
son may have unique needs and limitations, and the rehabil-
itation system should be customized to address these factors
effectively. Incorporating personalization and individualized
approaches can optimize the rehabilitation process to pro-
mote better patient outcomes.

D. STATISTICAL ANALYSIS

We have successfully evaluated the multiscopic CPSS [37]
as a novel framework for BDT applications, demonstrat-
ing high accuracy across the microscopic, mesoscopic, and
macroscopic models. However, it is essential to note that
the system’s accuracy may vary when applied to different
datasets or under varying conditions. This variability could
be attributed to factors such as variations in hand size, non-
standardized handling techniques, or environmental changes.

We recruited eight healthy participants to conduct a com-
prehensive system analysis and collected data from them.
The participants were trained to grasp the block using vari-
ous hand postures and correctly position their fingers using
dominant and non-dominant hands. These trial sessions were
designed to facilitate error-free learning for participants unfa-
miliar with the BDT. By ensuring participants underwent
practice sessions, we aimed to establish a linear relationship
with time-related variables. This assumption was made to
ensure that all participants completed their initial tasks, as any
failures would render their data invalid. Table 2 compares
parameters for eight healthy participants in two scenarios.

Next, we conducted a correlation analysis to assess the
strength of the relationships between each evaluation index.
The Pearson correlation coefficient (R) was employed to
analyze the relationships. Figure 13 displays the R-values for
the four relationships, depicting the regression and correla-
tion analysis results between BDT tasks performed using the
non-dominant hand and those performed using the dominant
hand. The findings align with our prediction, as the Task
Completion Time (TCT) values for the dominant hand are
predominantly more minor than those for the non-dominant
hand. Moreover, both scenarios exhibit similar correlations
and display a linear relationship. Table 3 shows the squared
Pearson correlation coefficient (R?) for eight healthy partici-
pants in two scenarios.

Figure 13(a) indicates no correlation between SHP and
the increase in TCT. Similarly, Figure 13(b) demonstrates
that KHP does not correlate significantly with the increase in
TCT. These initial results suggest no substantial differences
in hand posture among healthy participants that would impact
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TABLE 2. The comparison of parameters for eight healthy participants in two scenarios.

Parameters
Scenario Subject Skewness of Hand Kurtosis of Hand Altention to Pattern Attention to Blocks Tasks Completion
Posture (SHP) Posture (KHP) Value (APV) Value (ABV) Time (TCT) in second

P1 -0.442 -0.769 0.246 0.261 158.44

P2 -0.070 -0.680 0.221 0.323 185.75

) P3 -0.755 -0.367 0.223 0.481 121.25

L o P4 -0.691 -0.068 0.357 0319 12151
Hand P5 -0.001 -0.866 0.274 0.364 118.38
P6 -0.408 -0.198 0.153 0.429 141.70
P7 0.063 -1.166 0.098 0.393 126.44

P8 -0.452 -0.224 0.088 0.403 168.82
Average -0.345 -0.542 0.207 0.372 142.79

Pl -0.031 -0.784 0.209 0.286 125.89

P2 -0.070 -0.650 0.302 0.396 153.86

P3 -0.383 -0.649 0.175 0.436 122.32

B: Dominant P4 -0.304 -1.058 0.317 0.308 97.18
Hand P5 -0.121 -0.699 0.130 0.406 99.22
P6 -0.401 -0.594 0.203 0.328 116.97

P7 -0.237 -1.112 0.107 0.416 127.17
P8 -0.117 -0.870 0.124 0.572 172.90
Average -0.208 -0.802 0.196 0.393 126.94

P1 -0.411 +0.015 +0.037 -0.024 +32.55
P2 -0.001 -0.030 -0.081 -0.073 +31.89

P3 -0.372 +0.282 +0.047 +0.045 -1.07

Difference P4 -0.387 +0.990 +0.040 +0.011 +24.33
of scenario P5 0.119 -0.167 +0.145 -0.042 +19.16
Aand B. P6 -0.007 +0.396 -0.050 +0.101 +24.73
P7 0.300 -0.054 -0.009 -0.023 -0.73

P8 -0.335 +0.647 -0.035 -0.169 -4.08

Average -0.137 +0.260 +0.012 -0.022 15.84

TABLE 3. The squared pearson correlation coefficient (R2) for eight healthy participants in two scenarios.

Scenario R (SHP, ATP)

Pearson Correlation Coefficient (R?)
R? (KHP, TCT)

R? (APV, TCT) R?(ABV, TCT)

0.0248
0.1782

A: Non-Dominant Hand
B: Dominant Hand

0.0015
0.0066

0.1568
0.4554

0.1042
0.0248

their scores on the BDT. Therefore, gathering data from
individuals with hand function impairments is necessary to
investigate this aspect further. However, we observed that
the distribution of SHP and KHP on the non-dominant hand
exhibits more variability than the dominant hand, as indi-
cated by the dashed red box in Figures 13(a) and 13(b).
Assuming that the non-dominant hand represents a dominant
hand with reduced function, we can conclude that SHP and
KHP values may be an initial step in distinguishing a nor-
mally functioning dominant hand from one with decreased
functionality.

Figure 13(c) illustrates a negative correlation between
APV and the increase in TCT. This finding suggests that
individuals focusing more on patterns tend to complete the
design in less time, resulting in higher BDT scores. On the
other hand, Figure 13(d) demonstrates a positive correlation
between ABV and the increase in TCT. This correlation
indicates that individuals focusing more on blocks take longer
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to complete the design, resulting in lower BDT scores. These
results suggest that the improvement in BDT performance is
influenced by visual attention, particularly the emphasis on
patterns rather than blocks.

Compared to other methods, such as BDT with differ-
ent approaches [15], [28], [56] or the use of virtual real-
ity [31], [32], [58], the multiscopic approach offers several
advantages.

1) First, the feature extraction using the hand tracker in
the microscopic model provides accurate estimations
of the participant’s hand and finger kinematics. This
model enables us to analyze the postures used in han-
dling blocks and study the interaction between the
hand and the objects in the reach-to-grasp cycle. Future
work on this model involves improving the accuracy
of hand estimation measurements using cameras, com-
pared to the contact-based methods that involve physi-
cally touching the patient’s hand.
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FIGURE 13. Regression and correlation analysis between BDT using non-dominant hand and dominant hand: (a) SHP and TCT, (b) KHP and TCT,

(c) APV and TCT, (d) ABYV and TCT.

2) Second, in the mesoscopic model, the symbolic inter-
pretation utilizing egocentric vision allows us to cap-
ture the behavior model of the participants. This model
enables us to analyze the interaction between hands
and objects and study the visual attention characteris-
tics of the subjects. Future work on this model could
involve exploring applications for self-rehabilitation,
where individuals can use the system to improve their
motor skills.

3) Third, in the macroscopic model, the knowledge dis-
covery using upper table vision successfully captures
the cognitive model of the participants. This model
allows us to assess an individual’s ability to solve
problems ranging from simple to complex. Future work
on this model could involve developing a system to
predict a person’s endurance and ability to concentrate
on repetitive tasks.

The multiscopic approach comprehensively analyzes human
behavior and performance during BDT, providing valuable
insights for rehabilitation and cognitive assessment.

In conclusion, integrating physical measurements and

cognitive evaluations in BDT assessment offers numerous
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advantages that are impossible with conventional methods.
To further enhance the understanding of participants’ perfor-
mance in BDT, gathering more detailed information about
the factors contributing to success or failure is essential. This
method simultaneously analyzes the dominant hand and eye
movements to assess the improvement or decline in hand-
eye coordination. Such information can significantly assist
therapists in developing tailored rehabilitation plans. How-
ever, there is a physical limitation in the current data collec-
tion process, as it only captures the 2D positions of hands
and objects. It is necessary to implement a data acquisition
strategy that incorporates 3D information. This strategy will
provide a more comprehensive understanding of participants’
movements and interactions during the BDT.

Furthermore, validating this proposed method by compar-
ing it with existing BDT practices in rehabilitation facilities
is crucial. By conducting such validation, we can confirm the
added value of the three models of the multiscopic CPSS in
BDT measurements. The goal is to provide therapists and
researchers with valuable information typically unavailable
in a clinical setting. The next step involves collecting patient
samples to validate further and refine this technology for
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rehabilitation. The developments resulting from this work
will contribute to future cognitive rehabilitation efforts. Ulti-
mately, we aim to utilize these technologies to improve the
effectiveness and outcomes of rehabilitation programs.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a multiscopic CPSS framework for sup-
porting independent rehabilitation through HOI recognition
with visual attention. The framework effectively integrates
the physical and cognitive aspects of the BDT application by
incorporating multiple vision systems across three levels. The
hand-tracking vision system accurately collects hand-skeletal
data and finger joint angle features at the microscopic model.
This model enables the classification of physical hand pos-
tures into six categories, providing valuable insights into
the predominant postures used during grasping and pinch-
ing blocks. In the mesoscopic model, the egocentric vision
system combined with an eye tracker captures hand and eye
movements. The symbolic interpretation successfully catego-
rizes hand-eye coordination during the reach-to-grasp cycle.
This analysis sheds light on the influence of hand actions
and visual focus on patterns and blocks on the success rate
of BDT. In the macroscopic model, the upper table vision
system classifies color features in each block. The knowledge
discovery accurately assesses whether the design matches
the given task, comprehensively understanding participants’
cognitive abilities.

The conducted eight-pattern BDT with two scenarios
demonstrates the framework’s capability to measure par-
ticipant behavior from multiple perspectives. Results indi-
cate slightly better performance in the dominant hand sce-
nario than in the non-dominant hand scenario. Furthermore,
regression and correlation analysis reveals the relationship
between physical measurement and cognitive evaluations.
This research is expected to benefit significantly therapists
and researchers by offering valuable insights not readily
available in clinical settings. To further validate and imple-
ment the framework in rehabilitation, it is essential to conduct
testing on actual patients as part of future research efforts.
By implementing this approach, we can augment the prac-
ticality and efficacy of the proposed physical and cognitive
rehabilitation framework.
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