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ABSTRACT The Karatsuba algorithm is an effective way to accelerate large integer multiplications through
recursive function calls. However, existing hardware implementations of Karatsuba multipliers are limited
to fixed operand sizes. To enable their application in diverse domains, including homomorphic encryption
with varying multiplicative depths, it is necessary to support variable operand sizes. In this paper, we propose
a novel Karatsuba multiplier design, named FlexKA, which supports variable operand sizes through a state
machine that manages the dynamic call states of the operation. We evaluate FlexKA on the Xilinx ZynqMP
FPGA and demonstrate that it supports variable operand sizes up to 256K bits, achieving a 9.2× speedup
compared to a highly-optimized software library running on a CPU. Our results show that FlexKA is an
efficient and effective solution for large integer multiplications with flexible operand sizes in hardware.

INDEX TERMS Multiplying circuits, field programmable gate arrays.

I. INTRODUCTION
Large integer multiplication is a fundamental operation in
numerous fields including coding theory, digital signal pro-
cessing, and cryptography. Homomorphic Encryption (HE)
enables computation on encrypted data [1]. However, ensur-
ing the necessary multiplicative depth while maintaining the
required security level in HE requires increasing operand
size [2]. Therefore, it is crucial for the underlying com-
puting system for HE to support adjustable operand sizes.
This enables an optimized HE system that can support a
wide range of HE applications with varying computational
demands while minimizing computational costs. Simply
increasing the default, fixed operand size can result in signif-
icant overhead, making it impractical for many applications.

While some HE algorithms may not require hardware-
based large integer multiplications due to the use of the
residue number system (RNS) to break down large integer
operations into smaller ones [3], additional operations such as
RNS conversions and key-switching operations are necessary
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for RNS-based HE algorithms. These additional operations
can lead to an overall increase in execution time.

Selecting a suitable multiplication algorithm is crucial in
reducing the overhead of large integer multiplications. Direct
integer multiplication, also known as Schoolbook multipli-
cation, has a quadratic increase in computational overhead
as the input size grows. Therefore, multiplication algorithms
optimized for large operands are essential. Examples of such
algorithms include Karatsuba multiplication [4], [5], Toom
multiplication [6], and NTT-based multiplications [7]. These
algorithms provide much lower asymptotic computational
complexity, which can significantly reduce the overhead
associated with large integer multiplications.

While implementing large-integer multiplication algo-
rithms on hardware can increase computation performance
compared to running the algorithms in software, algorithms
with better asymptotic computational complexity may not
necessarily be the best candidates for hardware implemen-
tation. For example, the Toom and NTT multiplications have
lower asymptotic computational complexity than Karatsuba
multiplication, but they require much higher hardware over-
head [8], [9]. Therefore, Karatsuba multiplication may be a
better choice for moderate to large operands, while Toom and
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NTTmultiplications may only be suitable for extremely large
operands.

Although the Karatsuba algorithm may be an appropriate
choice for large-integer multiplications, there are challenges
to implementing the Karatsuba multiplier in hardware, espe-
cially if we want to support flexible operand sizes. The main
challenge is that the Karatsuba algorithm has a recursive
structure that depends on the operand size. The Karatsuba
multiplier reduces multiplication overhead by recursively
calling itself with smaller operands, and the partial multipli-
cation results are combined to obtain the final result.

High-level synthesis (HLS) tools, which are commonly
used for hardware design, have limited support for recur-
sive functions [10], [11]. Typically, only tail-recursive calls
or recursive calls with a fixed call depth are supported.
Therefore, implementing a Karatsuba multiplier with flexi-
ble operand sizes using HLS is not straightforward. While
there are techniques to unroll the recursion and implement
Karatsuba multiplication using HLS, these approaches may
not be efficient for all use cases. To solve the reported
issue, an approach in literature uses a variadic template to
implement the recursion at compile time [12], with a similar
Karatsuba-Comba approach as FlexKA. However, in this
approach, once the compilation is completed, the multiplier
module becomes fixed to the compiled input size.

There are several hardware implementations of the Karat-
suba multiplier, but those designs are often fixed to a specific
input operand size [9], [12], [13], [14], [15], [16]. San and
At presented a design that supports variable input sizes, but
for small operands only [17]. Wong et al. proposed an RLWE
Karatsuba multiplier, but the call depth is limited to one [18].

This paper presents FlexKA, a flexible Karatsuba multi-
plier architecture that supports variable input sizes. FlexKA
can process multiplications of two arbitrary-sized integers,
as long as the operand memory size permits. The key ideas
of FlexKA are to use a state machine to control the recur-
sively invoked Karatsuba multiplications and manage the
locations of temporary data items in a fixed set of on-chip
memory during computation. We implement FlexKA1 using
System Verilog HDL and evaluate its performance on a Xil-
inx ZynqMP FPGA using operand sizes up to 256K bits.
On average, FlexKA achieved a 9.2× speedup compared to
a highly-optimized software library. Our results demonstrate
that FlexKA is an effective and efficient solution for imple-
menting a flexible Karatsuba multiplier in hardware.

II. PRELIMINARIES
A. KARATSUBA MULTIPLICATION ALGORITHM
The Karatsuba multiplication algorithm reduces multiplica-
tion overhead by dividing the input operands into smaller
slices and recursively calling the Karatsuba multiplication
on these slices. The resulting partial products are combined
using a series of additions and subtractions.

The source code of FlexKA is publicly available at the following reposi-
tory: https://github.com/hyungmin2/FlexKA

Algorithm 1 The Karatsuba Multiplication
Input: Integers A[nA-1:0] and B[nB-1:0]
Output: Integer AB[nA + nB − 1 : 0]← A× B

1 if nA ≤ Nth and nB ≤ Nth then
2 return A× B ▷ Direct multiplication

3 m← ⌊min(nA,nB)/2⌋ ▷ Midpoint
4 Al ← A[m− 1 : 0] ▷ Lower part
5 Bl ← B[m− 1 : 0]
6 Ah← A[nA − 1 : m] ▷ Upper part
7 Bh← B[nB − 1 : m]
8 ABl ← Karatsuba(Al,Bl) ▷ L-call
9 ABh← Karatsuba(Ah,Bh) ▷ H-call
10 Ahl ← Ah + Al ▷ Operand merging
11 Bhl ← Bh + Bl
12 ABhl ← Karatsuba(Ahl,Bhl) ▷ HL-call
13 AB← ABh × 22m + (ABhl−ABh−ABl)× 2m + ABl

▷ Partial product combination
14 return AB

Algorithm 1 shows theKaratsubamultiplication algorithm,
which takes input operands A and B, where nA and nB repre-
sent their bit-widths. If nA and nB are less than a threshold
value Nth, direct multiplication is used to compute A × B.
Otherwise, the input operands are split in half at the midpoint
m (e.g., into Ah and Al).

The partial products ABh, ABl , and ABhl are obtained
through three recursive Karatsuba calls. ABl is calculated by
multiplying the lower parts of A and B, and we refer to the
recursive call that calculates ABl as the L-call. Similarly, the
recursive call that computes ABh using the upper parts of A
and B is referred to as the H-call.

To calculate ABhl , we first need to create temporary values
Ahl andBhl , which are obtained by adding the upper and lower
parts of each operand (operand merging). The HL-call then
uses these temporary values to compute ABhl .

Using the three partially-computed products, the output
AB is obtained by combining the partial products at their
respective digit positions (partial product combination).

By utilizing the Karatsuba algorithm, the cost of multi-
plication can be reduced from the O(n2) required for direct
multiplication to O(nlog23). However, it is important to note
that in addition to the multiplication cost, the operand merg-
ing and partial product combination steps also contribute to
the overall computation time. These steps involve performing
additions at every depth of the Karatsuba call, further impact-
ing the total execution time.

B. SIZE OF THE PARTIAL SUMS
Let |X | denote the required bit-width of value X . In cases
where |A| and |B| are not identical or are not even numbers,
the midpoint, denoted as m, does not divide the input value
into two equal-sized chunks. Even when the original input
size given to the multiplier is an even number, unless both |A|
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FIGURE 1. Recursive Call Tree of the Karatsuba Multiplication.

and |B| are powers of two, the Karasuba algorithm encounters
odd values for |A| or |B| during the recursive call. In such
cases, without loss of generality, we consider the upper-bit
part to have the bigger chunk, meaning |Ah| ≥ |Al | and
|Bh| ≥ |Bl |. Consequently, |ABh| is always larger than or
equal to |ABl |.

Let’s consider ABhl , which is obtained by multiplying
Ahl and Bhl . Due to the possible carry bit generated while
computing Ahl = Ah + Al , |Ahl | can be larger than |Ah|. The
same applies to Bhl as well. Therefore, we have |ABhl | =
|Ahl | + |Bhl | ≥ |Ah| + |Bh| = |ABh

To summarize, we have |ABhl | ≥ |ABh| ≥ |ABl |, and
it is crucial for a Karatsuba implementation to handle these
non-equal partial sum sizes correctly in order to support
arbitrary input sizes.

III. FlexKA ARCHITECTURE DESIGN
FlexKA is designed to implement the recursive Karatsuba
function calls on fixed hardware architecture. As shown in
Fig. 1, the Karatsuba recursive calls form a call tree. The
recursive calls form a call tree, with intermediate call nodes
responsible for calling lower-level call nodes (Lines 8, 9,
and 12 of Algorithm 1), computing operand merging (Lines
10 and 11 of Algorithm 1), and partial product combination
(Line 13 of Algorithm 1). The leaf call nodes perform direct
multiplications (Line 2 of Algorithm 1).
Figure 2 shows the overall architecture of FlexKA.

To accommodate arbitrary recursive call depth on fixed hard-
ware, FlexKA employs the following strategies:
• The Karatsuba algorithm traverses the recursive call tree
in Fig. 1 in a depth-first order. FlexKA follows the same
depth-first order.

• The main finite state machine (FSM) in the con-
troller module manages the recursive call invocations
and returns. It also controls the sub-modules for each
operation to dispatch the sub-operations within a call
node in the order dictated by the Karatsuba algorithm.

• FlexKA has several sub-modules responsible for per-
forming each sub-operation within a call node. These
sub-modules include operand merging, partial product
combination, and direct multiplication

• While traversing the call tree, the node parameters uti-
lized at the current call node are stored in the stack

FIGURE 2. FlexKA architecture diagram.

memory (SM) and subsequently restored once the
lower-level node returns.

• Operands and intermediate values are stored in a fixed
set of memory modules Mem_A, Mem_B, and Mem_C).
The same memory modules are used regardless of the
call depth.

• At a leaf node, the base multiplier module performs
direct multiplication for operands with a size not larger
than Nth.

A. EXTERNAL INTERFACE
Figure 2 also illustrates the interface to FlexKA. Through this
interface, the host module (such as a CPU) can initiate com-
putations using FlexKA. The process involves several steps.
First, the size of the input operands is provided to the FlexKA
controller module via the command interface. Next, the input
operands A and B are transferred to FlexKA and stored in the
operand memory modules. Computation can commence once
the operands are transferred. The interface also allows the
host to receive the completion status and obtain the computed
results after the computation has concluded.

The FlexKA interface can be connected to the host using
various interface protocols. In our implementation, the inter-
face is connected to the host CPU via the AXI interface. The
input operands and results are transferred with a granularity
of 64 bits per word.

B. STATE TRANSITION
Figure 3 illustrates the state transition of the main FSM in
the FlexKA controller. Although there are a finite number of
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FIGURE 3. State transition diagram of the main FSM in the FlexKA controller module.

FIGURE 4. FlexKA main FSM state transition example.

states, the FSM can represent an arbitrary depth of Karatsuba
calls using the additional Level value. This value increases
when FlexKA descends to a lower-level node and decreases
upon returning to the upper level. The Level value is also
utilized to index the stack memory module (SM), which
enables the memory pointers to be pushed and popped.

The TC state is the initial state of a Karatsuba call and
determines whether the current node is a leaf or an inter-
mediate node. If the node is a leaf node, it transitions to the
BM state, which performs direct multiplication using the base
multiplier module. Otherwise, if the node is an intermediate
node, FlexKA initiates lower-level call nodes. To accomplish
this, FlexKA saves the current call parameters and transitions
to one of the three states: L-call, H-call, or HL-call.
These states prepare the new call parameters for the lower-
level node.

Once FlexKA has computed the new parameters, it transi-
tions back to the TC state to initiate a new call node (indicated
by the red arrows in Fig. 3).When descending to a lower-level
call node, FlexKA must also specify the subsequent state to
be executed upon returning from the lower-level node, which
is referred to as the nextState.

The value of nextState depends on the type of call
being executed. For example, after an L-call returns, FlexKA
transitions to the H-call state. Once the H-call returns,
FlexKA transitions to the OM state, which executes the
operandmerging. Next, theHL-call state is initiated, followed

by the PCC state. The PCC state is responsible for handling
the partial product combination.

The PNS state serves as the concluding state of a call node
and manages the return to the upper-level node. In the PNS
state, nextState is removed from SM and utilized to tran-
sition to the corresponding state while simultaneously decre-
menting Level (as indicated by the blue arrows in Fig. 3).
Additionally, the call parameters saved for the upper-level
nodes are retrieved from SM and restored.

Figure 4 depicts the state transition timeline at a leaf node
and at call depth i. The TC, L-call, H-call, HL-call,
and PNS states manage the call and return procedures, each
immediately transitioning to the subsequent state. On the
other hand, the BM, OM, and PCC states handle the actual com-
putation steps, and Fig. 4 denotes the number of computation
cycles elapsed in these states.

C. OPERAND MEMORY
When implementing a Karatsuba multiplier in hardware,
replicating the memory usage pattern of software increases
the design overhead. This is because various data objects are
temporarily created during the computation, such as those for
Ahl and Bhl in Lines 10 and 11 of Algorithm 1. Similarly,
several intermediate data objects are required to perform the
partial product combination step. This approach not only
increases the design complexity but also limits the possible

VOLUME 11, 2023 55215



B. Kang, H. Cho: FlexKA: A Flexible Karatsuba Multiplier Hardware Architecture

recursive call depth. Therefore, an HLS-based Karatsuba
implementation, which automatically generates correspond-
ing hardware from software, usually results in high memory
usage and is fixed to a certain input operand size. For instance,
an HLS-based implementation of the Karatsuba algorithm
has shown that the BRAM usage increases almost quadrat-
ically as the input operand size grows [14].

Instead, FlexKA uses only three fixed memory modules to
handle the entire recursive call process of an arbitrary-sized
multiplication. Operand memory Mem_A and Mem_B contain
the input operands, and the multiplication results will be
written into operand memory Mem_C. Additionally, Mem_A,
Mem_B, and Mem_C may temporarily hold intermediate val-
ues. The size of the operand memory can be increased if more
on-chip memory resources are available to support larger
operand sizes.

D. MEMORY POINTERS
The data objects in the operand memory are located by the
following memory pointers.
• iA, iB, and iC : The starting address of A, B, and C in
Mem_A, Mem_B, and Mem_C at the current call node of
the Karatsuba multiplication, respectively.

• tA and tB: The starting address for temporarily storing
Ahl and Bhl in Mem_A and Mem_B, respectively.

Figure 5 shows how the data objects are placed in the
operand memory at an arbitrary intermediate call level. At the
beginning of the current call node, the input operands A and
B are located from the current memory pointer iA and iB.
At the end of the current call node, before returning to the
upper node, the goal of the current node is to complete the
A×B computation and place the resulting valueAB atmemory
pointer ic.
In order to compute the final output AB, three recur-

sive calls are required to calculate ABl , ABh, and ABhl ,
respectively. These values are temporarily stored in Mem_C
before being merged into the final output, which is also stored
in Mem_C. The use of the same memory module to store both
the temporary partial products and the output is due to the
fact that these partial products are also considered outputs
from the perspective of lower-level call nodes. In other words,
FlexKA writes the output to Mem_C regardless of the call
level, simplifying the design by eliminating the need for a
separate memory module for writing the output based on the
call level.

The L-call, which calculates ABl , utilizes Al and Bl as its
operands. As Al and Bl correspond to the lower parts of A
and B, respectively, the memory pointers for locating these
input operands remain the same as those for the current call
node, denoted by iA and iB. The resulting output of the L-call,
ABl , is temporarily placed at the address iC + m to prevent
conflicts between the partial products and the final output AB.
Further discussion regarding this offset value can be found in
Section III-G.
The H-call takes Ah and Bh as its operands, which can

be located by adding an offset of m from iA and iB,

respectively. The output of the H-call, ABh, should be placed
in a non-overlapping position with the ABl . Therefore, the
H-call uses the output position of iC + 3m, since the size
of ABl is 2m
Before the HL-call, temporary values Ahl and Bhl have

to be calculated. Inside the HL-call at the lower level, Ahl
and Bhl can be seen as normal A and B operands. There-
fore, we place Ahl and Bhl in operand memory Mem_A and
Mem_B, respectively. By doing so, we can just change the
memory pointer iA and iB to the locations of Ahl and Bhl when
calling the HL-call. With the updated iA and iB pointers, the
lower-level call node can compute ABhl using the same logic
as other calls.

To avoid overwriting the input operands in Mem_A and
Mem_B, the temporary locations of Ahl and Bhl should be
determined in a way that they do not overlap with the input
operands. At the root node, tA and tB are set to nA and nB,
respectively, to avoid overlap with the original input operands
A and B. For the L-call and H-call, tA and tB do not need
to be changed since these pointers are already positioned
in a location that avoids collision with the input operands
for those calls. In the case of the HL-call, relocation of tA
and tB is necessary, as this call utilizes the temporary Ahl
and Bhl values (which are currently stored at tA and tB,
respectively) as its input operands. Consequently, tA and tB
must be adjusted to tA + nAhl and tB + nBhl for the HL-call,
where nAhl and nBhl correspond to the sizes of Ahl and Bhl ,
respectively.

The output of the HL-call, ABhl also needs to avoid col-
lision with the previously produced ABl and ABh. Therefore,
the memory pointer iC for the HL-call is set to iC+nA+nB+
m, since the combined size of ABh and ABl is nA + nB.
Each call node is responsible for writing its output within a

designated range of Mem_C. Because the partial products and
the output of the nodes share the same memory module, there
is a risk of overwriting the output of another call node when
computing the output of a node. This is because the combined
size of the partial products temporarily occupies more space
than the output range of the node.

To avoid this conflict, we only allow each call node to write
to the left of the memory pointer iC . Additionally, we ensure
that lower-level call nodes are called from the L-call node
first, which will write its output at the right-most part of
Mem_C. When the H-call and its child nodes write their
outputs above their pointer location, they will not overwrite
the output of the L-call since it is located below the out-
put pointer of the H-call. The same principle applies to the
HL-call.

E. STACK MEMORY FOR THE CALL PARAMETERS
In order for FlexKA to process an intermediate call node,
five memory pointers (as described in the previous subsec-
tion) and the sizes of the two input operands are required.
Table 1 summarizes the rules for Karatsuba call parame-
ters and memory pointers for each of the three lower-level
calls.
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FIGURE 5. Operands and temporary values stored in Mem_A, Mem_B, and Mem_C during the computation.

TABLE 1. Karatsuba call parameter change rule for each lower-level node.

Upon returning to the upper-level call node, it’s necessary
to restore the memory pointers that were altered during the
lower-level node computations. To accomplish this, FlexKA
utilizes a stack memory module (SM) that stores these mem-
ory pointers. Specifically, the memory pointers are pushed
to SM when transitioning to a lower-level call node and sub-
sequently popped from SM when the lower-level operation
has been completed. Additionally, SM maintains the next
state of the FSM, which is necessary to handle call returns
(as discussed in Section III-B).

F. OPERAND MERGING
The temporary valuesAhl andBhl are obtained bymerging the
lower part and the upper parts of the input operands. The fol-
lowing explanations on operand merging focus on operand A,
but the same concepts and methods apply to operand B as
well.

The sizes of Ah and Al are nA − m bits and m bits,
respectively. Since nA − m ≥ m (Line 3 of Algorithm 1), the
size of Ah + Al is nAhl = nA − m+ carry bits. Here, carry is
the possible carry bit generated from the addition.

To handle the addition, FlexKA uses adders with a fixed
width of W bits, which allows the addition to be performed
in multiple cycles. The number of cycles required for addition
is

⌈
nAhl
W

⌉
. In FlexKA, W is set to 64 bits to match the

width of the UltraRAM modules in ZynqMP. To minimize
the number of cycles required for operand merging, FlexKA
simultaneously performs operand merging for A and B using
two adders (Adder A and B in Fig. 2).

FIGURE 6. Mem_C access during the partial product combination step.

G. COMBINING PARTIAL MULTIPLICATION RESULTS
Figure 6 illustrates the memory access pattern during the
partial product combination step. As discussed in Sec. II-B,
the sizes of the partial sums, ABhl , ABh and ABl , may differ.
In FlexKA, the partial product combination step is specifi-
cally designed to accommodate these differences. To min-
imize the number of cycles required for this step, Mem_C
provides four read ports.

When reading from port 0, the values of ABh and ABl
represent ABh × 22m + ABl . ABh and ABl are reused to
represent (ABhl − ABh − ABl) × 2m, and this time they are
read by read ports 2 and 3, respectively. Similar to the operand
merging step, the combination step employs an adder that can
handleW -bit inputs per cycle.
The combination process starts from the lower bits of AB

and progresses to the upper bits. Overall, the combination step
takes ⌈(nA+nB)/W⌉ cycles per level.
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FIGURE 7. Base multiplier computation timeline when Nth = 3W .

As discussed in Section III-D, the combination step uses
the same operand memory to read the partial products and
write the combined output. To prevent conflicts during this
step, FlexKA places the partial products at a slightly shifted
position from the base address of the output. Specifically,
the partial products, starting from ABl , are placed m-bits
away from the base location of AB indicated by the current
value of iC .

Without such an offset, the combination step would over-
write some of the partial products before they are fully used.
In particular, conflicts would arise for ABl during the com-
bination cycles from m

W to 2m
W − 1 (indicated by the hatched

pattern in Fig. 6). During this period, FlexKA produces a part
of AB, namely AB[2m− 1 : m], which should be written into
the range of [iC + 2m− 1 : iC + m] in Mem_C.
If we had not added an offset when computing ABl ,

the upper m-bits of ABl would have been overwritten with
AB[2m − 1 : m] during this period. However, the upper part
of ABl is needed again during the combination cycles from
2m
W to 3m

W − 1 to compute AB[3m− 1 : 2m].
As shown in Fig. 6, the added offset enables us to avoid

the conflict during the period from m
W to 2m

W − 1. The partial
product that gets overwritten during this period is the lower
m-bit part of ABl , which is no longer used afterward.

H. BASE MULTIPLIER
As the Karatsuba algorithm progresses to lower levels in its
call tree, the size of the operands decreases. However, at some
point, the cost of managing the call tree can become greater
than the benefit gained from smaller operands. In FlexKA,
the base multiplier performs direct multiplication when the
operand size is less than the threshold Nth.

To minimize the computation cycles required for direct
multiplication and provide flexibility in increasing Nth, the
base multiplier has been designed with multiple primitive
multipliers. These are pipelined integer multipliers that each
accept two W -bit inputs. There are a total of Np =

Nth
W

primitive multipliers in the base multiplier.
The base multiplier is based on the principle of Comba

multiplication [19]. Figure 7 shows the partial products

FIGURE 8. Base multiplier architecture with Np primitive multipliers.

computed during Comba multiplication when Np = 3. The
input operands A and B are divided into W -bit words, A1-
A3 and B1-B3. Unlike the original Comba multiplication,
which computes one partial product at a time, the base mul-
tiplier simultaneously calculates all partial products of the
same digit position using Np primitive multipliers. These
partial products are then combined, resulting in one W -bit
result word at each cycle. Using this method, the base multi-
plier performs the multiplication of two Nth-bit values in 2Np
cycles.

The architecture of the base multiplier is illustrated in
Figure 8. The operand Awords are directly connected to each
of the primitive multipliers. For example, in Figure 7, word
A1 is always connected to the primitive multiplier 1. On the
other hand, the operand B words are connected in reverse
order and are barrel shifted every cycle to be multiplied with
the corresponding word from operand A. The shifted operand
B words at cycle Np are shown in Figure 8.
The computed partial products are combined using an

adder tree. Since the digit positions of the partial products
overlapwith those of the adjacent cycles, the combined partial
products are added with the carry from the previous cycle to
produce theW -bit output word of the current cycle. The upper
part of the added result, excluding the W -bit output from the
lower part, is carried over to the next cycle.

IV. EVALUATION
We compare the large-integer multiplication performance
of FlexKA against the optimized software implementa-
tions of multiplication algorithms on CPU to demonstrate
the performance advantages of dedicated multiplication
hardware.

Additionally, we compare the resource utilization of
FlexKA with existing Karatsuba multiplier implementations
on FPGA. Our results show that FlexKA provides better
resource utilization compared to existing implementations
while also offering flexibility in input sizes.

We evaluate FlexKA by implementing the multi-
plier architecture using the Xilinx Zynq UltraScale+
MPSoC XCK26 FPGA. During our evaluation of FlexKA,
we assessed its performance while varying the base multi-
plier threshold sizes (Nth). Specifically, we denote a FlexKA
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FIGURE 9. Computation time comparison.

configuration with Nth = nW as FlexKA/n. Notably, FlexKA
operates at 400 MHz for all Nth.

We also performed synthesis of FlexKA using the Syn-
opsys Design Compiler to project its performance in ASIC
implementations. By utilizing the Nangate 15nm open-
cell library [20], FlexKA achieved a maximum frequency
of 4 GHz.

We evaluate FlexKA up to 256K bits since the performance
benefit of theKaratsubamultiplier diminishes for larger sizes.
However, 256K is not a hard limit for FlexKA.We can expand
the size range by increasing the operand memory.

We compare the performance of FlexKA with the follow-
ing implementations for large-integer multiplication.
• GMP:Multiplication is performed using the GNUMul-
tiple Precision Arithmetic Library [21], which serves as
the foundation for numerous number theory libraries,
such as FLINT [22] or NTL [23].

• CGBN: Multiplication is performed using the NVIDIA
CGBN2, which is a CUDA-based library designed to
accelerate multi-precision arithmetic on GPUs.

• Schoolbook: Multiplication is performed using the tra-
ditional schoolbook multiplier implemented on FPGA
running at 400 MHz, which is the same frequency as
FlexKA. The schoolbook multiplier performs aW -bit×
W -bit multiplication per cycle and completes a multipli-

cation in N
W

2
cycles.

The computation performance is measured using the wall-
clock time, which is the duration from the invocation of
the multiplication process until its completion. To accurately

https://github.com/NVlabs/CGBN

measure the computation time, we employ different method-
ologies depending on the platform.
• For the GMP library, we utilize the
POSIX clock_gettime API to measure the compu-
tation time. This API allows us to capture the elapsed
time accurately.

• In the case of CGBN, the CUDA clock API is used to
measure the computation time. This API enables us to
measure the elapsed GPU clock cycles within the GPU
kernel, providing precise timing information.

• For the FPGA implementations, we measure the number
of FPGA clock cycles during the computation.

We focus on measuring the pure computation time without
including the data loading or unloading time. The reason for
excluding these times is that they can be influenced by other
factors such as I/O bandwidth, which are not directly related
to the performance of the multiplier itself.

A. COMPUTATION PERFORMANCE ON FPGA
In Fig 9a, we compare the performance of FlexKA on the
ZynqMP FPGA. In general, for small integers with less than
1,024 bits, the schoolbook multiplier provides the most effi-
cient performance (i.e., the lowest execution time), whereas
Karatsuba or Toom multiplications perform better for larger
input sizes. The performance of FlexKA is significantly
influenced by the chosen Nth configuration. For instance,
FlexKA/4 is slower than both the schoolbook multiplier and
GMP across the evaluated input size range. However, larger
Nth configurations result in substantial performance improve-
ments. For example, FlexKA/32 is 23× faster than GMP
when the input size is 4,096 bits and 4× faster when the
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TABLE 2. Resource Usage Comparison of FPGA-based Karatsuba Multiplier implementations.

input size is 256K bits. Across the assessed operand sizes,
the geometric mean of the speedup over GMP is 9.2× when
Nth = 32W .

As the input size grows, the performance gap between
GMP and FlexKA diminishes. The primary reason for this
is that GMP utilizes various multiplication algorithms based
on the size of the input operands. The threshold for selecting
the algorithm may differ depending on the CPU architecture.
For example, on ARM Cortex-A53, GMP utilizes Karatsuba
multiplication for input sizes ranging from 896 to 3,136 bits.
Beyond that, GMP switches to Toom multiplication. For
extremely large integers beyond 200K bits, GMP employs
FFT multiplication. When handling input sizes greater than
200K bits, a multiplier architecture based on Toom or NTT
may be preferable due to their better asymptotic complex-
ity. Nonetheless, it should be noted that implementing these
multiplication algorithms in hardware leads to significantly
higher resource consumption [8], [9].

B. COMPUTATION PERFORMANCE ON ASIC
Figure 9b presents the performance comparison between
FlexKA/32 on FPGA and ASIC with various CPU and

GPU platforms. Even when compared to higher-performance
CPUs and GPUs, FlexKA continues to exhibit its perfor-
mance benefits. In addition to the Cortex-A53 CPU on
ZynqMP, we also evaluated the performance of FlexKA
on the Carmel ARM CPU in NVIDIA Jetson NX and the
Xeon 6348 CPU. The performance of the CGBN library was
measured on two different GPUs: the NVIDIA Jetson NX
embedded device and the NVIDIA GeForce RTX 3090.

FlexKA on FPGA demonstrated comparable performance
to high-performance CPUs and GPUs, even at a clock fre-
quency of 400 MHz. When the performance of FlexKA is
measured at the 4 GHz clock frequency, FlexKA outperforms
other baseline architectures.

C. FPGA RESOURCE CONSUMPTION
Table 2 compares the FPGA resource utilization of vari-
ous Karatsuba implementations published in the literature.
In general, existing Karatsuba multipliers are designed for
fixed input sizes, and the resulting resource usage increases
as the input operand size grows. For instance, the HLS-based
implementation in [14] exceeds the available FPGA resources
for input sizes of 128K bits or greater on the UltraScale
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TABLE 3. Karatsuba computation time comparison in microseconds.

VU190 device. The implementation presented by Rafferty
et al. not only has increased resource utilization but also has
a decreasing clock frequency as the input size grows [9]. The
resource usage in [16] is nearly identical across input sizes,
but this is mainly due to the similar operand sizes evaluated.

In contrast, FlexKA supports flexible input sizes while
consuming only modest hardware resources and maintaining
a high clock frequency. Depending on the Nth configuration,
the resource utilization differs, but the supported operand size
ranges remain identical.

The FlexKA/32 configuration, which is the largest among
the evaluated setups, requires 256 BRAMunits (or 32 URAM
units) and 512 DSP Units. The number of utilized flip-flops
and LUTs is less than 38K and 26K, respectively. When
comparing these results with the implementation presented
by Foster et al. [14], which evaluated a similar input range to
FlexKA, the resource utilization of FlexKA is substantially
lower.

We also conducted evaluations of FlexKA on the Xilinx
Kintex-7 K160T FPGA device, which belongs to the same
FPGA generation as the FPGAs utilized in [9], [13], [15],
[16]. Although the maximum achievable frequency on the
Kintex-7 FPGA is reduced to 320MHz compared to 400MHz
on the ZynqMP platform, the resource usage remains rela-
tively similar without significant differences.

Table 3 provides a comparison of the computation time
between FlexKA and a subset of FPGA-based Karatsuba
multiplier implementations listed in Table 2. Only the imple-
mentations that reported their computation time are included
in Table 3. To ensure a fair comparison, we set the input size
of FlexKA to be the same as the input sizes of the listed
implementations. In some cases, FlexKA was up to 4 times
slower than the existing methods. However, Table 3 shows
that overall, FlexKA exhibits performance similar to other
implementations that are fixed to a specific input size, despite
the fact that FlexKA supports flexibility in input sizes.

V. CONCLUSION
Supporting variable input sizes is crucial for enabling the
use of a Karatsuba multiplier in a wide range of application
domains. In this paper, we introduced FlexKA, a Karatsuba
multiplier design that supports variable input sizes on fixed
hardware.

When implementing a large-integer multiplier module on
an FPGA, previous approaches commonly use a Karatsuba

multiplier that is fixed to a specific input size, provided that
the implementation supports a parameterized configuration.
This approach is feasible because FPGAs can be repro-
grammed to accommodate different input size requirements.
However, in the context of ASIC implementation, where the
hardware is permanently fixed, the input size flexibility of
FlexKA becomes even more valuable. FlexKA can maintain
high performance for various input sizes using the same hard-
ware, making it well-suited for a wide range of applications
with different requirements. Thus, with FlexKA, it is possible
to support diverse applications efficiently, utilizing the same
hardware resources.

When compared to a highly-optimized software-based
large integer multiplication library running on a CPU,
FlexKA achieved more than a 9× speedup. The efficiency
of FlexKA can be compared to existing Karatsuba multiplier
implementations that are fixed to a certain input size. FlexKA
consumes a similar or lower amount of FPGA resources
compared to other Karatsuba multipliers that are fixed to a
smaller size. Additionally, the computation performance of
FlexKA falls within the similar range of other multipliers.
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