
Received 18 April 2023, accepted 18 May 2023, date of publication 5 June 2023, date of current version 12 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3282781

EC-Crypto: Highly Efficient Area-Delay Optimized
Elliptic Curve Cryptography Processor
KHALID JAVEED 1, (Member, IEEE), ALI EL-MOURSY 1, (Senior Member, IEEE),
AND DAVID GREGG2
1Department of Computer Engineering, College of Computing and Informatics, University of Sharjah, Sharjah, United Arab Emirates
2School of Computer Science, Trinity College Dublin, University of Dublin, Dublin, D02 PN40 Ireland

Corresponding author: Khalid Javeed (kjaveed@sharjah.ac.ae)

This work was supported in part by the Science Foundation Ireland, and in part by the University of Sharjah.

ABSTRACT Elliptic Curve Cryptography (ECC) based security protocols require much shorter key space
which makes ECC the most suitable option for resource-limited devices as compared to the other public
key cryptography (PKC) schemes. This paper presents a highly efficient area-delay optimized ECC crypto
processor over the general prime field (Fp). It is structured on a new novel finite field multiplier (FFM)
where several optimization techniques have been incorporated to shorten the latency and hardware resource
consumption. The proposed FFM architecture is embedded with a finite field adder/subtractor (FFAS) unit
which is utilized to perform FFAS operations instead of deploying a dedicated unit. The Common Z (Co-Z)
coordinates with the Montgomery ladder method are used to compute point multiplication, a core operation
in all ECC-based crypto protocols. The work also proposes an efficient scheduling strategy to execute
low-level finite field arithmetic primitives with minimum latency on the employed finite field arithmetic
units. Due to these techniques, the proposed ECC processor is optimized for hardware resources, latency,
and throughput. It is captured in Verilog-HDL, synthesized, and implemented on Virtex-7, Kintex-7, and
Virtex-6 FPGA platforms using Xilinx Vivado and ISE Design Suite tools. On the Virtex-7 FPGA platform,
it computes a single 256-bit scalarmultiplication primitive in 0.7ms, consumes just 6.2K slices, and delivers a
throughput of 1428 operations per second. The implementation results show that it is a highly efficient design
outperforming the state-of-the-art by providing a better area-delay product and higher efficiency. Therefore,
it has the potential to be deployed in many applications where both latency and resource requirements are
critical.

INDEX TERMS Elliptic curve cryptography (ECC), finite field multiplication, field programmable gate
array (FPGA), hardware acceleration, finite field arithmetic.

I. INTRODUCTION
Nowadays elliptic curve cryptography (ECC) [1], [2] based
cryptographic systems are preferred over Rivest, Shamir,
and Adleman (RSA) [3] scheme due to much smaller key
lengths which further translate into lower storage, bandwidth,
and transmission cost. Different standardization bodies rec-
ommended 10-30× smaller key lengths for ECC as com-
pared with RSA [4], [5]. Elliptic curve point multiplication
(ECPM) over a well-chosen elliptic curve (EC) is the primary
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operation and is also the main computational part of almost
all ECC-based security protocols. Usually, it is done by com-
bining point doubling (PD) and point addition (PA) group
operations which further require low-level finite field (FF)
arithmetic primitives such as finite field addition/subtraction
(FFAS), finite field multiplication (FFM), and finite field
inversion/division (FFID) [6], [7]. Among these, FFID is the
most time-critical operation and it is required if EC points
are taken in affine coordinates (x, y) representation. However,
fortunately, this FFID operation can be eliminated from EC
group operations such as PD and PA using the projective
coordinates representation at the cost of extra FFM opera-
tions. Therefore, in the projective space, FFM is the most
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time-critical operation which limits the execution perfor-
mance of the ECC-based cryptographic processor.

A classical method to compute an FFM operation on given
numbers a and b over a large prime modulus p is done in two
steps: first multiplication (a× b) and then reduction modulo
p. This reduction generally needs a long division operation
which certainly is not feasible to compute for large operand
sizes. Various methods have been proposed to efficiently
compute the FFM primitive and can be broadly classified
into three categories: using special or standard primes (SP),
Montgomery multiplication (MM) [8], and interleaved mul-
tiplication (IM) [9]. SP primes have a special structure i.e.,
2a ± 2b ± 2c ± 2d ± 1, and are known as Mersenne or
pseudo-Mersenne primes [10], [11]. Reduction over this form
of prime structure can be achieved by cheap addition and shift
operations which can result in high-performance design but
turns into very dedicated architecture and lacks generality.
MM is a widely deployed method that converts the operands
and results into Montgomery and normal domains and per-
forms the reduction using cheap shift and add operations.
IM relies on a repetitive add-and-reduce approach where
reduction is interleaved in each iteration. Both IM and MM-
based designs can work for any general FF with arbitrarily
prime modulus p and hence can be used to construct different
types of EC cryptosystems using different curve parameters
and prime values [12].

Several useful modifications and related architectures have
been proposed for all these three approaches [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30]. Designs reported in [14], [15], [16],
[21], [22], [23], [25], [26], and [27] are based on MM, [19],
[20], [24], [28], [29], [30] are based on IM and [17], [18]
are using NIST recommended SP primes. Most of these
designs are then further utilized in the development of sev-
eral ECPM architectures [17], [19], [20], [21], [30], [31],
[32], [33], [34], [35], [36], [37], [38]. In [31], a 256-bit
high-performance EC PM architecture over general prime is
developed using a new combined Karatsuba and schoolbook-
based FFM architecture to perform low-level finite field
operations. A lightweight architecture is proposed in [32]
where the scheduling of low-level field operations are opti-
mized to achieve low latency and low resource utilization.
ECPM architectures in [19], [20], [21], [30], [33], and [35]
are developed by adding modifications to the standard IM
algorithm. References [19] and [20] are based on higher-
radix (HR) techniques to process multiple bits in a sin-
gle iteration consequently resulting in fewer iterations and
ultimately reducing the required number of clock cycles.
References [30], [33], and [35] proposed efficient ECPM
implementation using modified radix-2 IM algorithm.
Redundant-sign-digit (RSD) arithmetic-based efficient EC
PM designs are reported in [21] and [37], where RSD rep-
resentation is primarily utilized to shorten the long carry
propagation delay and delivered a high throughput. The
implementation results of these designs are reported for
256-bit after being synthesized on different FPGA platforms.

Furthermore, various new types of ECs [12], [39], [40],
[41] have been proposed targeting different security levels
and speeding up PM operations. Therefore a flexible ECPM
design is in demand that can be used with a wide range of
curve parameters, allowing for customization and the ability
to adjust the security level to fit specific application needs.
It is also worthmentioning that ECC-based cryptography pro-
tocols can be developed using finite fields with binary charac-
teristicsGF(2m). An interested reader is referred to [42], [43],
[44], and [45] for further information about such proposals.
This work presents an efficient EC cryptographic processor
over a general prime field. It is optimized for both latency
and hardware resource occupation, in addition, it supports any
modulus and curve parameter values. The main contributions
are given as follows:

- This paper first demonstrates a novel and area-time
efficient finite field multiplier (FFM) by proposing an
efficient parallelism technique that enables the execu-
tion of internal critical operations of the IM algorithm
concurrently with a significant reduction in employed
resources. An efficient hardware architecture is then
developed to realize the proposed modifications which
can save significant hardware resources without any
significant reduction in performance. It can work for any
general modulus p, can be reconfigured for any field size
up to 521-bit, and delivers high throughput with better
area-delay product and efficiency.

- Most of the existing designs deployed multiple copies
of the same FFM unit to execute several multipli-
cation instructions simultaneously. In addition, these
designs also integrated a separate dedicated FFAS
unit to perform modular add/sub operations. However,
instead of adding a dedicated FFAS unit, we further
modified the FFM design so that it can perform the
FFAS operation in addition to its normal multiplica-
tion operation which is represented as the FFMA unit.
So in our proposed finite field arithmetic core (FFAC),
three copies of the FFM and one FFMA unit are
deployed.

- Subsequently, an area-delay optimized novel EC cryp-
tographic processor is presented based on the proposed
FFAC. A dedicated FFID unit is also designed based
on an extended Euclidean method and integrated into
the proposed processor to perform the final conversion
of point multiplication from projective to affine space.
Jacobian coordinates with Common Z (Co-Z) arithmetic
is used while the Montgomery ladder algorithm for the
computation of EC PM is utilized due to its natural
ability to counter timing and simple power analysis
attacks. Note that there is good room for parallelism
in Co-Z arithmetic so the available multiplier units in
FFAC are utilized to execute several instructions con-
currently. Therefore, an efficient scheduling mechanism
is also presented to ensure maximum utilization of
the FFM units while producing the minimum latency
simultaneously.
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TABLE 1. List of acronyms with full description.

- For the functional verification, a software implementa-
tion of the proposed EC crypto processor is done by
developing a customized C# library. Then, test vectors
are generated and subsequently, the design is imple-
mented usingVerilogHDLwhere functional verification
is done by providing the test vectors in the Xilinx ISim
simulator. Finally, the synthesis and routing of the given
ECPM design are done using Xilinx Vivado and ISE
Design suit tools targeting different FPGA platforms.

- The proposed ECPM design has been compared with
the existing designs where it shows improved perfor-
mance results in terms of area-delay product with higher
throughput and better efficiency. This improved perfor-
mance of the proposed design demonstrates its viability
to be used in many EC-based security protocols for
several applications.

The remaining structure of the paper is as follows:
In section II, an overview and mathematical foundations of
ECC are provided. Section III details the proposed finite
field multiplier algorithm with its efficient hardware archi-
tecture. In section IV, we present an overall ECPM design
with an efficient and compact scheduling strategy. Finally, in
section V, FPGA implementation and performance compar-
ison of the proposed design are presented and the paper is
concluded in section VI. It is worth elaborating that Table 1
lists the majority of acronyms used in this paper.

II. PRELIMINARIES
This section presents background knowledge about elliptic
curves (ECs), group operations i.e., PA and PD, different
EC points representation systems, common-Z (Co-Z) coor-
dinates, and different techniques to compute ECPM opera-
tion. It also elaborates on our chosen EC PM algorithm and

Algorithm 1 ZADDU(X ,Y )

Input: R1 = (X1,Y1,Z ) and R2 = (X2,Y2,Z )
Output: (R3,R1) = ZADDU(X ,Y )(R1,R2) where

R3 = R1 + R2 = (X3,Y3,Z3) and
R1 = (λ2X1, λ3Y1,Z3) with Z3 = λZ for
some λ ̸= 0

1 B = (X1 − X2)2;
2 E1 = X1U;E2 = X2U ; C = (Y1 − Y2)2;
3 D = Y1(E1 − E2); X3 = C − E1 − E2;
4 Y3 = (Y1 − Y2)(E1 − X3)− D;
5 X1 = E1; Y1 = D;
6 R3 = (X3,Y3), R3 = (X1,Y1);
7 return (R3,R1)

Algorithm 2 ZADDC(X ,Y )

Input: R1 = (X1,Y1,Z ) and R2 = (X2,Y2,Z )
Output: (R3,R3) = ZADDC(X ,Y )(R1,R2)where

R3 = R1 + R2 = (X3,Y3,Z3) and
R3 = R1 − R2 = (X3,Y3,Z3)

1 B = (X1 − X2)2;
2 E1 = X1U;E2 = X2U ; C = (Y1 − Y2)2;
3 D = Y1(E1 − E2); X3 = C − V1 − V2;
4 Y3 = (Y1 − Y2)(E1 − X3)− D;
5 C = (Y1+ Y2)2; X3 = C − E1 − E2;
6 Y3 = (Y1 + Y2)(E1 − X3)− D;
7 return (R3,R3)

coordinates the system along with the number of low-level
finite field arithmetic primitives.

A. ELLIPTIC CURVE AND GROUP OPERATIONS
An EC representation E in simplified Weierstrass form
defined over a prime field GF(p) where p > 3 is given as

E : y2 = x3 + αx + γ (1)

where 16(4α3
+ 27γ2) ̸= 0. An EC point with coordinates

(x, y) is known as an affine representation, and any such
point say R(x, y) lies on an EC if it fulfills Eq. 1. Point
addition (PA) and point doubling (PD) are the twomain group
operations which are required to execute the ECPM operation
[6], [7]. PA operation of two points in affine coordinates say
R1(x1, y1) and R2(x2, y2) generates a third point R3(x3, y3) on
the chosen curve. The x3 and y3 coordinates of a resultant
point are given as

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2 modulo p

y3 = (
y2 − y1
x2 − x1

)(x1 − x3)− y1 modulo p (2)
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Similarly, PD operation is an addition of a point R1(x1, y1)
with itself, this is given as

x3 = (
3x21 + α

2y1
)2 − 2x1 modulo p

y3 = (
3x21 + α

2y1
)(x1 − x3)− y1 modulo p (3)

EC PA and PD primitves in affine representation are com-
prised of low-level finite field arithmetic primitives. These
primitives include FFAS, FFM, and FFID and among these,
FFID is the most time-critical operation which limits the per-
formance of overall ECC-based cryptosystems. To perform a
single PA operation in affine coordinates requires six FFAS,
two FFM, and one FFID operation while the cost of PD is four
FFAS, 2 FFM, and one FFID, hence involved in both PA and
PD operations. However, fortunately, there are other coordi-
nates that can facilitate FFID-free PA and PD execution at the
cost of more FFMoperations. The Jacobian coordinates space
is one such system where affine point R(x, y) is represented
with triplet R(XZ−2,YZ−3,Z ). However, conversions from
affine to Jacobian and vice versa are required at the start and
completion of an ECPM operation. Meloni et al. [46] further
extended the Jacobian coordinates to a new system based on
the same Z coordinate. In this, PA and PD operations are
calculated only using X ,Y coordinates while the Z coordi-
nate of the final point is recovered at the end of the ECPM
operation. These techniques are named as common-Z addi-
tion (ZADDU(X ,Y )) and common-Z conjugate ZADDC(X ,Y )
which are given in algorithms 1 and 2, respectively. It is
evident from the algorithms that the computational overhead
of ZADDU(X ,Y ) is 6 FFM + 7 FFAS while ZADDC(X ,Y )
requires 8 FFM + 11 FFAS low-level finite field arithmetic
operations.

B. ELLIPTIC CURVE POINT MULTIPLICATION
ECPM is the core primitive in the forming of any security
services using ECC. It is the most computationally intensive
operation where a base point R on an EC is multiplied by a
scalar d to produce another point T on the curve. Mathemat-
ically, it can be represented as T = dR. A standard way to
compute this primitive is known as double-and-add (DAA).
The computational cost of ECPM using the DAA technique
is nPD + ⌈ n2⌉PA, where n is the bit length of scalar d . This
computational cost can be further reduced to nPD+⌈ n3⌉PA by
representing scalar d in non-adjacent-form (NAF). However,
due to the different computational complexity of PA and PD
operations in DAA and NAF, these methods are not resistant
to side-channel attacks where the aim is to reveal the scalar
d using timing and power consumption information of the
algorithm [47].

Another useful method to perform the ECPM operation
that can also provide resistance against simple power and tim-
ing attacks is known as the Montgomery ladder [48]. In this
method, both PA and PD operations are executed in each
iteration independent of the scalar bit value. Here, we work

Algorithm 3Montgomery Ladder-Based Co-ZArith-
metic
Input: R = (xR, yR), d = (dn − 1, . . . ., d0)
Output: T = d × R

1 (S0, S1) = DBLU(X ,Y )(R);
2 for (i = n− 2; to 1) do
3 a = di;
4 (S1−a, Sa) = ZADDC(X ,Y )(Sa, S1−a);
5 (Sa, S1−a) = ZADDU(X ,Y )(S1−a, Sa);
6 end
7 a = d0;
8 (S1−a, Sa) = ZADDC(X ,Y )(Sa, S1−a);
9 ZM = xRY (S0)(X (S0)− X (S1), γ = yRX (Sa);
10 (Sa, S1−a) = ZADDU(X ,Y )(S1−a, Sa);
11 Z (T )−1 = γ/ZM ;
12 T (xT , yT ) = ((Z (T )−1)2X (S0),Z (T )−1)3Y (S0));
13 return T

with Co-Z coordinates so the Montgomery ladder technique
using Co-Z arithmetic is given in algorithm 3. In step 1 of
the algorithm, S0 and S1 registers are loaded with R and 2R,
respectively. Note that, 2R is a PD operation of R using the
same Z coordinate known as DBLU(X ,Y ) which is given as:

X2 = C2
− 2I

Y2 = C(I − X3)− 8K

Z2 = 2Y1 (4)

where I = 4X1Y 2
1 , C = 3X2

1 + α, and K = Y 4
1 . It is

computed only once during the whole PM operation where
the computational cost is 6 FFM + 13 FFAS operations.
In steps 4 and 5, ZADDC(X ,Y ) and ZADDU(X ,Y ) are executed
in series for (n− 2) times and dictate the performance of the
algorithm. Hence, one iteration of the loop requires 14 FFM
and 18 FFAS operations. At the end of the loop, the Z coordi-
nate recovery, and Jacobian to affine conversion are required
which are demonstrated by steps 7 to 12 of the algorithm.
Note that in steps 8 and 10 ZADDC(X ,Y ) and ZADDU(X ,Y ) are
required with a combined computational cost of 14 FFM +
13 FAS operations. Whereas the computational costs of
steps 9, 11, and 12 are 3 FFM +1 FFAS, 1 FFM, and 4 FFM
respectively. It is worth mentioning that one FFID operation
is also required in step 11 of the algorithm to perform only a
single modular inversion required. Therefore the total cost for
Z coordinate recovery and final Jacobian to affine conversion
is 22 FFM + 14 FFAS + 1 FFID. However, these are com-
puted only once during the PM operation and there is a good
scope of parallelism so several time-critical FFM operations
can be executed concurrently to reduce the latency.

III. FINITE FIELD ARITHMETIC PRIMITIVES
As FFM is the most frequent and time-critical primitive
among low-level finite field arithmetic components in the
Jacobian coordinates. This section presents our novel mod-
ified IM algorithm by introducing several optimizations to
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Algorithm 4 Radix-2 Interleaved Multiplication
(R2IM)

Input: a =
∑k−1

i=0 ai · 2
i, b =

∑k−1
i=0 bi · 2

i,
p =

∑k−1
i=0 mi · 2

i

Output: z = a× b mod p
1 z← 0;
2 for (i = k − 1; i ≥ 0; i← i+ 1) do
3 z← 2z mod p;
4 if bi = 1 ;
5 z← (z+ a) mod p;
6 end
7 return z

reduce the total iteration count and remove redundant oper-
ations. Subsequently, an efficient hardware architecture to
realize the proposed modified algorithm is presented. More-
over, this section also describes our strategy to perform FFAS
operations by modifying the FFM to eliminate the need for a
dedicated FFAS unit.

A. FINITE FIELD MULTIPLICATION
A standard radix-2 IM method for FFMUL is given in algo-
rithm 4 [9]. It multiplies, reduces, and accumulates by repeat-
edly shifting (or doubling) and adding. The intermediate
product is reduced by a modulus p after each doubling and
addition step. It starts operating from the most significant
bit (MSB) and computes double-reduce and then add-reduce
primitives serially. The intermediate values are kept below
the modulus p by reducing them. It requires n iterations for
an n-bit FFM operation. If one iteration of this algorithm
is completed in a single clock cycle then one n-bit FFM
primitive is completed in total n clock cycles. Step 3 (modular
doubling) is done by a single-bit left-shift (2z) followed by a
n-bit subtraction (2z−p) primitive. Step 5 (modular addition)
requires two n-bit adders with some 2:1 multiplexers. The
first adder computes z+a. Then, if z+a > p, the second adder
subtracts p to perform the modular reduction. Therefore,
a radix-2 IM hardware architecture consists of three n-bit
adders in addition to some multiplexers. These operations are
executed serially so the critical path Tcp = 3 add + 5 mux.

B. PROPOSED PARALLEL IM ALGORITHM
Several pertinent modifications and associated hardware
architectures [19], [20], [24], [30], [33], [35] have been pro-
posed for the R2IM algorithm. References [19], [30], and [33]
are executing single iteration in one clock cycle while [19],
[24], and [35] are based on radix-4, where two consecutive
bits of a multiplier are executed in a single clock cycle.
Moreover, [20] and [24] reduced the data dependency among
critical operations and executed them in parallel. However,
these designs employedmultiple processing units for the gen-
eration, reduction, and addition of possible partial products.
A proposed novel modification in the standard R2IM algo-
rithm is presented in algorithm 5. Two modifications based

Algorithm 5 Proposed Parallel FFM Algorithm

Input: a =
∑k−1

i=0 ai · 2
i, b =

∑k−1
i=0 bi · 2

i,
p =

∑k−1
i=0 mi · 2

i

Output: z = a× b mod p
1 z← 0 S1← a, S1← 2a mod p

// Pre-computed value //

M =

{
k + 3, if k mod 2 = 0, append two 0
k + 2, if k mod 2 = 1, append single 0

2 M ← M + 1 // append 0 to right of LSB of b //
3 for (i = 0; i ≤ M − 2; i← i+ 2) do
4 switch (b(i+2:i)) do
5 when 000 | 111 H⇒ v← 0
6 when 001 | 010 | 101 | 110 H⇒ v← S1
7 else H⇒ v← S2
8 end

// Steps 9 and 10 are independent
of step 11

9 S1← 2× S2 modulo p
10 S2← 2× S1 modulo p
11 z← z± v modulo p
12 end
13 return z

on Montgomery laddering (ML) [49] and Booth encoding
(BE) [50] in combination with radix-4 are proposed. Note
that our modifications to the algorithm involve constructing
detailed dataflow graphs to examine the relationship between
critical operations and eliminate redundant operations, thus
introducing parallelism at the expense of lower hardware
cost. The ML eliminates data dependency among critical
operations whereas BE and radix-4 reduced the design space
complexity and total iteration count respectively. The pro-
posed parallel FFM algorithm scans a multiplier from LSB
to MSB in contrast to R2IM which iterates from MSB to
LSB. Overall, algorithm 5 is comprised of several steps where
the main computation are performed in steps 9, 10, and 11.
In step 1, registers c and S1 are initialized with values 0 and a
multiplicand a respectively, whereas a pre-computed value 2a
mod p is loaded in the register S2. Note that this is computed
once before the start of an n-bit Fp MUL operation. In a
simple radix-4 technique, two bits of a multiplier are executed
in each iteration with possible partial products {0, 1, 2, 3} ×
a mod p. In [9] and [20] four processing units (PUs) are
deployed to ensure the readily availability of all possible
values of the partial product in each iteration. Using BE we
can save one PU because the possible partial products are
{0,±1,±2} mod p. We further observed from the dataflow
graphs that the value in a register S2 in step 1 is always
doubling of S1 which is also evident from steps 9 and 10 of
Algorithm 5. This enables us to save one more PU so in
total we can save two PUs. The main computational steps
9 and 10 can be executed concurrently with step 11 and it is
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TABLE 2. Design space complexity analysis of different FFMs.

worth mentioning that by adopting BE logic, FFAS operation
is required in step 11 as compared to finite field addition
operation as mentioned in step 5 of algorithm 4. Instead of
scanning a single bit of the multiplier in the R2IM algorithm
from left to right, algorithm 5 completes three bits (including
one overlapping bit) of the multiplier from right to left and
computes steps 9, and 10 in parallel with step 11 iteratively.
The total number of rounds in algorithm 5 is ⌈ n2⌉ where n is
the bit size of a modulus p.

1) HARDWARE ARCHITECTURE
This section discusses a hardware realization of the proposed
parallel FFM algorithm. It is shown in Fig. 1 where it is
comprised of two processing units (PU1,2), three n-bit reg-
isters (S1, S2, z) with some multiplexing logic, and a control
unit. PU1 is quadruplingmodulo pwhich is further comprised
of two identical double modulo p (DBP1,2) units cascaded
serially. PU2 is Fp add/sub which can perform Fp add or Fp
sub-operation based on the control signal generated by a BE
logic unit. The PU1 as shown in Fig.1(a) is a quadruplingmod
p unit which is comprised of two identical doubling units
DBP1 and DBP2. The internal structure of these doubling
units is shown in Fig. 1(b) which consists of a left-shift
of an input followed by a reduction modulo p. Then, these
intermediate results are multiplexed, and the result (2zmod p)
is available at the output. Note that the DBP1 unit executes
step 9 while step 10 of the algorithm is executed by DBP2.
The internal structure of PU2 is shown in Fig. 1(c) and is
responsible to execute step 11 which is the FFAS operation
based on the output of BE unit. The architecture consists of
two n-bit adders in addition to somemultiplexing logic. In the
case of the FF addition operation, the first adder performs the
addition of operands followed by subtraction of a modulus p.
Whereas, a subtraction of operands is performed in the first
adder followed by themodulus addition for the FF subtraction
operation. These intermediate values are multiplexed and
available at the output after a single clock cycle.

2) DESIGN SPACE COMPLEXITY
This section presents the design space complexity analy-
sis of the proposed parallel FFM architecture along with
its comparison to other state-of-the-art IM-based designs.
This type of analysis is very useful because it actually
demonstrates platform-independent performance evaluation.

FIGURE 1. Proposed Fp multiplier architecture.

Moreover, this evaluation acts as a fair performance com-
parison tool because the same design when implemented on
different platforms produces different results. We demon-
strate this analysis on the basis of design space (resource
consumption), critical path delay (CPdelay), number of clock
cycles (cc) consumed, and the computational time (CT) taken
by architecture to complete an n-bit finite field multiplication
primitive. We evaluate several IM-based FFM designs on the
basis of these design metrics as demonstrated in Table 2.
In the table, adder, multiplexer, and register are represented
with add,mux, and reg respectively.Moreover, combinational
delays of an n-bit adder and a 2-to-1 multiplexer are denoted
by dadd and dmux, respectively. The proposed parallel FFM
design has a design space complexity of 4 n-bit add + 4
2-to-1 mux+ 3 n-bit reg with a CPdelay of 2dadd + 2dmux.
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FIGURE 2. Proposed FFAC architecture.

FIGURE 3. Proposed ECPM architecture.

It requires (⌈n/2⌉+ 1) cc to compute an n−bit modular mul-
tiplication primitive with a total CT of (⌈n/2⌉+ 1)× CPdelay.
Note that the proposed design outperforms the other listed
designs in terms of design space complexity and CPdelay.
Designs reported in [9], [28], [30], and [33] require one fewer
n-bit adder with a similar CPdelay, however, these take almost
two times more clock cycles as compared to the proposed
design. This is reflected in the actual FPGA implementation
results demonstrated in section V.

IV. ELLIPTIC CURVE POINT MULTIPLIER
As the ECPM operation is composed of EC group operations
that can be executed through a pre-determined sequence of
low-level FF arithmetic operations. This section outlines our
approach to constructing an FF Arithmetic Core (FFAC)
capable of performing basic field operations like FFM and
FFAS. We then demonstrate the design of a comprehen-
sive ECPM hardware architecture using the proposed FFAC.
Finally, this section also covers our chosen efficient schedul-
ing approach to carry out these low-level field operations on
the proposed FFAC

A. FINITE FIELD ARITHMETIC CORE
It is evident that hardware implementation of ECPM opera-
tion requires FF arithmetic primitives. For example, a single
iteration of the adopted PMmethod (algorithm 3) requires 14
FFM + 18 FFAS operations because of serial execution
of ZADDC(X ,Y ) and ZADDU(X ,Y ) operations given in algo-
rithms 1 and 2, respectively. These 14 FFM and 18 FFAS

operations have a good scope of parallelism so their execution
can be speed up by employing multiple processing units. The
majority of the available designs deployed dedicated units for
these primitives which is not an efficient strategy because
FFAS operations are much simpler as compared to FFM.
Therefore, to further optimize the resource consumption, the
internal FFAS unit (PU2 in Fig. 1) in the proposed FFM
architecture can be configured to perform FFAS operation.
This unified FF unit is represented as FF multiplication and
addition (FFMA). It is able to perform FFM or FFAS oper-
ations and is shown in Fig. 2. Note that at a time, only
one of these operations can be executed by this architecture.
It consists of dedicated logic (DL), shared logic (SL), register
file, control unit, and multiplexing logic. DL consists of
PU1 and BE units which are only used when FFM operation
is executed. Whereas, SL is comprised of PU2 which is the
FFAS unit and shared among all three operations. Two bits
opcode (op) is used to execute a required task among three
available operations (multiplication, addition, subtraction)
and the register file is used to store the input operands and
intermediate results. In the case of FFAS operation, the result
is available at the output port (T ) after a single clock cycle
while FFM operation is done in ⌈ n2⌉ clock cycles.

Thus, in the proposed FFAC, we deployed three copies
of the FFM and a single copy of a unified FFMA unit.
Therefore, it can process four FFM instructions or three
FFM and one FFAS instruction, concurrently. It accepts eight
input operands, a modulus p, and generates 4 independent
results.
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TABLE 3. Scheduling of ZADDC, ZADDU, and DBLU operations on the proposed FFAC.

B. ARCHITECTURE DESCRIPTION
Our proposed hardware architecture to compute the ECPM
operation is shown in Fig. 3. It is comprised of FFAC,
finite field inversion/division (FFID) unit, program memory,
registers file, and a control unit. As one can eliminate the
requirement of FFID operations from the EC group opera-
tions (PA and PD) by adopting projective coordinate systems.
However, most of the existing ECC-based security protocols
are developed for affine coordinates so we need to convert the
final point from projective to affine space. This conversion
requires FFID operation and here in our case, it costs 2 FFID
+ 4 FFM operations. This work adopted a binary version of
the extended Euclidean algorithm (EEA) in the design of the
FFID unit. A detailed hardware architecture and implemen-
tation guidelines of this method are provided in [51]. Our
implementation of this method is able to compute a single

modular inversion or division operation in 2n clock cycles,
where n is the number of bits in the operands.

The proposed architecture is flexible to support any
curve parameter and can work for general prime value
p ≤ 521-bit. Note that most of the existing designs support
p ≤ 256-bit. Another advantage of our design is to resist
simple power and timing attacks [47] because of constant
time low-level finite field arithmetic primitives and by the
adoption of the Montgomery ladder technique. The FFAC
can compute four FFM operations concurrently or three FFM
in parallel to one FFAS operation while the FFID unit is
utilized for the final conversion of EC PM from projective
to affine space. The register file (RF) is comprised of several
registers which are further categorized into general-purpose
and dedicated register sets. Input point coordinates, prime
modulus p, curve parameters, and scalar d are loaded in
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the dedicated registers while intermediate values are stored
and retrieved through general-purpose registers. As in algo-
rithm 3, ZADDC (step 4) and ZADDU (step 5) are the main
operations that are repeated (n−1) timeswhile DBLU (step 1)
is required only once. Note that ZADDC and ZADDU are
executed in series and in total these operations require 14
FFM and 18 FFAS lower field operations.

C. SCHEDULING AND LATENCY
The presented FFAC can perform either four FFM instruc-
tions or three FFM and a single FFAS instruction concur-
rently. Our efficient strategy to schedule these operations on
the FFAC is demonstrated in Table 3. The execution flow of
the ZADDC operation is further subdivided into three stages
(stg1−3) where in each stage multiple low-level finite field
arithmetic instructions are scheduled on the proposed FFAC.
In stg1, two FFAS and four FFM instructions are scheduled
on their respective execution units. At the first clock cycle,
one FFAS and two FFM instructions are executed while the
remaining one FFAS and FFM instructions are executed at
the second and third clock cycles respectively. The result of
the last FFM instruction (r6) is available at (⌈ n2⌉ + 3) clock
cycle and the execution units in FFAC are free to execute
instructions in stg2. The stg2 is comprised of 6 FFAS and 4
FFM instructions out of these, r7, r8, and r9 are scheduled at
(⌈ n2⌉ + 4) and (⌈ n2⌉ + 5), respectively. Subsequently, the rest
of the instructions in this stage from r9 to r15 are scheduled
on their respective execution units. The last instruction r15
is a FFM instruction which starts at (⌈ n2⌉ + 5) and result
is available after (n − 11) clock cycles. In the last stage
(stg3), only two FFAS instructions are scheduled hence this is
completed in just two clock cycles. The result of the ZADDC
operation is available after (n− 12) clock cycles and now the
FFAC is free to accommodate ZADDU operation. Similarly,
we scheduled 6 FFAS and 7 FFAS operations in ZADDU in
three stages (stg1−3). In the stg1, only a single FFAS and three
FFM instructions are executed on their respective units while
four FFAS, three FFM, and single FFAS instructions are
part of stg2 and stg3, respectively. The result of the ZADDU
operation is available after (n + 8) clock cycles. As these
operations are executed in series so a single loop iteration
of the Montgomery ladder is completed in (2n + 20) clock
cycles. It is worth mentioning that the DBLU operation in
step 1 of the algorithm is executed only once and it requires 7
FFM and 13 FFAS instructions. Our scheduling strategy in
Table 2 shows that this can be completed in 3(⌈ n2⌉)+16 clock
cycles using four stages (stg1−4). The two coordinates X ,Y
of the resultant point T in Jacobian space are generated by the
ZADDU operation while the third coordinate of point P(Z ) is
obtained using the output of the ZADDU operation. This Z
coordinate recovery and final Jacobian to affine conversion
require 22 FFM, 14 FFAS, and a single FFID operation.
ZADDC and ZADDU operations in steps 8 and 10 of algo-
rithm 3 are scheduled on the proposed FFAC in the same
way as illustrated in Table 3. Then, 8 FFM operations are
mapped to the four FFM multipliers in two stages and finally

a single n-bit FFID operation is executed on the dedicated
FFID unit in 2n clock cycles. Note that few FFM operations
in the Z coordinate recovery and final conversion steps can
be scheduled in parallel to the last iteration of the loop on the
proposed FFAC unit. This is because in each stage at most
three FFM units are occupied. Hence, the latency of some of
these operations is hidden by ZADDU latency, however, 2n
clock cycles are taken for the FFID instruction. After the Z
coordinate recovery, the resultant point in Jacobian coordi-
nates T (X ,Y ,Z ) needs to be transferred back to affine space
T (x, y). Let’s say the latencies of ZDBLU , ZADDC , ZADDU ,
Z coordinate recovery and Jacobian to affine conversion are
represented as lZDBLU , lZADDC , lZADDU , lZ , lJ2A respectively,
then the overall latency Ltotal of the proposed design is given
as follows:

Ltotal = lZDBLU + lZADDC + lZADDU + lZ + lJ2A

Ltotal = 3⌈
n
2
⌉ + 17+ (n− 1)(2n+ 20)+ 2n+ 5n

Ltotal = 2n2 + 25n+ 3⌈
n
2
⌉ + 37 (5)

V. IMPLEMENTATION AND RESULTS
The FPGA implementation results of the given ECPM design
are discussed in this section along with a performance com-
parison to the state of the art based on various design metrics.
As FFM is the core computational unit so the implemen-
tation results of the given FFM design are presented first
followed by the implementation, analysis, and comparison
of the overall ECPM design. The proposed FFM and ECPM
designs are written in Verilog-HDL, synthesized, routed, and
placed using Xilinx Vivado and ISE Design Suite tools tar-
geting Xilinx Virtex-7 (xc7vx690t), Kintex-7, and Virtex-6
(Xc6vlx760) FPGA platforms. A customized C# library is
developed for functional verification and test vector gener-
ation. The simulation and verification steps were performed
using Modelsim and ISim simulators. It is important to note
that the ECPM architecture is programmable and flexible
for varying operand sizes and security levels, with the abil-
ity to work for any prime modulus p value. The design is
entirely based on Look-Up Tables (LUTs) where FPGA on-
chip embedded blocks such as digital signal processing (DSP)
and block RAMs (BRAMs) are not utilized. Thus, the imple-
mentation results are not dependent on the FPGA technology
and associated tools, allowing it to be translated to any FPGA
device or even to different ASIC nodes.

A. FFM IMPLEMENTATION RESULTS
FFM is the fundamental unit in the proposed ECPM architec-
ture so it is also the main performance bottleneck. Thus the
implementation results and the performance comparison of
the proposed FFM architecture to the state of the art is very
important and useful. Most of the existing modular multiplier
designs report their results for 256-bit operand size targeting
the Virtex-6 FPGA platform. So to have a fair performance
evaluation, Table 3 demonstrates a 256-bit Virtex-6 FPGA
implementation results of the proposed FFM along with
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TABLE 4. Performance comparison of several FFMs on Virtex-6 FPGA platform.

several other existing designs. Note that the proposed design
is reconfigurable for any value and length of the modulus p.
However, we only list the implementation results for three
common key sizes (256, 384, 521). Most of the existing mod-
ular multiplier designs are reported for only 256-bit modulus
length. Therefore, we compare our 256-bit FFM design to the
other listed designs in Table 4. The proposed design takes
610 ns to perform a 256-bit modular multiplication operation,
occupies 2910 FPGA look-up tables (LUTs), and attains a
maximum frequency of 210 MHz.

Various serial and parallel IM and MM-based FFM archi-
tectures have been proposed with their FPGA implementa-
tions. For these designs, design objectives may be varied
depending on the targeted applications. Note that some of the
designs utilizedDSPs blocks in addition to LUTs sowe used a
normalized LUTs (NLUTs) parameter. To calculate NLUTs,
we add the number of LUTs to the DSP blocks multiplied
by 623 LUTs. This DSP block to LUTs equivalent is taken by
forcing the synthesis tool to use LUTs for a small multiplier
as given in [23]. We compare our design to the others listed
designs in Table 3 on the basis of NLUTs, computational
time is taken in (ns), throughput (TP) in megabits per second
(Mbps), and efficiency (E) terms. Note that, E is calculated
by TP/NLUTs which provides a fair comparison tool because
it accounts for both the employed NLUTs and computation
time. The proposed FFM design completes a single 256-bit
FFM operation in 610 ns, consumes 2901 LUTs, runs at a
maximum frequency of 210MHz, and produces a throughput
of 420 Mbps. Designs reported in [19], [20], [24], [28], and
[29] are based on IM, [17], [18] is based on SP, and the rest
of the listed designs are based on the MM method. In terms
of computational time, [13], [14], [15], [21], [22], [23], [26],
[27] are 2.93×, 4.5×, 1.72 ×, 1.02×, 1.74×, 4.58×, 1.3×,

4.3× times better but consumes 2.6×, 9.17×, 22×, 3.9×,
5.77×, 23×, 9.5×, and 24.6× more NLUTs, respectively.
If we consider E, a more global and fair performance

metric, then the presented design outperforms all the listed
designs in Table 3. It has 1.12×, 1.23×, 1.3× times better
E with 2.93×, 2.6× and 4.7× higher TP as compared with
[13], [28], and [30](designs with the best E). Therefore,
our proposal shows the best efficiency by optimizing both
employed resources and computational time and produces
higher TP, which ultimately resulted in the best area-delay
optimized design. Note that, the FFMdesign has an integrated
FFAS unit that is configured to perform FFAS operation in
the FFMA unit to avoid the hardware cost of the dedicated
FFAS unit in the proposed FFAC. This has further reduced
the hardware resource requirements of the overall EC crypto
processor design as evident by Table 5.

B. ECPM IMPLEMENTATION RESULTS
Table 5 elaborates on the implementation results of the pro-
posed EC crypto processor over different FPGA platforms for
different field lengths from 256 to 521 bits. We present the
implementation results after the proposed design is synthe-
sized, mapped, placed, and routed on Xilinx Vivado 2017 tar-
geting Virtex-7 and Kintex-7 FPGA platforms. Note that,
to demonstrate a fair performance evaluation, the design is
also synthesized and implemented on theVirtex-6 FPGAplat-
form using Xilinx ISE Design Suite. On the Virtex-7 FPGA
platform, it completes a 256-bit PM operation in 0.7 ms by
using 6.2K slices, takes 137K clock cycles, runs at 195 MHz
frequency, and delivers a TP of 1428.6 operations per sec-
ond (ops). Several ECC FPGA implementation proposals
exist for various field sizes and different curves. Note that
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TABLE 5. Performance comparison of several EC PMs on FPGA platforms.

implementation results for a few other listed designs in the
same table are available only for the Virtex-6 FPGA platform.
Hence, to evaluate the efficiency of the proposed design
fairly, we also provide the Virtex-6 FPGA implementation
results of the proposed design. Moreover, implementation
results for most of the listed designs are available for 256-bit
prime modulus size. Therefore, we compare the performance
of our 256-bit design with all the listed designs in Table 5.

In [31], a high-speed ECC architecture is proposed over
a general prime field and the results are shown for up to
256-bit field size over different FPGA platforms. It proposed
a new combined schoolbook andKartsuba-based algorithm to
achieve higher parallelism with low latency. On the Virtex-
7 FPGA platform, it consumes 7281 slices (22,736 LUTs),
136 DSPs, and 15 BRAMs. As the proposed design only
utilizes the LUTs so we calculated the NLUTs for [31].
On the same implementation platform, our design occupies

5.96 times lower LUTs, with lower ADP and higher effi-
ciency. The other advantage of the proposed design over [31]
is to support higher security levels up to 521-bit. Hoe et al.
in [32] presented a lightweight ECPM architecture over the
general prime field. On the low-level finite arithmetic, a pre-
calculation strategy is adopted to optimize the critical path
delay and resource consumption in the development of FFM
and divider units. On the top level, the Montgomery ladder
with Jacobian coordinates is adopted. The Implementation
results of up to 256-bit are presented for different Xilinx
FPGA platforms. On Virtex-7, it completes a single 256-bit
ECPM operation in 1.70ms in 270K clock cycles at 158MHz
frequency. It occupies 6.4K FPGA slices and delivers a TP
of 588 ops. Our design is 2.42× faster, consumes almost
similar resources, has 2.42× lower ADP, 2.53× higher effi-
ciency, and delivers 2.42× higher TP as compared to [32].
An area-efficient high-speed ECC implementation over
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FIGURE 4. Performance evaluation of FPGA implementation of different 256-bit EC PM designs.

FPGA is presented in [33]. This is developed over a general
prime field where it can support any value of a prime modu-
lus p. However, implementation results are only demonstrated
up to 256-bit after being implemented on the Virtex-7 FPGA
platform. It is based on a simple radix-2 IM algorithm where
it takes n clock cycles to perform an n-bit FFM operation and
the total latency of the design is 4n2 + 2n − 6. It completes
one 256-bit ECPM operation in 1.48 ms, delivering a TP of
675.7 ops and consumes 8.9K FPGA slices. The proposed
design outperforms it in all aspects: it is 2.11× faster, con-
sumes 1.43× lower FPGA slices, produces 2.11× higher
TP, 3.06× lower ADP, and 3× higher efficiency. A simi-
lar 256-bit ECPM design is reported in [35] where twisted
Edwards curves using unified point addition techniques are
utilized. A modified radix-4 IM-based FFM unit is developed
to perform low-level finite field multiplication operations
while projective coordinates are adopted at the system level.
To complete a single ECPM operation on the Xilinx Virtex-7
FPGA platform, it takes 1.9 ms running at 104 MHz, 199K
clock cycles and requires 6.5K slices. It is 2.7× slower
with 1.04× more FPGA slices as compared to the proposed
design. Moreover, our design delivers 2.7× higher TP, 2.8×
lower ADP, and 2.9× higher E. Designs reported in [19] and
[20] are based on serial and parallel radix-4 IM algorithm.
Both these designs are developed using projective coordinates
and implementation results are reported for Xilinx Virtex-
6 FPGA for field sizes up to 256-bit. Our design is 3.3×
faster, consumes 1.16× lower FPGA slices, produces 3.07×
higher TP, 3.56× lower ADP, and 4.2× higher E than [20].
Whereas as compared to [19], it is 1.9× faster, consumes
1.48× lower FPGA slices, produces 1.9× higher TP, 2.82×
lower ADP, and 2.84× higher E. In [17], a high-performance
ECC implementation is reported over a specific prime curve
of 256-bit proposed byNIST. This design lacks flexibility and
despite the generic nature of our design, it outperforms [17] in
latency, slice consumption, TP, ADP, and E by 4.67×, 1.8×,
4.7×, 8.6×, and 8.5×, respectively. Kudithi et al. in [30] and
[36] proposed efficient EC cryptography processors for IoT
security applications over the general prime field. For low-
level field multiplication, a finite field multiplier is developed

using the IM algorithm in [30] whereas the MM technique
is adopted in [36]. [30] is 4× slower, consumes 1.1× more
slices, delivers 3.8× lower TP, 3.7× higher ADP with 3.7×
lower E whereas, [36] is 5× slower with almost similar slice
consumption, 5.3× lower TP, 2.4× lower ADP and 2.38×
lower E as compared to the proposed design.

We summarise the performance evaluation of all the listed
designs in Table 4 for 256-bit operand sizes and it is shown
in Fig. 4, where normalized values are used. Note that these
designs are implemented on different Virtex (V) FPGA plat-
forms so the underlying implementation platform is also
mentioned in the figure. It is also worth mentioning that
a design having a lower value for ADP and a higher E
value is considered to be better optimized for latency, area
consumption, and TP. The given design outperforms all the
listed designs in terms of ADP and E which means that it
is better optimized for latency, resource consumption, and
TP. Only [21] and [31] have lower latency than the proposed
design, however, these have higher ADP and lower E values
as compared to the proposed design. Hence, our design deliv-
ers the best ADP and E values as evident from the figure.
It is worth noticing that most of the listed designs in Table 5
are not resilient to timing and simple power analysis attacks
(SPA) [47]. As the given design adopted the Montgomery
ladder method for ECPM which provides inherent resistance
against these attacks. This is due to the computation of PD
and PA operations at each iteration irrespective of the scalar
bit di In addition to algorithmic level countermeasures, at the
circuit level, the proposed low-level ECC arithmetic modules
such as the FMM, FFMA, and FFID are developed using a
balanced implementation and produce outputs in a constant
time. Furthermore, the presented scheduling strategy is orga-
nized in a fixed number of stages resulting in constant time
execution of ZADDU , ZADDC , and ZDBLU operations as
evident from Table 3. Therefore, the proposed ECPM design
is robust against timing and SPA attacks which is missing in
most of the listed designs.

Lastly, the power consumption estimates of the proposed
256-bit ECC architecture are generated by utilizing XPower,
which is a customized power estimation tool developed by
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Xilinx. The power consumption of the given design on the
Virtex-6 FPGA platform while attaining at a maximum fre-
quency of 182 MHz is estimated at 190 mW. It is worth
mentioning that these power figures are obtained by consid-
ering default values for temperature and voltage parameters
i.e., the temperature is 25◦C and different voltages such as
Vccint and VCCAUX at 1 V while VCCO is set to 2.5 V. It is
worth noticing that similar power consumption values are not
available for all the existing designs mentioned in Table 5 and
figure 4. Therefore, it is best optimized for latency, hardware
resource consumption, and TP and it can be suited for ECC-
based cryptosystems in many resource-limited environments.

VI. CONCLUSION
This paper introduced a novel area-delay optimized finite
field multiplier where hardware resource consumption is
reduced by eliminating redundant operations and the latency
is minimized through a novel parallelism approach. The
proposed multiplier is then utilized to develop an area-time
optimized elliptic curve cryptographic processor using the
Montgomery ladder technique with common-Z coordinates
at the system level. Moreover, an efficient scheduling strategy
to schedule low-level finite field arithmetic primitives is pre-
sented. The cryptographic processor is synthesized, placed,
and routed on various FPGA platforms for operand lengths
up to 521 bits. The implementation results showed that it is a
highly efficient design in terms of latency, area-delay product,
throughput, and efficiency. Additionally, the design is robust
against simple power analysis attacks, enabling it as suitable
option for use in various elliptic curve cryptography-based
security protocols for applications where both latency and
resource requirements are critical.
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