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ABSTRACT This paper proposes an improved lightweight YOLOv5 model for the real-time detection of
strawberry diseases. The ghost convolution (GhostConv) module is incorporated into the YOLOv5 network,
reducing the parameter numbers and floating-point operations (FLOPs) for extracting feature information
using the backbone network. An involution operator is utilized in the backbone network to expand the
receptive field, enhance the spatial information on strawberry disease characteristics, and reduce the number
of FLOPs in the model. A convolutional block attention module (CBAM) is incorporated into the backbone
network to enhance the network’s ability to extract strawberry disease features and suppress non-critical
information. The upsamplingmodule is replaced by a lightweight upsampling operator called Content-Aware
ReAssembly of Features (CARAFE), which extracts feature map information and enhances the ability to
focus on strawberry disease features. The experimental results on an open-source strawberry disease dataset
show that the model achieves mean average precision (mAP)@0.5 of 94.7% with 3.9 M parameters and
3.6 G FLOPs. The improved model has higher detection precision than the original one and lower hardware
requirements, providing a new strategy for strawberry disease identification and control.

INDEX TERMS Computer vision, image classification, lightweight network, YOLOv5.

I. INTRODUCTION
Strawberries have high nutritional value and economic value.
The area of strawberry cultivation has increased as the market
demand has risen. Strawberry diseases present a significant
barrier to the extensive cultivation of strawberries. Bacte-
ria, fungi, and pathogens are the primary causative agents
of strawberry diseases, with these plant pathogens typically
invading plants through their leaves, roots, and stems [1].
In the past, plant disease identification often relied on man-
ual recognition and expert systems, but the efficiency and
accuracy of diagnosis were significantly lower, hindering
real-time crop monitoring. Early detection of plant diseases
during the initial stage of infection is crucial for effec-
tive prevention, yet often proves challenging to promptly
identify. It is necessary to identify diseases accurately and
quickly during strawberry cultivation and implement cor-
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rect and effective measures to curb disease spread, prevent
yield and quality reduction, and minimize pesticide use [2].
Therefore, it is critical to obtain plant disease information in
real time in smart agriculture. Traditional image recognition
techniques have achieved good results but have limitations,
such as complex image preprocessing, high subjectivity, and
noise and interference in complex environments [3]. Due to
technological advances in deep learning methods and com-
puter hardware, deep learning-based target detection algo-
rithms are increasingly used in agricultural research because
of their high speed, precision, generalization ability, and
robustness [4], [5].

The application of deep learning-based detection methods
has greatly contributed to the detection and identification
of plant diseases, effectively reducing the cost of manual
diagnosis of plant diseases and providing valuable assis-
tance to agricultural producers. However, strawberry diseases
spread rapidly and through various paths, and negligence in
management causes substantial yield reductions and affects
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strawberry quality. For example, strawberries can be infected
with strawberry powdery mildew through the air from the
seedling stage to the fruiting stage. It affects strawberry
leaves, flowers, and fruits, and the disease spreads rapidly.
Numerous spores are produced within 4-7 days after the out-
break of strawberry powdery mildew and infect other leaves
through air currents [6]. It is necessary to identify diseases
quickly and accurately and adopt appropriate control mea-
sures to avoid disease spread in strawberry fields. Although
the current CNN-based plant disease detection method has
achieved good results, the model has many parameters and
high computational requirements. Embedded devices with
limited computational performance and storage resources
are not suitable for large-scale deployment. In this paper,
an improved lightweight YOLOv5s model for strawberry
disease detection is proposed to improve the automatic moni-
toring capability of strawberry diseases in greenhouses and
provide guidance for disease control. This method detects
strawberry diseases in complex natural environments. The
main contributions of this study are as follows:
(1) We incorporate the ghost convolution (GhostConv)

module into the YOLOv5 network to achieve model
compression while ensuring high detection precision.

(2) The involution operator is used to assign weights adap-
tively at different spatial locations to extract a wide
range of semantic information and substantially reduce
the number of floating-point operators (FLOPs) of the
model.

(3) The convolutional block attention module (CBAM) is
added to the backbone network to improve its fea-
ture extraction capability and suppress non-critical
information.

(4) The lightweight upsampling operator Content-Aware
ReAssembly of Features (CARAFE) is used to replace
the network’s upsampling module, enabling the net-
work to focus on the target region and enhancing the
model’s ability tomodel spatial information in complex
natural environments.

The rest of this paper is organized as follows. Section II
provides an overview of the application of traditionalmachine
learning and deep learning-based detection techniques in
the field of plant disease detection. Section III introduces
the YOLOv5 model and the improved model. Section IV
describes the experiments and results. Section V provides
the discussion and the limitations of the methods and data.
Section VI concludes the paper.

II. RELATED WORKS
In the domain of plant disease detection, numerous
researchers have employed machine learning techniques to
detect and classify plant diseases based on image data. The
extraction and selection of disease features were designed
based on prior knowledge and experience [7]. The detection
performance of the algorithm primarily depends on whether
the extracted and selected features can adequately repre-
sent the disease characteristics and the compatibility of the

classifier. Additionally, it is influenced by factors such as
plant types, disease types, and environmental lighting con-
ditions. For example, Dubey and Jalal [8] employed the
K-Means clustering algorithm to segment lesion regions,
utilized the completed local binary pattern (CLBP) to extract
color and texture features of apple diseases, and employed an
improved support vector machine (SVM) for the detection of
93 types of apple diseases. The proposed solution algorithm
achieved an accuracy rate of 93% in apple disease detec-
tion. Traditional image analysis techniques, combined with
biological characteristics such as disease, texture, and shape
of crops, enable the rapid identification of crop diseases.
However, due to the complexity of plant disease symptoms,
it is challenging for manual feature design optimization,
leading to suboptimal performance in the recognition of plant
diseases in complex scenarios.

Compared to early plant disease detection methods, many
researchers have shifted their focus towards utilizing deep
learning techniques for plant disease detection. This is due
to the powerful feature representation capability, automatic
feature learning, and robustness in complex natural envi-
ronments exhibited by deep learning models. Deep learn-
ing demonstrates exceptional performance and adaptability,
making it highly suitable for addressing the challenges asso-
ciated with plant disease detection in diverse agricultural
settings. For instance, Ferentinos [9] trained several convo-
lutional neural networks (CNN) models for plant leaf disease
detection. The Visual Geometry Group (VGG) CNN model
obtained the highest detection accuracy of 99.53%, demon-
strating the excellent performance of CNNs for detecting
plant diseases. Anandhakrishnan and Jaisakthi [10] proposed
an automatic system for identifying tomato leaf diseases
based on deep CNNs. The model reduced the time required to
identify tomato leaf diseases. Many deep-learning techniques
have been applied to the detection and control of straw-
berry diseases. Nie et al. [11] proposed a faster R-CNN and
multi-task learning-based network for detecting strawberry
verticillium wilt. The network considered the polymorphic
characteristics of the disease in the petioles and young leaves
and automatically performed classification. Xiao et al. [12]
used a CNN to train a ResNet50 model using five strawberry
disease images. This model had the best detection perfor-
mance and achieved 100% precision for the detection of
leaf blight. Li et al. [13] studied strawberry powdery mildew
and infected leaf detection in complex environments. They
proposed a YOLOv4 network that used a deep convolution
and hybrid attention mechanism, providing a solution for
the early detection of strawberry powdery mildew in natural
environments.

Deep learning models have been widely used in visual
tasks such as image classification and object detec-
tion, achieving significant success. Deep learning typi-
cally involves training models with large and complex
datasets, which can result in high training costs. Addi-
tionally, it requires high-performance hardware to execute
the complex mathematical computations involved in model
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inference [14]. The lightweighting of models is inherently
interconnected with the detection of real-time capabilities,
as lightweight models enable faster inference within limited
resources and time constraints. This makes them suitable
for scenarios with high demands for real-time performance,
such as video analysis, facial recognition, and autonomous
driving. Currently, model lightweighting focuses on
reducing model parameters, minimizing computational com-
plexity, and decreasing runtime. Researchers have proposed
various methods for achieving model lightweighting, includ-
ing directly constructing lightweight and compact network
architectures, using knowledge distillation, low-rank factor-
ization, and more.

Although these plant disease detection models have
achieved impressive detection performance, they often come
with a large number of parameters and computational require-
ments, resulting in high hardware costs when deployed
on embedded terminals. Many scholars have conducted
research on how to achieve real-time plant disease detec-
tion on mobile platforms with limited computing power. For
instance, Shao et al. [15] proposed a lightweight convolu-
tional neural network (L-CSMS) using channel shuffle oper-
ation and the multiple-size convolution module and applied
it to an automatic plant disease severity identification and
diagnosis system. The accuracy of the proposed lightweight
model L-CSMS reached 90.6% and 97.9% on the plant dis-
ease severity dataset and PlantVillage dataset, respectively.
Chen et al. [16] presented a lightweight network architecture,
MobInc-Net, for crop disease detection. This architecture
replaces the original convolutions in theMobileNet backbone
network with Inception modules and adds a Softmax layer
and SSD block after the foundation network. By applying
two-stage transfer learning, MobInc-Net achieves an average
accuracy of 99.21% on PlantVillage datasets. Fang et al. [17]
proposed a lightweight plant disease classification model that
incorporates the Grabcut, new coordinate attention, and chan-
nel pruning algorithms. The proposed model utilizes channel
pruning algorithms to reduce both model size and compu-
tational complexity by 85.19% and 92.15%, respectively,
enabling the network to meet the deployment requirements of
low-storage and low-computational-power platforms. These
lightweight neural network models have demonstrated excel-
lent performance in recognizing plant leaf disease images
with simple backgrounds. This is primarily due to their uti-
lization of datasets created from images captured in con-
trolled laboratory settings. These images often have relatively
simple and similar backgrounds, resulting in models with
limited robustness. Consequently, when these trained models
are applied in real-world environments, their detection per-
formance tends to decrease significantly.

In summary, these studies face two challenges in terms
of guiding agricultural production. On one hand, there is a
lack of experimental materials that are collected from real
field environments. On the other hand, there is a need to
strike a balance between the deployment cost of algorithms
and detection performance. These are the pressing issues

that need to be addressed to facilitate low-cost intelligent
upgrades in agriculture.

III. PRINCIPLE OF THE DETECTION ALGORITHM
A. IMPROVEMENT OF THE YOLOv5 NETWORK
ARCHITECTURE DESIGN
YOLOv5 [18] is a commonly used one-stage target detec-
tion algorithm, that benefits from the established PyTorch
ecosystem which makes it simpler to support and easier to
deploy. YOLOv5 was chosen for lightweighting improve-
ments due to its unique combination of accuracy, efficiency,
adaptability, and its significance in the computer vision com-
munity. It has five versions with different model widths
and depths (n, s, m, l, x) and consists of an input, back-
bone network, neck network, and detection head. The input
includes mosaic data enhancement, auto-learning bounding
box anchors, and adaptive image scaling for preprocessing
the input image. The backbone network consists of a Conv
module, C3 [19] module, and a spatial pyramid pooling-fast
(SPPF) module to extract image features. The neck network
utilizes feature pyramid networks (FPNs) [20] and a path
aggregation network (PAN) [21] to extract feature informa-
tion from different-sized targets. The detection head is used
to detect and classify the input image. Our objective is to
design a lightweight target detection model with high detec-
tion performance and few numbers of FLOPs and parameters.
Therefore, we selected the YOLOv5s model, which has good
speed and precision as the baseline model, and improved it to
reduce its hardware requirements. We present an enhanced,
lightweight YOLOv5s model to achieve superior accuracy
and speed in the detection of strawberry diseases. The archi-
tecture of this optimized model is depicted in Figure 1.

B. IMPROVED YOLOv5 NETWORK STRUCTURE
Traditional Convolutional Neural Networks (CNNs) attain
the desired level of precision by utilizing a large num-
ber of parameters and FLOPs, which often leads to fea-
ture redundancy and makes it challenging to interpret the
input images [22]. However, it is needless to expend com-
putational resources on generating superfluous feature maps
with a plethora of convolutional layers. Although lightweight
network models, such as MobileNet [23], [24], [25], and
SqueezeNet [26] reduce the number of FLOPs, the redun-
dant feature maps generated by convolution are not effec-
tively utilized. To construct networks that are suitable for
low-computation platform operations, we have integrated
GhostConv into the architecture of YOLOv5s. The Ghost-
Conv uses distributed extraction of feature maps to elimi-
nate redundancy. If each original feature corresponds to S
redundant features, the GhostConv only needs to generate
N/S base features. It uses linear transformation to expand the
original features and generate similar features. If the number
of convolutional kernels is denoted by N , the size of the input
feature map isH×W×C , the size of the output feature map is
H ′

×W ′
×N , and the size of the convolutional kernel is k×k ,

then the number of FLOPs required to perform conventional
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FIGURE 1. The improved YOLOv5s network model.

convolutional operations would be N ×H ×W ×C × k × k ,
where C denotes the number of input channels, H and W
indicate the height and width of the input feature map, and
H ′, W ′ represent the height and width of the output feature
map, respectively. If the size of the convolution kernel for
each linear operation is d × d , the RateS of the FLOPs for
conventional convolution and GhostConv can be expressed
as

RateS

=
N×H ′

×W ′
×C×k×k

N
S ×H ′×W ′×C×k×k+(S−1)× N

S ×H ′×W ′×d×d

=
C × k × k

1
S × C × k × k +

S−1
S × d × d

≈
S × C

S + C − 1
≈ S (1)

The same parameter compression ratio RateC is:

RateC =
N × C × k × k

N
S × C × k × k + (S − 1) ×

N
S × d × d

≈
S × C

S + C − 1
≈ S (2)

As depicted in Figure 2, the Bottleneck structure in the
original C3 is replaced by the GhostBottleneck, resulting in
the formation of the new C3Ghost. The activation function of
the Ghost module differs from that of ReLU function [27],
as it uses the same SiLU function [28] as in Conv. The
SiLU function has a smooth and non-monotonic lower term,
without any upper term. This function is employed to pre-
vent gradient vanishing as the number of network layers
increases. Theoretical analysis has revealed that the number
of FLOPs and parameters required for traditional convolu-
tional extracted features is approximately S times that of the

GhostConv. Therefore, the improved lightweight YOLOv5
model was constructed using GhostConv.

C. LIGHTWEIGHT BACKBONE NETWORK
The convolution operation shares convolution kernel param-
eters on the feature map of a single channel and uses different
convolution kernels for different channels. This method is
not conducive to extracting intricate features, and further-
more, convolution kernels exhibit redundancy in the channel
dimension [29]. The involution operator differs from the
convolution operator in that it shares parameters with the
channel dimension and has different parameters in the spatial
dimension, i.e., it is channel agnostic and spatially specific.
In addition, the involution operator uses large convolution
kernels to collect rich feature information in a large sensory
field [30]. This feature improves the ability of the backbone
network to discover different features at different locations
and suppresses kernel redundancy better than ordinary convo-
lution [31]. The involution operator significantly reduces the
number of FLOPs and parameters of convolutional networks
without changing the overall network architecture, provid-
ing a new strategy for network model optimization [32].
Thus, in the foundational model constructed by GhostConv,
we endeavor to balance the complexity and performance of
the lightweight network model by employing the Involution
operator. Let F ∈ RH×W×Cin denote the input feature map,
whereH ,W represent its height, width, andCin is the number
of input feature map channels. The generation of an involu-
tion kernel Ii,j for each location of the input feature Fin is
expressed as

Cm = Cin/r (3)

Ii,j = φ(fi,j) = fk
(
fc(Fi,j)

)
(4)

fc = SiLU (BN (Conv( ))) (5)

fk = SiLU (BN (Conv(fc))) (6)

where Cin is the number of input feature map channels,
Cm is the number of compressed channels, r is the channel
reduction ratio. The function φ is the generating function of
the involution kernel, consisting of the transformation matrix
fc and the transformation matrix fk . Let Fi,j be the feature
tensor of size 1 × 1 × Cin located at coordinate (i, j) on the
input feature map. Inside the cube of the feature tensor F ∈

RH×W×C , each feature tensor Fi,j located in the image lattice
can be considered as a pixel representing certain high-level
semantic patterns. After the feature map Fin is input to the
involution operator, Fi,j is extracted from Fin for channel
compression, which is compressed from Cin to Cm to obtain
the feature tensor fc ∈ R1×1×Cm . In this paper, the ReLU
activation function of the original involution operator was
replaced by using the SiLU activation function.

Figure 3 illustrates the calculation process of the involution
operator. Fi,j generates a feature tensor F ′

i,j of size 1× 1× k2

by means of the kernel-generating function φ ( k is the size
of the involution kernel), and expand it into the shape of the
kernel by reshape operation to get the involution kernel on this
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FIGURE 2. The structure of the C3Ghost module.

pixel point. Then the feature tensor of the neighborhood of the
coordinate point (i, j) on the input feature map is multiplied
and added with it to obtain the final output feature map Fout.

FIGURE 3. The calculation of the involution operator.

The involution operator possesses spatial specificity, which
enables it to capture contextual information on a larger spa-
tial scale compared with traditional convolution operators.
It dynamically allocates network weights to prioritize the
most significant visual information in the spatial domain
of the image. Experimental evidence demonstrates that the
addition of an involution operator reduces model complexity
but results in a decline in detection precision due to channel
modeling information is not sufficiently considered. There-
fore, the constructed model must have a balance between
precision and complexity.

D. ADDED ATTENTION MODULE
To enhance the feature extraction capability and compen-
sate for the performance loss caused by the improvements,
we incorporate an attention mechanism into the improved
lightweight model. Attention mechanisms selectively high-
light meaningful image information and suppress mean-
ingless information [33]. Common attention mechanisms
include squeeze-and-excitation (SE) attention [34], efficient
channel attention (ECA) [35], and the CBAM [36]. The
CBAM attention module is based on the SE attention mech-
anism and considers both spatial and channel dimensions,

FIGURE 4. The structure of the CBAM.

thereby enhancing the network’s ability to capture fine-
grained features. Compared with the CBAM attention mod-
ule, although the ECA module enhances the information
exchange between channels, it does not improve the extrac-
tion capability of the network for fine-grained features.
Therefore, the CBAM is utilized in the YOLOv5s network
to obtain the key information for the current task to improve
the efficiency and precision of image processing. It consists of
the channel attention module (CAM) and the spatial attention
module (SAM), whose structures are shown in Figure 4.

E. REPLACED UPSAMPLING METHOD
In this paper, the CARAFE operator was used to replace
the upsampling method in the YOLOv5s network to design
a lightweight and high-precision network for strawberry
disease detection. The original upsampling module of the
YOLOv5s uses a nearest-neighbor operator that generates
noise in low-resolution images, resulting in potential feature
loss. As shown in Figure 5, the CARAFE operator consists of
the kernel prediction module (KPM) and the content-aware
reassembly module (CaRM) [37]. It performs adaptive opti-
mization of the reorganization kernel and feature reorgani-
zation for each pixel point to achieve content-aware upsam-
pling. The CARAFE operator performs adaptive optimization
of its recombination kernel based on the underlying content
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FIGURE 5. The structure of the CARAFE operator.

of the feature map. It then utilizes the recombination kernel
to perform feature recombination at each pixel point, thereby
achieving content-aware upsampling.

The CARAFE module takes a feature map of size C ×

H × W as input to both its kernel prediction module and
content-aware reassembly module, resulting in an output
feature map of size C × σH × σW .The kernel prediction
module consists of three submodules: the channel compressor
program, the content encoder program and the kernel normal-
izer program. The channel compressor program uses 1 × 1
convolution to compress the number of channels of the input
feature map to Cm. The content encoder program uses the
kencoder × kencoder × Cm × Cup convolution to encode the
compressed feature map to generate the reorganization ker-
nel. Finally, the Softmax function of the kernel normalization
program is used for normalization.

In the content-aware reassembly module, each feature
point in the output feature map is mapped back to the input
feature map. The kup × kup region centered on this point and
the predicted upsampling kernel for it are then used in a dot
product operations to compute the output value. Different
channels at the same location share the same upsampling
kernel. The CARAFE operator uses a weighted sum opera-
tion to reorganization local region features, assigning higher
weights to features within the target region. This allows the
sampling points to focused on the target region and ignore the
background. Additionally, the upsampling kernel is generated
in a content-aware manner, increasing the effective receptive
field and allowing for the extraction ofmore information from
the sampled point regions.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL DETAILS AND EVALUATION METRICS
The experimental platform is based on NVIDIA RTX 2060
Super 8G GPU, Intel i5-12400F CPU@2.5GHz, and a Win-
dows 10 operating system. The software includes CUDA11.5,
cuDNN8.2, Python 3.9, and the Pytorch1.10.0 deep learn-
ing framework. The following hyperparameters were used:

the momentum was 0.937, the initial learning rate was 0.01,
the stochastic gradient descent (SGD) optimizer was used, the
weight decay was 0.0005, and a warmup [38] procedure was
used to mitigate model oscillation due to high initial learning
rate during model training. The input images were enhanced
online using hue-saturation-value (HSV) enhancement and
mosaic enhancement [39] to increase the sample size. The
input image size of themodel was 640×640×3, the batch size
was 32, and the number of network training epochs was 300.

We used the number of parameters and FLOPs, model size,
precision (P), recall (R), and mean Average Precision (mAP)
to evaluate the algorithm’s performance. The mAP is related
to P and R and is defined as follows:

mAP =

N∑
i=1

∫ 1
0 PdR

N
(7)

where the mAP is obtained by averaging the average preci-
sion of all categories, and N denotes the number of categories
detected in the network. The precision is the ratio of the
number of positive samples correctly predicted to the total
number of positive samples:

Precision =
TP

TP+ FP
(8)

The recall is the ratio of the number of positive samples
correctly predicted to the number of all positive samples:

Recall =
TP

TP+ FN
(9)

where true positives (TP), false positives (FP), and false neg-
atives (FN) denote the number of correctly detected frames,
falsely detected frames, and missed frames, respectively. The
higher the value of mAP, the better the detection performance
of the network model on the given dataset.

B. STRAWBERRY DISEASE DATASET
We evaluated the performance of the improved YOLOv5s
model for strawberry disease detection in complex natural
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FIGURE 6. Images of seven strawberry diseases.

FIGURE 7. Images of different degrees of strawberry disease. (a) Gray
Mold (b) Powdery Mildew Leaf (Mark the location of the disease with an
ellipse circle).

environments using images from open-source datasets. The
datasets used included the strawberry disease detection
dataset shared by Afzaal et al. from Jeonbuk National Uni-
versity [40], and a dataset of strawberry leaf images for
tipburn detection shared by Hariri and Avşar from Dukushele
University [41]. Agricultural experts carefully selected and
categorized the images, removing low-quality strawberry dis-
ease samples, in order to establish a high-quality strawberry
disease dataset specifically designed for complex natural
environments. The dataset was annotated using the LabelImg
annotation tool. It consists of strawberry images affected by
seven distinct disease categories, including the early, middle,
and late stages of the diseases. Figure 6 provides examples of
these seven categories of strawberry diseases.

The article provides examples of two common strawberry
diseases, white powdery mildew and gray mold, shown in
Figure 7. Strawberry white powdery mildew mainly affects

leaves, petioles, flowers, pedicels, and fruits, and is character-
ized by the appearance of white powder on the infected area.
Strawberry gray mold has the characteristics of fast trans-
mission, rapid occurrence, and strong resistance to drugs.
In the early stage of infection, the leaves are mostly diseased
from the edge and spread inward. Infected strawberry flowers
will quickly wither, and immature fruits will turn brown and
become hardened. Infection of gray mold on fruits that are
about to mature will cause the fruit to rot and generate a gray
mold layer on the surface.

As shown in Table 1, the experimental data set consisted of
2246 images. The labeled data set was randomly divided into
training, validation, and test sets using an 8:1:1 ratio. Var-
ious image augmentation techniques such as Mosaic, HSV
enhancement, and others were used to increase the sample
size and simulate natural environmental variations, including
differences in illumination and target occlusion. This dataset
was used to train the model and improve its ability to gener-
alize to new, unseen data.

TABLE 1. Strawberry disease dataset.

C. ADDITION OF INVOLUTION LAYERS
Compared with a traditional convolutional module, the
GhostConv module exhibits thenumber of parameters and
FLOPs that is only 1/S (where S is the compression ratio).
We incorporated the GhostConv module into the YOLOv5s
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backbone network and neck network (this model is called
YOLO-G) to obtain a lightweight target detection network.
On the base of the YOLO-G model, we take further action
to lightweight the model. The involution operator was added
to the backbone network of the YOLO-G model to investi-
gate its effect on network performance. Comparison exper-
iments were conducted to find the most suitable number
and location of the involution modules. To be more specific,
the involution layer was added to different positions in the
network using specific combinations, which were: (1) added
to the third, fifth, and seventh layers respectively,
(2) added simultaneously to the third and fifth layers, and
(3) added simultaneously to the third, fifth, and seventh
layers. The number of FLOPs and mAP@0.5 were compared
for the six models, and the experimental results are pre-
sented in Table 2 (Experiment 1 using the YOLO-G model).
Experiments 1, 2, 5, and 6 demonstrate that incorporate
multiple involution layers significantly reduce the number of
FLOPs and the mAP@0.5 value. However, the convergence
speed of the model is slower. Experiment 6, which utilizes
three involution layers, has the largest impact on the model
performances, and the number of FLOPs is reduced by 71.1%
and mAP@0.5 by 4.9%, compared with the Experiment 1.
Experiments 2, 3, and 4 indicate that the closer the involution
layer is to the end of the network, the higher the number of
FLOPs and the lower the mAP@0.5. Adding one involution
layer (Experiment 2) achieves a better balance between the
number of FLOPs and detection precision, and the number of
FLOPs and mAP@0.5 are reduced by 55.4% and 1%, respec-
tively, compared with the YOLO-G model. The involution
operator and convolution operator were combined to obtain
a good balance between model complexity and detection
performance. Therefore, Experiment 2 provided the optimum
results; it is referred to as YOLO-GI.

TABLE 2. Results for adding the involution layer at different locations.

D. ADDITION OF ATTENTION MODULES
The CARAFE operator is a type of upsampling operator
that is designed to capture environmental feature informa-
tion from large receptive fields and has been shown to
improve the performance of lightweight models. We lever-
aged the CARAFE operator’s capacity to obtain environmen-
tal feature information from large receptive fields to offset
the potential performance degradation resulting from model
lightweighting.

Specifically, we replaced the upsampling operator of
the YOLO-GI model with the CARAFE operator, and

named the resulting architecture as YOLO-GIC. The cor-
responding results are presented in Table 3. The preci-
sion increased by 1.4%, the recall increased by 2.4%,
but the mAP@0.5 decreased by 0.3% after replacing the
nearest-neighbor upsampling module with the CARAFE
operator. This can be attributed to the fact that the lightweight
improvement strategy reduced the feature extraction capa-
bility of the backbone network, and the CARAFE operator
adjusted the upsampling kernel based on the input feature
map, the fine-grained feature information was not adequately
considered, decreasing the mAP@0.5 value.

TABLE 3. Results for adding carafe modules.

We investigated the effect of adding the attention
modules, to counteract performance degradation resulting
from lightweight improvements to the model. Specifically,
we added the ECA, coordinate attention (CA) [42], and
shuffle attention (SA) [43] modules, and the CBAM to the
YOLO-GIC model, and conducted experiments to evaluate
their efficacy. The results, as presented in Table 4, indicate
that the CBAM module (Experiment 4) achieved the best
performance in terms of precision, recall, and mAP@0.5.
The resulting architecture, which was called YOLO-GIC-C,
showed a 0.9% increase in precision, 3.5% increase in recall,
and 1.7% increase in mAP@0.5 compared with the YOLO-
GI model, thus indicating that the improvement strategy did
not lead to a performance loss.

TABLE 4. Results for adding attention modules.

E. ABLATION EXPERIMENT
Ablation experiments were conducted on the proposed model
to evaluate the contributions of the improvements on the
performance of the strawberry disease detection model.
We added the GhostConvmodule, involution layer, CARAFE
operator, and CBAM to the baseline model YOLOv5s, and
the other training parameters were consistent with the final
proposed model. The results of the ablation experiments are
listed in Table 5, where ‘‘

√
’’ indicates that the improvement

strategy is included in the network.
The results show that the addition of the GhostConv mod-

ule to the YOLOv5s network reduced the number of param-
eters and FLOPs by 47.9% and 48.1%, respectively. The
incorporation of the involution layer alone reduced the num-
ber of FLOPs and recall by 62.5% and 2.2% and increased
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TABLE 5. Results of ablation experiments.

FIGURE 8. Regions of interest obtained from different algorithms.

the precision by 4.8%. The addition of the GhostConv mod-
ule and involution layer reduced the number of parameters
and FLOPs, the recall, and mAP@0.5 by 53.5%, 76.9%,
4.5%, and 0.3%, respectively, and increased the precision by
3.6%. These results indicate that the addition of the Ghost-
Conv module and involution operator significantly reduced
the number of parameters and FLOPs, making it feasible
for deployment on resource-constrained mobile devices but
also reducing the detection performance of the network. The
final model that included the CARAFE module and CBAM
reduced the number of parameters and FLOPs, theweight size
of the network, and the recall by 45.0%, 77.5%, 42.6%, and
1.0%, respectively. However, it increased the precision and
mAP@0.5 by 4.5% and 1.4%, respectively, compared with
the baseline model (YOLOv5s). On the strawberry disease
dataset, the lightweightmodel proposed in this study achieved
a precision of 93.3%, a recall of 90.3%, a mAP@0.5 of
94.7%, and an FPS of 92.6, with 3.9M parameters and 3.6 G
FLOPs. This result shows that the proposed YOLO-GIC-C
model achieved the best balance between model performance
and model complexity with a minor performance decrease.

The last layer of the feature map of the deep CNN contains
numerous high-level semantic features and detailed spatial
information. Thus, a visualization of the last layer of the
feature map illustrates which part of an image contributes
more to the final output of the model. To achieve this,
we used gradient-weighted class activation mapping (Grad-
CAM) [44] to visualize the class activation map. In Figure 8,
the area highlighted in red represents the region of interest
where the network is concentrating its attention. It serves as
the primary basis for evaluating the model’s performance in
terms of its ability to detection disease features. As depicted
in Figure 8 (b) and (c), the YOLO-G network effectively
covers the region of interest, demonstrating the feasibility
of adding the GhostConv module to the YOLOv5s network.
As shown in Figure 8 (c) and (d), it is evident that the
class activation maps generated by the YOLO-GI network
have a more concentrated region of interest, but a smaller
coverage area of disease regions. This suggests that the incor-
poration of the Involution operator enables the backbone
network to aggregate contextual information over a larger
spatial area. However, channel dimension sharing reduces
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FIGURE 9. Comparison of class activation maps for different strawberry diseases derived
from different models. (a) Gray mold; (b) Calcium deficiency of leaves; (c) Powdery
mildew fruit; (d) Powdery mildew leaf.

TABLE 6. Performance results for different lightweight networks.

the feature extraction capability of the network. As shown in
Figure 8 (d) and (e), the region of interest of the YOLO-GIC
network better represents the characteristic regions of the
powdery mildew on the leaf, indicating that the CARAFE
operator that performs content-based upsampling improves
the network’s ability to capture detailed features. As shown in
Figure 8(e) and (f), the region of interest of the YOLO-GIC-C
network better delineates the disease region, illustrating that
the CBAM improved the network’s feature extraction ability
and suppressed non-critical information. A comparison of
Figure 8(b) and (f) shows that the YOLOv5s mistakenly
assumed that powdery mildew occurred at the leaf edges,
whereas the proposed YOLO-GIC-C model focused on the
main characteristics of the disease and accurately delineated
the region of interest containing disease characteristics.

As shown in Figure 9, the regions of interest in the class
activation maps generated by the YOLOv5s network did not
focus on the features related to strawberry disease, while
the YOLO-GIC-C model accurately highlighted the affected

regions. The proposed strawberry disease detection model
demonstrated better proficiency in capturing the strawberry
disease features compared to the YOLOv5s network, and
effectively avoided the loss of target features, showcasing its
superior performance for strawberry disease detection.

F. COMPARISON WITH RELATED METHODS
The performance of the proposed model was compared with
that of other algorithms such as YOLOv3-tiny, YOLOv4-
Mish, and PPYOLOE-S, and the results are listed in Table 6.
The YOLO-GIC-C model has the second-smallest num-
ber of parameters and weight size after YOLOv5n and
YOLOv8n, the lowest number of FLOPs, and the highest
mAP@0.5 and recall. These results demonstrate that the
proposed lightweight target detection algorithm is superior
to comparable algorithms, exhibiting higher precision, fewer
FLOPs, and lightweight architecture.

The proposed lightweight model was also evaluated on
the PlantDoc dataset [45], which is a publicly available
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TABLE 7. Performance results of different lightweight networks on PlantDoc dataset.

dataset containing images of 13 plant species and 27 cate-
gories (17 categories of diseased leaves and 10 categories of
healthy leaves) The results in Table 7 show that the proposed
lightweight model outperforms YOLOv5s and achieves a
precision, recall, andmAP@0.5 of 44.5%, 42.4%, and 27.9%,
respectively. Additionally, compared with other models, the
proposed model achieved the lowest FLOPs, highest preci-
sion, second-highest recall, and second-highest mAP@0.5.
Although the precision and mAP@0.5 of the proposed model
were slightly lower than YOLOv8s, its number of parameters,
FLOPs, and model size were only 34.8%, 12.5%, and 36%
of YOLOv8s, respectively. The comparison between the two
datasets also revealed that the PlantDoc dataset has more
detection categories but fewer images per category. Overall,
the proposed model structure can be retrained for different
datasets or scenarios to meet the real-time detection needs of
plant diseases. By comparing the PlantDoc dataset and the
strawberry disease dataset, it was observed that the former
has more detection categories but fewer images per category.
Furthermore, YOLOv8s model has a substantially higher
number of parameters, FLOPs, and weight size than the pro-
posed lightweight model. In practical application scenarios,
the proposed model structure can be retrained for single or
multiple different datasets or scenarios to meet the real-time
detection requirements of plant diseases.

V. DISCUSSION
The strawberry disease dataset contains images of 7 different
types of strawberry diseases at various stages of infection
in complex natural environments. According to Table 8,
the lightweight model proposed in this paper demonstrates
effective performance in detecting angular leaf spot, blossom
blight, and calcium deficiency of leaves. However, the recall
rates for powdery mildew fruit and powdery mildew leaf
are relatively low at 80.3% and 80.7%, respectively, which
are lower than the average recall rate by 10% and 9.6%,
respectively. Through the analysis of the dataset and the
observation of the results on the test set, it was found that the
severity of strawberry disease infection and the environment
have a significant impact on detection performance. Due to
the different background environments in each category and
the indistinct disease characteristics that are easily affected
by lighting, the number of false positives and false negatives
has increased to a large extent.

For example, as illustrated in Figure 10 (a), gray mold
was predicted as powdery mildew fruit due to lighting

TABLE 8. Performance results for detecting different strawberry diseases.

effects. The similar white disease characteristics of gray mold
and powdery mildew fruit resulted in the misclassification
of gray mold samples as powdery mildew fruit samples.
Figure 10 (b) and (c) show the reasons for the undetected
white powdery mildew disease. The early features of fruit
powdery mildew and leaf powdery mildew are not obvious,
and the low distinguishability of leaf powdery mildew fea-
tures and background environments under the light has led to
model omissions.

FIGURE 10. False positive and false negative display for strawberry
disease detection. (a) Gray mold, (b) Powdery mildew fruit, (c) Powdery
mildew leaf. (false positive and false negative targets are marked with
red and yellow ovals, respectively).

The proposed lightweight model for the real-time detec-
tion of strawberry diseases in greenhouses, even in com-
plex environments, shows excellent potential. It has achieved
93.3% precision and 94.7% mAP@0.5, which were 4.5%
and 1.4% higher, respectively, than those of the YOLOv5s
network. This model exhibited significantly lower compu-
tational complexity than comparable models, whereas pro-
viding high precision, enabling farmers to detect strawberry
diseases timely and accurately to prevent disease spread.
A camera is indispensable for acquiring the input images.
Thus, the image quality affects the modeling accuracy. Early
signs of strawberry diseases may be difficult to detect, and
some images had blurred backgrounds and overexposure,
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resulting in false or missed detections. Therefore, the quality
of images requires improvement, and richer datasets are nec-
essary for enhancing detection performance. Furthermore,
different camera deployment schemes are needed for different
strawberry diseases, minimizing the risk of interference by
non-strawberry disease targets.

VI. CONCLUSION
The paper proposed a lightweight strawberry disease detec-
tion network called YOLO-GIC-C, an improvement of
YOLOv5s, for plant disease management. The model enables
the real-time detection of strawberry diseases in green-
houses using mobile devices at low cost. The YOLOv5s
was improved to maintain a balance between model com-
plexity and model performance. The GhostConv module and
involution operator expanded the effective receptive field of
the CNN, reducing the number of parameters and FLOPs
and the weight size of the network by 53.5%, 76.9%, and
45.4%, respectively, but decreasing model performance. The
CBAM and CARAFE module enhanced the model detec-
tion performance by focusing on meaningful information on
strawberry diseases and suppressing unimportant informa-
tion. On the strawberry disease dataset, the final model had
45.0% fewer parameters, 77.5% fewer FLOPs, and 42.6%
lower weight size than the YOLOv5s model, and the pre-
cision and mAP@0.5 were 4.5% and 1.4% higher, respec-
tively. The mAP@0.5 of the improved model was 12.9%,
0.6%, 1.2%, 3.9%, 4.3%, 0.8%, 1%, 5.3%, 1.2%, and 0.4%,
higher, and the number of FLOPswere 72.1%, 82.5%, 74.1%,
14.3%, 58.1%, 70.7%, 77.9%, 72.7%, 56.1%, and 87.5%
lower than that of mainstream target detection algorithms
(YOLOv3-Tiny, YOLOv4-Mish, PPYOLOE-S, YOLOv5n,
YOLOv5Lite-C, YOLOX-Tiny, YOLOX-S, YOLOv7-Tiny,
YOLOv8n, YOLOv8s, respectively). The results demonstrate
that the proposed algorithm has significantly lower hard-
ware requirements than comparable models, demonstrating
its excellent applicability for plant disease identification in
complex environments. In future research, we plan to improve
the detection performance by optimizing the network struc-
ture and adopting the latest high-performance benchmark
model. Furthermore, we plan to deploy the model in embed-
ded mobile devices for the real-time detection of strawberry
diseases in greenhouses, making it more accessible and con-
venient for farmers.
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