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ABSTRACT Image classification techniques have succeeded greatly on various large-scale visual datasets
using deep convolution neural networks. However, previous deep models usually suffer severe performance
degradation in highly skewed datasets, which restricts their practical application. In this paper, we propose
a novel Hierarchical Rebalancing Dual-Classifier model for long-tailed recognition. To better identify the
tail samples and maintain the performance of head classes, we propose a dual-classifier framework with
a uniform sampler for performing their duties. For balancing the learning of feature representation and
classifiers, a dynamic weight is introduced to adjust the model’s attention. To alleviate the feature deviation
between training data and testing data, a hierarchical rebalancing loss is designed for the re-weighting
branch, which adjusts the decision values in predicted logits to facilitate the model actively compensating
for tail categories. Finally, we conduct extensive experiments on standard long-tailed benchmarks Cifar10-
LT, Cifar100-LT, ImageNet-LT, and iNaturalist2018, demonstrating the effectiveness and superiority of our
HRDC.

INDEX TERMS Image classification, long-tailed distribution, imbalance learning, dual-classifier frame-
work, hierarchical rebalancing loss, dynamic weight.

I. INTRODUCTION
With the development of deep convolution neural net-
works (DCNNs), the performance of image classification
has achieved great success with high-quality and large-scale
datasets [1], [2], [3], [4], such as ImageNet2012 [5], MS-
COCO [6], and so on. Unlike the carefully selected images
with uniform distributions of labels in these datasets, there
are more significant challenges for real-world data, in which
they are imbalanced and long-tailed [7], [8], [9]. As shown in
Figure 1, the label distribution is highly skewed, where a few
categories occupy most of the samples and most categories
only have rarely a few data. When tackling such long-tailed
data, current deep models are difficult to achieve outstanding
performance [10], [11], [12], because they tend to fit the

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhenhua Guo .

head classes and cause the tail category features to be under-
expressed.

In the literature, class rebalancing is the common way
to deal with long-tailed distribution, which includes re-
sampling [13], [14] and re-weighting [15], [16], [17].
Re-sampling enables the models to be trained with relatively
balanced samples through different sampling strategies,
which can alleviate the extreme imbalance between different
categories [18], [19]. The sampling strategies contain class
rebalancing sampling [20], [21], square-root sampling [22],
progressively-balanced sampling [16], etc. Re-weighting
mainly weights the losses of different categories so that
the model can treat different samples more equally [23],
[24], [25], and it can alleviate the prejudice of classifiers
against these categories. The classical re-weighting strategies
are Focal loss [24], Class-balanced loss [20], Equalization
loss [23], and so on. Besides, metric learning [26], [27], meta-
learning [8], and transfer learning [28], [29], [30] also can
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FIGURE 1. The long-tailed data distribution in real-world.

be used to relieve the troubles of long-tailed recognition.
However, although the existing methods improve the accu-
racy of tail classes, it inevitably sacrifices the performance
of the head classes, which presents a typical ‘‘seesaw’’ [31],
[32]. For example, the re-samplingmay overfit the tail classes
by oversampling or underfit the head classes by undersam-
pling. Zhou et al. [32] proposed that the re-sampling strate-
gies might unexpectedly damage the feature representative
ability of the deep models. The re-weighting methods bal-
ance the weight of classifiers among different categories,
but distort the original distributions [7], [16]. It is difficult
for DCNNs to optimize with the re-weighting, which also
severely impairs the generalization ability of deep models.

In this paper, we propose a novel Hierarchical Rebalancing
Dual-Classifier (HRDC) model for long-tailed visual recog-
nition. HRDC mainly consists of a dual-classifier framework
with a unique uniform sampler and a hierarchical rebalancing
loss function to guide the training of the HRDC. It aims
to improve the performance of tail classes and alleviate
the degradation of head performance. Inspired by the BBN
model [32], the features learned by cross entropy can be
better represented.We design a dual-classifier framework that
includes a uniform sampler and two classifiers. A plain clas-
sifier equipped with the cross entropy loss is used for learning
universal patterns, and another re-weighting classifier is for
rebalancing training. In the training process, the focus of
HRDC will be gradually shifted from the plain classifier to
the re-weighting classifier for both the learning of the feature
representation and classifiers. Different from ensemble meth-
ods [31], [33], [34], which usually take different sampling
strategies for several branches, HRDC adopts the unique
uniform sampler for these two classifiers without any dataset
division for concise and convenient model training. Further-
more, to alleviate the side effect of re-weighting, we propose
a hierarchical rebalancing loss function for the rebalancing
branch, which tries to improve the performance of tail classes

and maintain the feature representation of head classes. The
improvements of Top-1 accuracy on four mainstream long-
tailed datasets: Cifar10-LT, Cifar100-LT, ImageNet-LT, and
iNaturalist 2018, show the effectiveness of our HRDC than
other state-of-the-art methods with re-weighting strategies.
The main contributions of our paper are summarized as
follows.

• We propose a novel dual-classifier framework with a
uniform sampler for long-tailed recognition, in which
a plain classifier maintains the performance of head
classes and a re-weighting classifier effectively identi-
fies the tail samples.

• We introduce a dynamic weight to adjust the model’s
attention to different classifiers in training, which can
protect the ability of feature representation and improve
the classifier learning.

• We design a hierarchical rebalancing loss to guide the
training of the re-weighting branch. By adjusting the
decision values in predicted logits, the model can effec-
tively alleviate the feature deviation between training
data and testing data.

II. RELATED WORKS
A. DATA DISTRIBUTION REBALANCING
Re-sampling is one of the most widely-used schemes for
long-tailed recognition to pursue the rebalancing of training
samples [13], [16]. It can over-sample the rare instances [18],
[35] or under-sample the frequent instances [19], [36]
to balance the data distribution. The common ways of
re-sampling are random over-sampling and random under-
sampling. In recent years, most researches have focused
on class rebalancing for long-tailed distribution, including
class rebalancing sampling [20], square-root sampling [22],
progressively-balanced sampling [16], etc. Different from
instance-balanced sampling, each class can be selected with
equal probabilities in class-balanced sampling. In square-root
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sampling [22], the possibilities of being selected for each
class are related to the square root of the frequency of
the corresponding category. The progressively-balanced sam-
pling [16] computes the sampling probability by interpo-
lating progressively between instance-balanced and class-
balanced sampling. In addition, Dynamic curriculum learning
(DCL) [37] proposed a dynamic sampling strategy. As train-
ing goes by, the sampling probability will be reduced if more
instances from one class are sampled.

B. COST-SENSITIVE LEARNING
Cost-sensitive learning tries to adjust the loss value of dif-
ferent categories to re-balance data distribution [17], [38].
Re-weighting is one of the classical methods [23], [24],
[25], [28], [39], which assigns weights to different categories
according to the labeling frequency of training samples,
namely weighted softmax loss. Park et al. [40] improved the
loss by adjusting the influence of label frequencies on loss
weights based on sample influence. Ren et al. [20] proposed
the balanced softmax loss to adjust model predictions through
the label frequencies in the training process, which can soften
the biases from long-tailed distribution by the prior knowl-
edge. Without the label frequencies, Cui et al. [41] intro-
duced the ‘‘effective number’’ to approximate the number
of expected samples of different categories. Lin et al. [24]
proposed the Focal loss and explored the re-weighting based
on the difficulty of predictions. In equalization loss [23], they
directly ignore the loss values of tail-class samples for the
negative pairs of head classes to balance the contributions of
different categories.

C. ENSEMBLE LEARNING
The ensemble models mainly generate and combine multiple
network modules, such as multiple experts and branches,
to deal with the problem of long-tail recognition [31], [32],
[33], [34], [42], [43]. The existing ensemble methods usually
train multi-experts with different dataset divisions [31] or
with varying strategies of sampling [32]. Zhou et al. [32] pro-
posed the BBN model, which includes a conventional learn-
ing branch with uniform sampler and a rebalancing branch
with reversed sampler. Similar to BBN, Wang et al. [42] pro-
posed a dual classification head scheme for long-tail instance
segmentation. Xiang et al. [34] divide the long-tailed dataset
into several balancing subsets, and each subset is used to
train an expert. Cai et al. [31] divide the dataset into multiple
skill-diverse and overlap subsets for training experts with
different domains.

III. PROPOSED METHODOLOGY
In this section, we discuss the methodology and implemen-
tation details of HRDC model. We show the problem for-
malization and the framework of our HRDC in section III-A.
The HRDC can be divided into the following three parts: (1)
With the uniform sampler, image features are learned and

extracted through the backbone framework in Section III-B;
(2) In Section III-C, we propose the dual-classifier framework
for long-tailed recognition and design a dynamic-adaptive
weight for model training, which shifts the focus of our
model from the general learning to imbalancing learning;
(3) The hierarchical rebalancing loss has been introduced for
re-weighting classifier to improve the tail recognition and
maintain the performance of head classes in Section III-D.

A. MODEL OVERVIEW
1) PROBLEM FORMALIZATION
Deep long-tailed visual recognition is to learn a DCNNmodel
from a highly skewed image dataset, where a few head classes
have massive samples and lots of tail classes are only a few
samples. LetDs = {xi, yi}

nT
i=1 denotes the training set in long-

tailed recognition, where the class label of the sample xi is
yi. The total number of training samples nT in C categories
can be denoted as nT =

∑C
k=1 nk , where nk is the sample

number ofK -th categories.Without loss of generality, we sort
the categories according to the cardinality in decreasing order
of sample number. If i1 < i2, then ni1 ≥ ni2 and n1 ≫ nK .
The imbalance ratio can be defined as n1/nK .
The learning of long-tailed distribution faces two chal-

lenges. On the one hand, the imbalanced training data makes
the predictions biased toward the head classes. On the other
hand, the tail classes are usually under-represented, leading
to the poor identification of tail samples. The existing meth-
ods seek to improve the accuracy of tail classes by rebal-
ancing and over-sampling, but it inevitably hurts the head
classes [16], [32]. In this paper, we design a dual-classifier
framework with dynamic-adaptive learning, and propose a
hierarchical rebalancing loss for the re-weighting classifier,
which can maintain the feature representation of the model
and improve the classifier ability for tail classes.

2) THE FRAMEWORK OF HRDC
As shown in Figure 2, we briefly summarize the framework
of our Hierarchical Rebalancing Dual-Classifier (HRDC)
model. It consists of three modules: (1) Sampler and fea-
ture extraction module is responsible for sampling images
and extracting visual features through the backbone net-
work. We take the uniform sampler for instance sampling in
HRDC. (2) Dual-classifier module includes two classifiers.
One of them is used for learning universal patterns from
the original data distribution. Equipped with the plain clas-
sifier, HRDC can conduct representation learning for better
features. Another is used for rebalancing learning by re-
weighting, which can pay more attention to the tail samples.
The image features are inputted to the dual-classifier module,
and then HDRC generates two logits by these classifiers,
respectively. The predicted outputs are aggregated and fused
by the dynamic-adaptive weight during training. (3) Rebal-
ancing training module contains two kinds of loss functions
to guide the model training. The conventional cross-entropy
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FIGURE 2. The briefly framework of our Hierarchical Rebalancing Dual-Classifier (HRDC) model.

loss is used for plain classifier training. For the rebalancing
classifier, we propose a novel hierarchical rebalancing loss to
distinguish different frequency categories. Finally, the model
will gradually transfer the focus from universal patterns to
rebalance learning, to improve the discrimination ability of
tail samples and alleviate the decline of the performance of
head classes.

B. SAMPLER AND FEATURE EXTRACTION MODULE
The sampler and feature extraction module is the basic net-
work of our model. Different from other multi-branches mod-
els, we use the uniform sampler for dual classifier learning
without any rebalancing sampling. In instance-balanced sam-
pling, each sample has an equal probability of being selected.
We take the ResNet [44] or ResNeXt [45] network as the
backbone to learn and extract the image features.

C. THE DESIGN AND FUSION OF THE DUAL-CLASSIFIER
FRAMEWORK
In this section, we will elaborate on the details of dual-
classifier framework. After the instance sampling, the train-
ing samples (xi, yi) are inputted into the backbone network for
feature extraction, and themodel generates the feature vectors
fi ∈ RD via global average pooling. As mentioned above,
the dual classifier structure includes a plain classifier for
feature learning and a re-weighting classifier for rebalancing
learning. The re-weighting classifier is mainly composed of
linear classifier and rebalancing loss function. Let ωT

R , bR,
8, and pR denotes the model classifier, bias, softmax func-
tion, and prediction probabilities, respectively. And themodel
prediction probability piR of the i-th sample in re-weighting
branch can be expressed as:

piR = 8(ωT
R fi + bR). (1)

During training, the model prediction probability piR will
be sent into the rebalancing loss to calculate the loss value
ℓR:

ℓiR = ER(piR, yi), (2)

where ER(, ) is the hierarchical rebalancing loss function for
re-weighting, which will be elaborated in Section III-D.
Similarly, the plain classifier consists of the linear classifier

and conventional cross-entropy loss function. Let ωT
C , bC , 8,

and pC denotes the model classifier, bias, softmax function,
and prediction probabilities in the traditional branch, respec-
tively. And the model prediction probability piC of the i-th
sample can be computed as:

piC = 8(ωT
C fi + bC ). (3)

And the corresponding loss value ℓC is:

ℓiC = EC (piC , yi), (4)

where EC (, ) denotes the conventional cross-entropy loss
function.

Furthermore, we design a dynamic learning strategy in
model training, which enables the attention of the model
gradually changes from the traditional branch to re-weighting
branch. Previous studies have shown that the model training
with cross entropy loss tends to learn better features for
superior classification results than other rebalancing ways.
Therefore, the model should first focus on the outputs from
the plain classifier to strengthen the ability of feature repre-
sentation. As the training goes by, the model gradually shifts
its focus from feature learning to classifier learning. It should
pay more attention to the predictions of the re-weighting clas-
sifier at the end of the training to improve the contributions
and recognition of tail samples. With the dynamic learning
strategy, two classifiers perform their duty well for both
feature representation learning and tail sample predictions.
And our HRDC can avoid damaging the frequent categories
when emphasizing the rare samples. Specifically, a dynamic-
adaptive weight α is designed to adjust the focus between
the loss ℓiC of plain classifier and the loss ℓiR of re-weighting
classifier in HRDC. The total loss fused two branches can be
computed as:

ℓi = αℓiC + (1 − α)ℓiR. (5)

In the training phase, the loss ℓiC of plain classifier will be
multiplied by α, and the loss ℓiR of re-weighting classifier will
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FIGURE 3. The feature deviation between training and test data for tail
classes. H: Head classes; T: Tail classes.

be multiplied by (1 − α). The dynamic-adaptive weight α is
automatically adjusted according to the training epochs. With
the progress of training, the weight α will gradually decrease
to transfer the model attention from the plain classifier to
the re-weighting classifier. Concretely, the weight α can be
computed as:

α = (
T − Tmax

Tmax
)2, (6)

where T denotes the current epoch, and Tmax denotes the
number of total training epochs.

D. HIERARCHICAL REBALANCING LOSS FOR
RE-WEIGHTING CLASSIFIER
In this section, we mainly introduce the hierarchical rebal-
ancing loss for the re-weighting classifier. As shown in
Figure 3, there is a feature deviation between training and
test data for rare categories in long-tailed distribution. And
the fewer the training samples of a class are, the larger
the deviation is, which may cause the poor performance
of tail classes. Therefore, to alleviate the feature deviation,
we propose a novel hierarchical rebalancing loss that intro-
duces the hierarchy into the class-dependent temperatures
loss (CDT) [46]. Equipped with the hierarchical rebalancing
loss, the re-weighting classifier should force the DCNNs to
focus on the tail samples in training. And it can enlarge the
decision values for tail classes to offset the feature deviation
between training and test data.

Inspired by the CDT, we introduce a factor α to re-adjust
the logits predicted by the re-weighting classifier. For the i-th

item in logits, the decision values li can be adjusted as:

li =
ωT
i f (xn)

ai
, (7)

where ωT
i is the i-th weight in re-weighting classifier and

f (xn) is the feature inputted to the classifier. In CDT, the
factor ai = (Nmax

Ni
)γ , where γ is the hyperparameter, and

Nmax is the number of samples for the most frequent category.
In general, the factors of tail classes are larger than head
classes. Thus, the classifier needs to generate larger logits
value for tail samples and pays more attention to the rare
categories. However, the model tends to classify samples into
header classes in long-tailed distribution. Figure 4 shows the
2-norm of classifier weights for each class, and we can find
that the weights of tail classes in the classifier are slight. For
the tail classes, the corresponding decision values could be
too small to be adjusted by DCNNs, because their classifier
weights and the related factors severely reduce the original
logits. Therefore, we propose a hierarchical rebalancing loss
to adjust the decision values and alleviate the feature devia-
tion, in which the model will adjust the factors according to
the different hierarchies.

We divide all categories into three levels according to their
number of training samples: head, medium, and tail. The
average factors āh, ām, and āt are calculated by the factors
ai of different subsets for each level, respectively. The new
factor ahi of head classes can be updated as:

ahi =


(
Nmax

Ni
)γ , (

Nmax

Ni
)γ < āh,

āh, (
Nmax

Ni
)γ ≥ āh.

(8)

For the i-th item in the logits belonging to the head level,
its factor will be replaced by the average factor āh when the
original (Nmax

Ni
)γ is large than āh, and be kept with the (

Nmax
Ni

)γ

otherwise. Similarly, we can calculate the new factors ami
of medium classes and ati of tail classes. By replacing the
factors greater than the hierarchical average with the average,
the classifier can effectively smooth the weights between
different categories. In particular, the largest factors of the
tail classes will be replaced by the average to prevent their
decision values from exceeding the adjustable range. The
hierarchical factors can be conducive to distinguishing the
boundaries between the head, medium, and tail levels. It also
makes the tail samples not be ignored by the model, to pro-
mote the model better to compensate for the feature deviation
between training data and testing data. In conclusion, the
hierarchical rebalancing loss can be expressed as:

ℓR = − log

 exp(
ωTyn f (xn)
ayn

)∑
i exp(

ωTi f (xn)
ai

)

 . (9)

In plain classifier, the probabilities piC predicted by the
classifier will be input into the cross entropy function to
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FIGURE 4. The proportion of classifier weights
∥∥wi

∥∥ for each class.

TABLE 1. The details of four imbalanced datasets.

calculate the loss value ℓiC :

ℓiC = −

∑K

k=1
yik log(p

ik
C ), (10)

where k ∈ [1, 2, 3, . . . ,K ] andK is the number of categories.

IV. EXPERIMENTS
A. DATASETS
We follow the standard evaluation protocol [7], [8], [15] in
long-tailed classification, in which the models are trained
on long-tailed datasets and evaluated on the test set with
uniform distribution. We evaluate our model on four long-
tailed datasets, including Cifar10-LT [15], Cifar100-LT [15],
ImageNet-LT [8], and iNaturalist 2018 [47]. The details of
four datasets are shown in Table.1.

Cifar10-LT and Cifar100-LT are derived from the balanced
Cifar dataset and contain 10 and 100 categories, respectively.
The imbalance factor β is used to adjust the inclination of
the training set, where β =

Nmax
Nmin

denotes the ratio between
the most frequent class to the least frequent class. We set the
imbalance factor as 10, 50, and 100, respectively.

ImageNet-LT dataset, proposed by Liu et al. [8], is the
long-tailed version of large-scale ImageNet dataset [48].
It contains 186K images and 1000 categories. The number
of different categories ranges from 5 to 1280 samples, and its
imbalance factor is 256.

iNaturalist 2018 is a real-world large-scale dataset for
species classification, which contains 437K images and
8000 categories. It suffers from an extreme distribution
imbalance, and the imbalance factor is 500.

B. IMPLEMENTATION DETAILS
For the Cifar10-LT and Cifar100-LT datasets, we follow [15]
and [32] to pre-process and enhance the training data.We ran-
domly crop a 32 × 32 patch from the original image or
its horizontal flip. Four pixels are padded on each side of
images. To maintain consistency with the previous models,
we adopt ResNet-32 [44] as the backbone network of our
model. The model is trained by standard stochastic gradient
descent (SGD) with a momentum of 0.9. The model is trained
200 epochs with batchsize of 128 on an NVIDIA 3090TI
GPU. The initial learning rate is 0.1, and the first five epochs
are optimized by linear warm-up learning strategy.

For a fair comparison, we conducted experiments on
ImageNet-LT and iNaturalist 2018 datasets with the same
settings as [32].We use ResNeXt-50 [45] and ResNet-50 [44]
as the backbone networks on ImageNet-LT and iNaturalist
2018 datasets, respectively. For all experiments, the models
are trained by standard stochastic gradient descent (SGD)
with a momentum of 0.9 on four NVIDIA 2080TI GPUs.
The images are cropped by 224 × 224. We also decrease the
learning rate from 0.1 with a cosine schedule.

C. COMPARISONS WITH STATE-OF-THE-ART MODELS
1) THE RESULTS ON LONG-TAILED CIFAR DATASETS
We have conducted lots of experiments on CIFAR10-LT
and CIFAR100-LT datasets with imbalance ratios 10, 50,
and 100. And we compare our results with the re-weighting
state-of-the-art models and some models with other re-
balancing strategies, including baseline (Cross entropy),
Focal loss [24], Mixup [49], CE-DRW [15], CB-Focal [41],
LDAM-DRW [15], BBN [32], TDE [7], CDT [46], and so
on. The results are shown in Table 2, and the best results are
highlighted in bold face.

From Table 2, we can find that our HRDC model achieves
performance improvements on all settings and gets opti-
mal results. Specifically, compared with the baseline, the
top-1 error rate on CiFar10-LT dataset with imbalance rate
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TABLE 2. Top-1 error rates on CIFAR10-LT and CIFAR100-LT datasets with
IFs = 10, 50, 100.

TABLE 3. Top-1 error rates on ImageNet-LT dataset.

100 decreases from 29.64% to 19.40%. The HRDC gets
1.20% accuracy improvements than CDT model, which
proves that the dual-classifier framework proposed in our
HRDC can effectively promote the learning of features
and classifiers than those single branch models. Under the
extreme imbalance, the top-1 error rate of our HRDC is
reduced by 2.59% on CiFar100-LT dataset with imbalance
rate 100 than BBN with two sampling branches. Compared
with other SOTA LDAM-DRW, TDE, and CDT models,
the HRDC achieves 3.11%, 1.05%, and 0.85% accuracy
improvements, respectively.

2) THE RESULTS ON LONG-TAILED ImageNet DATASET
Table 3 shows the comparison of our model and other latest
models on ImageNet-LT dataset, including baseline (Cross
entropy), Mixup [49], Focal loss [24], Range loss [27],
Lifted [50], TDE [7], OLTR [8], LWS [16], and ResLT [33].
All models are trained on ResNeXt50 as the backbone net-
work. From Table 3, the HRDC has achieved 46.8% top-1
error rate, with a 5.6% reduction compared with the baseline,
which is the best performance among all models. Compared
with the TDE, LWS, and ResLT, the accuracy of our HRDC
gets 1.3%, 1.7%, and 0.3% gains, respectively, which proves
its superiority. Following Cui et al. [33], we also report the
results on three divisions: many-shot (more than 100 images),
medium-shot (20 100 images), and few-shot (less than
20 images). Figure 5 shows the results of three divisions
for different methods. And we achieve the best outstanding
performance in head, medium, and tail classes, demonstrating

FIGURE 5. The accuracy of many-shot, medium-shot, and few-shot for
different methods on ImageNet-LT dataset.

TABLE 4. Top-1 error rates on iNaturalist2018 dataset.

that our HRDC can maintain the feature representation of
head classes and improve the recognition for tail samples.

3) THE RESULTS ON iNaturalist 2018 DATASET
Table 4 shows the results on iNaturalist 2018 dataset.
The comparative models include baseline (Cross entropy),
CE-DRW [15], CB-Focal [41], LDAM [15], LDAM-
DRW [15], BBN [32], LWS [16], τ -norm [16], TDE [7],
LADE [51], Balanced softmax [20], and CDT [46]. For
iNaturalist 2018, we report our performance with ResNet50
backbone. From Table 4, the Top-1 error rates of the baseline
and CDT models are 42.8% and 30.9%. The performance
improvement proves that it is effective to adjust the decision
value in logits. By designing the dual-classifier framework,
the Top-1 error rate of the HRDC decreases by 13.0%
and 1.1% respectively than baseline and CDT models and
achieves the best performance among all models. Compared
with the BBN, Balanced softmax, and LADE models, the
performance of our model is improved by 0.6%, 0.4%, and
0.2%, respectively. The improvements demonstrate that the
HRDC can reasonably learn the features representations and
guide the classifier learning facing the large-scale imbalanced
datasets, to better distinguish the head classes from the tail
classes and offset feature deviation.
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TABLE 5. The results of different loss functions in re-weighting branch.

TABLE 6. The results of different fusion ways and learning strategies for
our HRDC.

D. ABLATION STUDY
To better verify the effectiveness of the dual-classifier frame-
work and the hierarchical rebalancing loss in HRDC, we con-
duct two ablation studies.

1) DIFFERENT LOSS FUNCTIONS in RE-WEIGHTING BRANCH
To verify the effectiveness of hierarchical rebalancing loss,
we use the classifiers equipped with different loss func-
tions in the re-weighting branch to carry out ablation exper-
iments. Taking the cross entropy function as a benchmark
in re-weighting branch, we compare our hierarchical rebal-
ancing loss with other re-weight loss functions, such as
HCEloss, CBCE, CDT, LabelSmooth, LabelAwareSmooth,
CSCE, Focal loss, and SEQL. Table 5 shows the results of
different loss functions. From Table 5, we can find that these
cost-sensitive rebalancing losses in the re-weighting branch
can effectively improve the recognition performance for tail
samples. For example, equipped with the Focal loss, SEQL,
and CECS, the performance of the model is improved by
5.48%, 4.62%, and 3.58%, respectively. More importantly,
our hierarchical rebalancing loss achieves the best perfor-
mance, and its accuracy is 83.69%, which is 1.80% higher
than CDT loss. Figure 6 shows the feature deviation in
tail classes with and without the hierarchical rebalancing
loss. And we can easily find that the spatial distributions of
triangles are more similar to that of circles, which proves that
the hierarchical rebalancing loss alleviates feature deviation
for tail classes.

2) DIFFERENT FUSION WAYS AND LEARNING STRATEGIES
FOR DUAL-CLASSIFIER FRAMEWORK
To better understand the dual classifiers framework,
we explore different dynamic learning strategies between
two branches during training and different fusion weights for
dual classifiers in inference. To transfer the model attention,
we design three dynamic learning strategies, including equal

FIGURE 6. The feature deviation in tail classes with and without the
hierarchical rebalancing loss (HR loss).

weight, segmented weight, and cosine decay. For the fusion
of two classifiers, we design three different fusion methods,
including average fusion, head fusion, and tail fusion.

The results are shown in Table 6. We can find that the per-
formance of equal weight is worse than other learning strate-
gies, which shows that dynamically adjusting the weights
between different branches is conducive to the learning of
features and classifiers at different stages. Our model gets
the best 83.69% accuracy, with 3.59%, 3.32%, and 1.54%
improvements than equal weight, segmented weight, and
cosine decay. In addition, the performance of tail fusion is
better than average fusion and head fusion. Its performance
achieves 1.59% and 0.49% improvements, which is adopted
in our model.

V. CONCLUSION
In this paper, we propose a novel Hierarchical Rebalancing
Dual-Classifier model (HRDC) for long-tailed visual recog-
nition, in which each classifier performs its duties for the
learning of feature representation and classifiers. To balance
different branches, a dynamic weight is introduced to our
dual-classifier framework for shifting the model focus from
the plain classifier to the re-weighting classifier during train-
ing. To alleviate the feature deviation, we design a hierar-
chical rebalancing loss for re-weighting branch. By altering
the decision values in predicted logits, our model will try to
compensate the tail samples actively. Finally, by conducting
extensive experiments on four long-tailed datasets, we proved
that our HRDC could achieve the best results on imbalanced
benchmarks. And the ablation studies further verify the effec-
tiveness of all modules.
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