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ABSTRACT Chaotic systems are widely used in various aspects such as information security, signal
processing, and synchronous control. The structural complexity and the chaotic behavior of chaotic systems
are two significant factors affecting their practical applications. In this paper, we propose a universal two-
dimensional (2D) absolute-cosine chaotic model (ACCM). The 2D-ACCM is composed of a nonlinear
bounded cosine function and an absolute value function. It can construct new chaotic maps with simple
structures and complex chaotic behaviors on the basis of existing chaotic systems. To verify the effectiveness
of the proposed system, we first choose two existing one-dimensional (1D) chaotic maps and one existing
2D chaotic map as the seed maps of the 2D-ACCM to generate two new maps, respectively. The results of
chaotic behavior analysis show that these two new maps have more complex chaotic behavior and wider
chaotic ranges than seed maps and some advanced chaotic maps. Then a hardware experiment platform
based on a field-programmable gate array (FPGA) is used for the hardware implementation of the newmaps.
Finally, a simple chaos-based pseudo-random number generator (PRNG) is introduced to show the practical
application. The experimental results show that the new maps can be easily implemented on the FPGA and
the chaos-PRNGs can generate pseudo-random numbers with excellent randomness.

INDEX TERMS Chaos, chaotic behavior, 2D-ACCM, field-programmable gate array (FPGA), pseudo-
random number generator (PRNG).

I. INTRODUCTION
Chaos is an important branch of nonlinear dynamics. Amath-
ematical model that describes chaotic behavior is a chaotic
system, which has many characteristics such as initial sensi-
tivity, boundedness, ergodicity, and intrinsic randomness [1].
Because of these remarkable properties, chaos has attracted
the attention of researchers. And it is widely used in various
industrial applications [2], [3], including image encryp-
tion [4], [5], [6], signal processing [7], [8], secure commu-
nication [9], [10], chaotic synchronization [11], [12], etc.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chao-Yang Chen .

Due to the wide application of chaotic systems in different
fields, researchers have proposed a variety of chaotic systems.
According to the form of the chaotic systems, they can be
divided into two categories: discrete chaotic systems and con-
tinuous chaotic systems. For example, some classical discrete
chaotic maps include the Logistic map, the sine map, the
Tent map, etc. And a series of classical continuous chaotic
systems include Lorenz system, Chua’s circuit, etc. Similarly,
according to the dimension of the chaotic systems, they can
be divided into two types: high dimensional(HD) chaos and
low-dimensional chaos. For example, Mansouri et al. pro-
posed the 1D sine powered chaotic map inspired by the sine
map [13]. Wang et al. designed 1D Logistic self-embedding
chaotic map based on the Logistic map and the sine map [14].
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Teng et al. designed a 2D hyperchaotic map using the Logis-
tic map and two sine maps, called 2D-CLSS [15]. Li et al.
proposed a 2D conditional symmetric hyperchaotic map by
introducing a polar-balanced absolute value function [16].
Zhang et al. devised a 2D lag-complex Logistic map by
extending the variables of the two Logistic maps from the
real to the complex domain [17]. Although so many chaotic
systems have been designed by researchers, these efforts
are primarily to design individual complex chaotic systems.
However, there are relatively few studies on chaotic models
that can generate multiple chaotic systems with good chaotic
performance. And most of the chaotic models proposed by
researchers are 1D systems, and there are few studies on
HD chaotic models. For example, Hua et al. proposed a sine
chaotification model as a general framework for improving
the chaotic complexity of existing 1D chaotic maps [18].
Mansouri et al. proposed a 1D chaotic map amplifier based
on the cosine function and the logarithmic function [19].
Compared with 1D chaotic maps, HD chaotic maps gener-
ally have more complex chaotic behavior, which means that
they can provide good performance in practical applications.
However, HD chaotic systems have disadvantages such as
hardware implementation difficulties. Therefore, the devel-
opment of 2D chaos is a good solution to balance the chaotic
performance and practical hardware implementation.

In order to generate more chaotic systems with bet-
ter chaotic performance, this paper proposes a general 2D
discrete chaotic framework called the 2D absolute-cosine
chaotic model (2D-ACCM). Most of the existing 2D chaotic
enhancement models can only use classical 2D chaotic maps
as seed maps to construct new 2D chaotic maps. However,
the 2D-ACCM can use not only one existing 2D chaotic
map but also two existing 1D chaotic maps as the seed
map to generate a series of novel 2D chaotic systems with
better performance. Theoretical analysis and experimental
results show that the 2D-ACCM can effectively generate a
large number of chaotic systems with better performance.
The main contributions and innovations of this effort are as
follows.

1) The 2D-ACCM is a general framework that can gener-
ate many 2D chaotic systems with better performance.

2) The new maps generated by 2D-ACCM have more
complex chaotic behavior and wider chaotic ranges
than the corresponding seed maps.

3) To verify the effectiveness of the 2D-ACCM, we first
generate two new chaotic maps using two 1D chaotic
maps or one 2D chaotic map as seedmaps, respectively.
Then the chaotic properties are analyzed by using
various analysis strategies including Lyapunov expo-
nent (LE), sample entropy (SE), correlation dimension
(CD), and the sensitivity. The results show that two new
maps have better chaotic performance.

4) To verify the performance of two new maps in practi-
cal applications, they are implemented on the FPGA
and applied to construct a pseudo-random number

FIGURE 1. Bifurcation diagrams: (a) the Logistic map, (b) the sine map,
(c) and (d) the Henon map when α = 1.4 and β ∈ (−0.4, 0.4);
(e) Trajectory of the Henon map under α = 1.4, β = 0.3.

generator (PRNG). The experimental results show that
the new maps can be used in practical applications.

The rest of the paper is arranged as follows. Section II
reviews some existing chaotic maps and introduces the
2D-ACCM. Section III generates two new chaotic maps by
using the 2D-ACCM. Section IV analyzes the chaotic perfor-
mance of the newmaps using LE, SE, CD, and the sensitivity.
Section V discusses the hardware implementation of the new
maps and their application in the PRNG. Section VI is a brief
summary.

II. EXISTING CHAOTIC MAPS AND THE 2D-ACCM
This section reviews some existing chaotic maps, and intro-
duces a new 2D discrete chaotic model called the 2D-ACCM.

A. EXISTING CHAOTIC MAPS
The Logistic map is a 1D discrete chaotic map, and its math-
ematical model can be written as

xi+1 = 4αxi(1 − xi) (1)

where α ∈ [0, 1] is the control parameter [20]. When
α ∈ [0.89, 1] (approximately), the system exhibits chaotic
behavior.

The sine map is a widely used unimodal map driven by a
sinusoidal function, and its mathematical definition is

xi+1 = α sin(πxi) (2)

where the system parameter α ∈ [0, 1] [23]. The sine map
has chaotic behavior when α ∈ [0.87, 1] (approximately).

The Henon map is a discrete 2D chaotic map. Its mathe-
matical model is defined as{

xi+1 = 1 − αx2i + yi
yi+1 = βxi

(3)

where α and β are the control parameters of the Henon
map [22]. When α = 1.4 and β = 0.3, the map has chaotic
behavior.

For a 1D discrete system, a bifurcation diagram is used
to describe its output change with the control parameter.
For a 2D discrete system, the bifurcation diagram plots the
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variation of the variable x or y with the control parameters,
and the trajectory represents the evolution of (xi, yi) when
the parameters are fixed. Therefore, the bifurcation diagram
and the trajectory can reflect the behaviors of the dynamic
systems. The bifurcation diagrams of the Logistic map, the
sinemap and theHenonmap, as well as the trajectory diagram
of the Henon map are shown in Fig. 1.

The bifurcation diagrams show that the three classic
chaotic maps all have a relatively narrow chaotic interval.
At the same time, their chaotic range is not continuous, which
may lead to chaotic degradation problems in practical appli-
cations. In addition, the trajectory of the Henon map shows
that its output is not completely distributed, and it can only
be distributed within a small interval of the phase diagram.
Moreover, its trajectory is a relatively unique shape, which
makes it easier to be cracked by related technologies. And
these characteristics may affect their practical applications.
Therefore, in order to overcome these shortcomings, it is nec-
essary to study some systems with better chaotic behaviors.

B. THE 2D-ACCM
In order to generate more 2D discrete chaotic systems with
better chaotic behaviors, we introduce a novel general 2D
discrete chaotic model called the 2D-ACCM. The 2D-ACCM
can use two existing 1D chaotic maps or an existing 2D
discrete chaotic map as the seed map to generate a novel 2D
chaotic map with better performance. The 2D-ACCMmainly
includes two parts: the nonlinear cosine function and the
absolute value function. And the boundedness of the cosine
functionmakes the output of the generated 2D discrete system
always bounded. Assuming that the 2D-ACCM is represented
by A(x, y), its simple mathematical model can be defined as

A(xi+1, yi+1) = ρπ |cos[π(H(xi, yi) + θ )]| (4)

where ρ and θ are the two adjustment parameters. H(xi, yi)
is the seed map of the system. In order to better describe the
specific mathematical definition of the 2D-ACCM, we intro-
duce its two representations, including the 1D chaotic map
as the seed map and the 2D chaotic map as the seed map,
respectively.

1) THE 2D-ACCM (THE 1D CHAOTIC MAP AS THE SEED
MAP)
When two 1D chaotic maps are selected as the seed map, the
H(xi, yi) can be expressed as{

xi+1 = C1(xi)
yi+1 = C2(yi)

(5)

where C1(x) and C2(y) are two existing 1D chaotic maps.
Thus, the 2D-ACCM can be defined as{

xi+1 = ρπ |cos[π(C2(yi) + θ )]|

yi+1 = ρπ |cos[π(C1(xi) + θ )]|
(6)

where ρ and θ are the two adjustment parameters.

2) THE 2D-ACCM (THE 2D CHAOTIC MAP AS THE SEED
MAP)
When one existing 2D chaotic map is chosen as the seed map,
the H(xi, yi) can be defined as{

xi+1 = S1(xi, yi)
yi+1 = S2(xi, yi)

(7)

where S1 and S2 are two iterative equations of the existing 2D
chaotic map. Thus, the 2D-ACCM can be expressed by Eq. 8.{

xi+1 = ρπ |cos[π (S1(xi, yi) + θ )]|

yi+1 = ρπ |cos[π (S2(xi, yi) + θ )]|
(8)

Similarly, ρ and θ are the adjustment parameters.

III. TWO NEW 2D CHAOTIC MAPS
This section uses the Logistic map, the sine map and the
Henon map as the seed maps to generate two new 2D chaotic
maps. They are used as examples to verify the effectiveness
of the 2D-ACCM.

A. THE 2D LOGISTIC-SINE MAP (2D-LS)
1) DEFINITION
A new 2D-LS map is proposed when the Logistic map and
the sine map are chosen as the seed map for the 2D-ACCM.
We set the adjustment parameters ρ = 5 and θ = 0.8, and
the definition of the 2D-LS is given by{

xi+1 = 5π |cos[π (4ayi(1 − yi) + 0.8)]|

yi+1 = 5π |cos[π (b sin(πxi) + 0.8)]|
(9)

where a ̸= 0 and b ̸= 0 are two control parameters.

2) FIXED POINTS AND STABILITY
The fixed point of a system is the element of its domain,
which maps to itself. It can be simply expressed by a math-
ematical equation [21]. For example, it is assumed that
m is fixed point of the system ϕ(•), then it will satisfy
ϕ(ϕ(. . . ϕ(m) . . .)) = m. Therefore, the fixed point (x∗, y∗)
of the 2D-LS are the root of Eq. 10.{

x∗
= 5π

∣∣cos[π(4ay∗(1 − y∗) + 0.8)]
∣∣

y∗ = 5π
∣∣cos[π (b sin(πx∗) + 0.8)]

∣∣ (10)

Obviously, the Eq. 10 is a transcendental equation, and its
exact numerical solution is difficult to find. Therefore, the
obtained fixed points are all approximate (the accuracy of
calculation is 0.0001). The change of the number of fixed
points with control parameters for the 2D-LS is shown in
Fig. 2(a), where a and b have the same step size of 10 (Ia =

10, Ib = 10).
The fixed point of a dynamic system usually has two states:

stable and unstable. A fixed point with a stable state causes
the surrounding states to be gradually attracted to the point.
However, a fixed point with an unstable state causes the
nearby states to gradually escape from the point, resulting in
system oscillations.We can judge the stability of a fixed point
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by the gradient of the system. And the gradient of the system
can be represented by the eigenvalues of the system’s Jacobi
matrix [21]. The Jacobi matrix of the 2D-LS can be calculated
as

J2D−LS =

[
0 P1
P2 0

]
(11)

where

P1 = 5π2(8ay− 4a) sin{π[0.8 − 4ay(y− 1)]}

× sign{cos[π(0.8 − 4ay(y− 1))]}

P2 = − 5bπ3 cos(πx) sin{π[0.8 + b sin(πx)]}

× sign{cos[π(0.8 + b sin(πx))]}

Thus, the characteristic equation can be expressed as

det(λE − J ) = λ2
− P1P2 = 0 (12)

We can calculate two eigenvalues by Eq. 12: λ1 =
√
P1P2

and λ2 = −
√
P1P2. According to the judgment criterion

of stability, the fixed point is stable when |λ1| < 1 and
|λ2| < 1; Otherwise the fixed point is unstable. In this
experiment, we can obtain |λ1| = |λ2|. And there is more
than one fixed point of the system when the parameters of
the system are fixed. Therefore, the calculation result of
the minimum |λ| (|λ| = min{|λ1|1, |λ1|2, |λ1|3, · · · , |λ1|t },
where the t is the number of fixed points under the same
parameter) with the change of the control parameters is shown
in Fig. 2(b). And it can be seen from Fig. 2(c) that the smallest
value of these minimum |λ| is about 2.58. Therefore, the
results show that all the fixed points are unstable. Finally,
the bifurcation diagrams and trajectory of the 2D-LS are
shown in Fig. 3(a), 3(b) and 3(c), respectively. The results
show that the outputs of the 2D-LS are randomly and com-
pletely distributed in the phase diagram. Therefore, it verifies
the effectiveness of applying the 2D-ACCM to generate a
novel 2D chaotic map with better chaotic performances.

B. THE NOVEL 2D HENON MAP (2D-NHM)
1) DEFINITION
When the Henon map is selected as the seed map of the
2D-ACCM, a new 2D chaotic map called the 2D-NHMcan be
gotten. The two adjustment parameters are set as ρ = 0.5 and
θ = 0.8. At this time, the 2D-NHM can be defined as{

xi+1 = 0.5π
∣∣∣cos[π (1 − ax2i + yi + 0.8)]

∣∣∣
yi+1 = 0.5π |cos[π(bxi + 0.8)]|

(13)

where a ̸= 0 and b ̸= 0 are the two control parameters.

2) FIXED POINTS AND STABILITY
Similarly, according to the definition of the fixed point, the
fixed points of the 2D-NHM is the roots of Eq. 14.{

x∗
= 0.5π

∣∣∣cos[π(1 − a(x∗)2 + y∗ + 0.8)]
∣∣∣

y∗ = 0.5π
∣∣cos[π (bx∗

+ 0.8)]
∣∣ (14)

Since Eq. 14 is also a transcendental equation, its exact
numerical solution cannot be obtained. Here, the preset cal-
culation accuracy is 0.0001 in the fixed point analysis and
solution. The change of the number of the fixed points is
shown in Fig. 2(d). The results show that the system has
different numbers of fixed points under different control
parameters. To judge the stability of these fixed points, the
Jacobian matrix of the system is calculated as

J2D−NHM =

[
N1 N2
N3 0

]
(15)

where

N1 = axπ2 sin[π(1.8 − ax2 + y)]

× sign{cos[π(1.8 − ax2 + y)]}

N2 = −0.5π2 sin[π(1.8 − ax2 + y)]

× sign{cos[π(1.8 − ax2 + y)]}

N3 = −0.5bπ2 sin[π (0.8 + bx)] × sign{cos[π(0.8 + bx)]}

Therefore, the characteristic equation can be written as

det(λE − J ) = λ2
− N1λ − N2N3 = 0 (16)

Then, we can get the roots of the characteristic equation:λ1 =

(N1 +

√
N 2
1 − 4N2N3)/2 and λ2 = (N1 −

√
N 2
1 − 4N2N3)/2.

According to the judgment criterion of stability, it is known
that the fixed point is unstable when max{|λ1| , |λ2|} > 1.
Therefore, in order to judge the stability of the fixed point,
the larger |λ| (|λ| = max{|λ1| , |λ2|}) is calculated. Then the
|λ∗|(|λ∗| = min{|λ|1, |λ|2, |λ|3, . . . , |λ|t }) is counted, where
the t is the number of fixed points under the same parameter.
Finally, The values of the |λ∗| under different parameters are
shown in Fig. 2(e). Furthermore, Fig. 2(f) is a magnified view
of Fig. 2(e). It can be seen that the minimum |λ∗| is about
1.14. Therefore, the result shows that all fixed points of the
2D-NHM are unstable. In addition, the bifurcation diagrams
and trajectory of the 2D-NHM are shown in Fig. 3(d), 3(e),
and 3(f), respectively. The results show that the outputs of
the 2D-NHM are randomly and completely distributed in the
phase plane space. To sum up, the 2D-NHMhas better chaotic
behavior.

In order to analyze the chaotic behaviors of the new maps
more objectively, the new maps are analyzed and tested by
using a variety of evaluation methods in the section IV. And
the results are compared with those of some advanced chaotic
maps.

IV. PERFORMANCE ANALYSIS AND COMPARISON
This section analyzes the chaotic performance of two new
chaotic maps using various measures including LE, SE,
CD and the sensitivity. In particular, the analytical exper-
iments are performed on MATLAB 2020b. In addition,
we also compare the related properties with some exist-
ing chaotic maps including the 2D-CLSS [15], the Enhance
HM [21], the Exponential sine chaotification model (ESCM)
HM [22], the Logistic map, the sine map, and the Henon
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FIGURE 2. The number of fixed points and the minimum |λ|(
∣∣λ∗

∣∣):
(a)-(c) 2D-LS, (d)-(f) 2D-NHM.

FIGURE 3. Bifurcation diagrams: (a)-(b) 2D-LS, (d)-(e) 2D-NHM;
Trajectories: (c) 2D-LS with (x0 = 0.4, y0 = 0.4, a=50, b=50), (f) 2D-NHM
with (x0 = 0.4, y0 = 0.4, a=50, b=50).

TABLE 1. Parameters setting of the chaotic maps.

map. The simple mathematical models of the Enhance HM,
the ESCM HM, and the 2D-CLSS maps can be expressed as
Eq. 17, Eq. 18, and Eq. 19, respectively.{

xi+1 = sin[π (1 − ax2i + yi)]
yi+1 = sin(πbxi)

(17){
xi+1 = esin(π(1−ax

2
i +yi))

yi+1 = esin(πbxi)
(18){

xi+1 = sin[π (ayi(1 − yi))]
yi+1 = sin[π (xi + yi)]

(19)

And in these experiments, their control parameters and
parameter interval settings are shown in Table 1.

FIGURE 4. LEs: (a) 2D-LS map, (b) 2D-NHM, (c) the Henon map.

A. LE
LE is a numerical feature used to represent the average expo-
nential divergence rate of nearby trajectories in the phase
space of a dynamical system [23]. In order to analyze the
objectivity of the results, we calculate the systems’ LEs by
using the method of the literature [24]. For a dynamic system
xi+1 = M (xi), its Lyapunov exponent λM (x) can be calculated
by Eq. 20 [22].

λM (x) = lim
n→∞

{
1
n
ln

∣∣∣∣Mn(x0 + ε) −Mn(x0)
ε

∣∣∣∣} (20)

When a dynamical system has a positive LE value, it can be
considered as a chaotic system. And if a dynamical system
has no less than two positive LE values, it can be considered
as a hyperchaotic system [5]. The hyperchaotic system has
more complex chaotic behavior. The LEs of three chaotic
maps are shown in Fig. 4. The results show that the Henon
map only has positive LEs in a small parameter range, while
the new chaotic maps produced by the 2D-ACCM has posi-
tive LEs in a larger parameter range. And the two new maps
have two LEs greater than 0 in most parameter ranges, indi-
cating that they exhibit hyperchaotic behavior in these ranges.
Table 2 shows the average LE (ALE) and the maximum LE
(MLE) for some of the existing 2D chaotic maps and three
seed maps within the parameter range shown in Table 1. The
results show that the proposed chaotic maps have larger LEs
than the seed maps, indicating that they have more complex
chaotic behavior than the seed maps. At the same time, they
also have comparable chaotic behavior compared with some
recently proposed sophisticated 2D chaotic maps. Therefore,
the results show that the 2D-ACCM can effectively generate
new 2D chaotic maps with complex chaotic behavior.

B. SE
Sample entropy is a commonly used method to measure the
complexity of time series [25]. A larger positive SE value
indicates a time series with lower regularity. Thus, we can
evaluate the complexity of a dynamical system by judging
the regularity of its output sequence. In particular, when
calculating the SEs of all chaotic maps, we set the calculation
parameters m = 2 and r = 0.2 ∗ std (std is the standard
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FIGURE 5. SEs and CDs: (a) and (d) 2D-LS map, (b) and (e) 2D-NHM,
(c) and (f) the Henon map.

deviation of the test sequence) [25]. Fig. 5(a), 5(b), and 5(c)
show the SE values of the two new maps and the Henon map,
respectively. The results show that the two new maps have
positive SE values within their entire parameter ranges and
their SE values are greater than those of the Henon map.
Thus, the time series generated by the two new maps have
lower regularity, which indicates that they havemore complex
chaotic behavior. Furthermore, the maximum SE (MSE) and
the average SE (ASE) of some existing 2D chaotic maps and
the seed maps within their parameter ranges are shown in
Table 2. The results show that the newmaps have comparable
complexity compared to the existing 2D chaotic maps, which
further confirms the ability of the 2D-ACCM to generate
complex chaotic maps.

C. CD
The CD is a kind of fractal dimension, which is widely
used to measure the chaotic behavior of a system [26].
It can characterize the strange attractors of a system by
evaluating the generated time series [27]. When the CD of
the time series produced by a dynamic system is greater
than 0, it indicates that the dynamic system has chaotic
behavior. And a larger CD means that the attractor of the
system occupies a higher space dimensionality. In this paper,
we use the Grassberger-Procaccia (G-P) algorithm to calcu-
late the CD [26]. The CD calculation results of the two new
chaotic maps and the Henon map are shown in Fig. 5(d),
5(e), and 5(f), respectively. The results show that the new
maps have positive CD values for a wide range of param-
eters, and the Henon maps have positive CDs only for a
smaller range of parameters. Meanwhile, the average CD
(ACD) and the maximum CD (MCD) of some existing
chaotic maps and the seed maps are calculated as shown in
Table 2. The results show that the new maps have larger
average CDs than the seed maps, indicating that the new
maps have more complex chaotic attractors. Moreover, the
new maps have comparable average CDs compared to some
existing 2D chaotic maps, which proves the effectiveness
of the 2D-ACCM in generating chaotic maps with complex
attractors.

FIGURE 6. Two sequences with initial conditions (x0, y0, a, b): (a) 2D-LS,
(d) 2D-NHM; Differences of sequences with initial conditions (x0, y0, a, b)
and (x0

∗, y0
∗, a, b): (b) 2D-LS, (e) 2D-NHM; And differences of sequences

with initial conditions (x0, y0, a, b) and (x0, y0, a∗, b∗): (c) 2D-LS, (f)
2D-NHM.

D. THE SENSITIVITY
The sensitivity of chaotic systems to initial conditions is one
of the most important properties. In other words, a good
chaotic system must be extremely sensitive to changes of its
initial conditions. Therefore, we evaluate the sensitivity of
the system by observing the output sequences under differ-
ent initial conditions (with very small differences). To make
the experiments more rigorous, the initial conditions for
each map are randomly generated in the whole range of
parameters.

The experiment can be described by the following steps:
First, the initial conditions are set randomly within the param-
eter range and are noted as {x0, y0, a, b} = {rand(0, 1),
rand(0, 1), rand(1, 1000), rand(1, 1000)}, where rand(0, 1)
means to take a random real number in the range of [0,1]. And
the chaotic sequences X andY are generated. Second, making
a minor change to the initial values x0 and y0, the modified
initial conditions can be written as {x0∗, y0∗, a, b} = {x0 +

10−10, y0+10−10, a, b}, and then two new chaotic sequences
X1 and Y1 are obtained. Third, making slight perturbations
to the parameters a and b, the new initial conditions can be
expressed as {x0, y0, a∗, b∗

} = {x0, y0, a+10−10, b+10−10
},

and then two new chaotic trajectories X2 and Y2 can be
gotten. In particular, the above measures are used for both
chaotic maps in the experiments. Fig. 6 (a) and 6(d) show
the trajectories of the first 50 terms of the sequences X
and Y generated by the two new chaotic maps, respectively.
In addition, the trajectories of the difference values between
the sequences X and X1 (X and X2, Y and Y1, Y and Y2)
are also shown in Fig. 6. It can be seen that the chaotic
sequences generated by the systems will gradually evolve
into completely different trajectories when there is a slight
change in the initial conditions. The results show that the
new maps exhibit strong sensitivity to their initial values and
control parameters. In addition, to quantify the sensitivity,
we calculated the correlation between the chaotic sequences,
and the results are shown in Table 3. The results show that the
correlations between the relevant sequence pairs of the new
maps are closer to 0, which indicates that the new maps have
better initial sensitivity.
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TABLE 2. The MLEs (MSEs, MCDs) and the ALEs (ASEs, ACDs) of the chaotic maps.

TABLE 3. The statistical results of correlation between trajectories.

E. AUTOCORRELATION AND POWER SPECTRUM
Autocorrelation can be used to evaluate the randomness of a
time series. The autocorrelation coefficient of a time series X
with a length L can be expressed as

AC(l) =
1
L

L−l∑
i=1

XiXi+l (21)

For a time series that exhibits good random properties, its
autocorrelation function should be approximated as the δ

function. The correlation coefficient change plots for the X
(Y) components of the two new maps are shown in Fig. 7.
The results show that the correlation coefficient change plots
are similar to the δ function, indicating that these time series
exhibit relatively good random properties.

The power spectral density function is able to provide
frequency domain information of a time series. The power
spectra of periodic sequences have spikes at fundamental or
multiplicative frequencies. However, for a chaotic sequence,
the peaks of its power spectrum are connected together or
have no obvious peaks. The power spectral densities of the
two new maps in the X (Y) components are shown in Fig. 8.
The results show that there are no significant peaks in these
power spectra, indicating that these sequences exhibit chaotic
performance.

V. HARDWARE IMPLEMENTATION AND PRACTICAL
APPLICATION
A. HARDWARE IMPLEMENTATION
Whether a chaotic system can be implemented on a hardware
platform is one of the most important factors affecting its

practical application. Therefore, this section introduces the
FPGA as the hardware platform to implement two new maps.

1) STRUCTURE DESIGNING
The circuit structure design for the hardware implementation
of the two new maps based on the FPGA is shown in Fig.9.
It mainly includes four basic modules: a startup module
SETTUP, two trigonometric function computation modules
Cordic1 (Cordic2) and one other computationmoduleOCAL.
The RST is an initialization input port used to initialize the
system, and the SEC is a selection input port used to select
the map for hardware implementation. The input ports of the
four initial conditions include X0, Y0, CTLA, and CTLB.

2) IMPLEMENTATION RESULTS
Fig. 10 shows the hardware platform environment includ-
ing an FPGA platform, a laptop, and an LCD display.
The circuit designs of the two new maps are written in
Verilog HDL with the simulation of Vivado 2018.3 and
implemented on Xilinx FPGA Zynq Xc7z010clg400-1 using
Chip scope. Finally, the output results are displayed on
the LCD. In the experiment, the data format used in the
experiments is defined by the IEEE 754 standard for 64-bit
double precision floating point data [28]. And the initial
conditions of two new maps are set to (x0, y0, a, b) =

(0.9, 0.3, 50, 50) =(3FECCCCCCCCCCCCD,3FD3333333
333333,4049000000000000,4049000000000000). The hard-
ware experiment results are shown in Fig. 11, where the
top and bottom trajectories are the output sequences X
and Y , respectively. In order to better observe the
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FIGURE 7. Autocorrelation coefficient: (a) 2D-LS (X), (b) 2D-LS (Y), (c) 2D-NHM (X), (d) 2D-NHM (Y).

FIGURE 8. Power spectrum: (a) 2D-LS (X), (b) 2D-LS (Y), (c) 2D-NHM (X), (d) 2D-NHM (Y).

FIGURE 9. FPGA circuit structure of the chaotic maps generated by the 2D-ACCM.

FIGURE 10. The environment for hardware implementation.

detailed values of the output data, the waveform simula-
tion diagrams of the experiment are shown in Fig. 12.

FIGURE 11. Hardware Implementation Results: (a) 2D-LS, (b) 2D-NHM.

The results show that the output sequences can be dis-
played correctly on the LCD screen, indicating that the
new maps can be easily implemented on the hardware plat-
form. In addition, the results of total hardware resource
consumption in hardware implementation are shown in
Table 4.
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TABLE 4. Hardware implementation on Xilinx FPGA Zynq
Xc7z010clg400-1.

FIGURE 12. Waveform diagrams in FPGA implementation: (a) 2D-LS,
(b) 2D-NHM.

B. PRACTICAL APPLICATION
Random numbers play a crucial role in a range of scientific
fields such as information security, statistics and industrial
simulation [29]. Due to the inherent properties of chaotic
systems such as randomness and unpredictability, it is suit-
able for building PRNG [30]. Therefore, in this subsection,
a PRNG is used to verify the practical application of the new
maps.

1) PRNG DESIGNING
Suppose X = {x1, x2, · · · , xk} and Y = {y1, y2, · · · , yk}
are the output data of the 2D chaotic map. Therefore, the
proposed PRNG can be expressed as

Prng = ⌊µX + εY ⌋ mod N (22)

where µ and ε are two larger real numbers, and Prng is the
generated pseudo-random number. N is a positive integer
used to bound the range of the generated pseudo-random
numbers to [0, N] and the function ⌊•⌋ means to obtain
the largest integer that is not greater than •. In the ran-
domness test experiment, we set µ = 1010, ε = 1012

and N = 256. And the control parameters a and b of the
chaotic maps are randomly selected from the chaotic ranges
given in Table 1, and the results of the parameters selec-
tion are shown in Table 5. The initial values are all set to
(x0, y0) = (0.9, 0.3).

2) RANDOMNESS TESTING
To verify the practical performance of the proposed PRNG,
we examine the randomness of the generated pseudo-random

TABLE 5. Parameters setting and TestU01 test results1.

numbers by using NIST [31] and TestU01 [32]. The software
library TestU01 is widely used to measure the randomness of
pseudo-random numbers [32]. In our experiment, the Rabbit,
Alphabit, and BlockAlphabit test suites are used for random-
ness testing. And the length of the binary sequence being
tested is set to 230 bits, in which case the Rabbit, the Alphabit,
and the BlockAlphabit include 40, 17, and 102 statistical
tests, respectively. The test results of the pseudo-random
sequences generated by different chaos-PRNGs are shown
in Table 5. The results show that the two new maps, ESCM
HM, and the Henon map can pass all tests, proving that the
pseudo-random sequences generated by these PRNGs have
good random properties.

The NIST test tool includes 15 subtests. When a sequence
is tested using the NIST test tool, each subtest is given a
Pvalue ∈ [0, 1]. When all Pvalue > 0.0001, it indicates that
the sequence has good random performance [33]. Table 6
shows the test results of the pseudo-random sequence gen-
erated by applying different chaotic maps to the PRNG.
It is worth noting that the length of the test sequences
are a series of 100 binary sequences with the length of
106 in the NIST test experiment. It can be seen from
the table that although the Pvalue of the NIST subtests
of all PRNGs are greater than 0.01, the pass rates of
three PRNGs (PRNG_(Henon), PRNG_(Enhance HM), and
PRNG_(2D-CLSS)) in the NonOverlappingTemplate subtest
items fail to meet the requirements. Only PRNG_(ESCM
HM), PRNG_(2D-LS), and PRNG_(2D-NHM) pass all test
items, indicating that they can generate pseudorandom num-
bers with better random characteristics. Therefore, according
to the test results of NIST and TestU01, three PRNGs includ-
ing PRNG_(ESCM HM), PRNG_(2D-LS), and PRNG_
(2D-NHM) are able to generate more ideal pseudorandom
numbers than the other PRNGs. And the results further ver-
ify the ability of the 2D-ACCM to generate chaotic maps
with good performance. In addition, compared with the two
complex nonlinear structures of exponential and sinusoidal
functions in the ESCM, the nonlinear structure involved in
the proposed 2D-ACCM is simpler, which indicates that the
proposed chaotic model consumes less resources in actual
hardware implementation. Thus, the chaotic maps generated
by the 2D-ACCM is more suitable for practical applications
than other chaotic maps.

1https://github.com/pkuoo/randomness-test
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TABLE 6. The results of NIST test2.

VI. CONCLUSION
In this paper, a general 2D chaotic system is proposed called
the 2D-ACCM, which can generate many new 2D chaotic
maps with complex chaotic behavior based on the existing
chaos. Firstly, two new chaotic maps produced by the 2D-
ACCM are used as examples to evaluate the effectiveness
of the 2D-ACCM. The results of the chaotic performance
analysis show that compared to seed maps and some existing
state-of-the-art complex 2D chaos, the new maps not only
exhibit more complex chaotic behaviors but also have larger
continuous chaotic intervals. Then, in order to observe the
implementation of the new maps on the hardware platform,
we introduce the FPGA as the hardware platform to verify
the hardware implementation. Finally, a simple PRNG based
on the chaos is proposed to observe the performance of
the new maps in practical applications. The experiment and
performance analysis results show that the new maps can be
implemented relatively easily on the hardware platform, and
the pseudo-random sequences generated by the chaos-PRNG
have excellent random characteristics. Our future work will
investigate specific applications of the newmaps in areas such
as information security.
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