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ABSTRACT We consider the problem of adaptive routing inwireless communication networks. The problem
is investigated in the online learning context, where the link states are assumed to be random variables
drawn from unknown distributions, independent and identically distributed across links and time. This setting
has attracted a growing interest in recent years in cognitive radio networks and adaptive communication
systems. In these networks, the devices (or nodes) are cognitive in the sense of learning the link states and
updating the transmission parameters, to allow efficient utilization of the network resources. This model
contrasts sharply with the vast literature on routing algorithms that assumed complete knowledge about
the link state means. The objective is to develop an algorithm that learns online optimal paths to transmit
the data so as to maximize the network throughput with low path cost over the network. This study makes
significant contributions in terms of algorithm design, theoretical analysis with performance guarantees,
and extensive numerical analysis to evaluate the algorithm’s performance. To achieve this goal, we present a
novel algorithm, dubbed Online Learning for Shortest-path and Backpressure (OLSB). OLSB optimizes an
objective function that balances between the cost and the load over paths. Since the path states are unknown,
the design is based on a novel learning strategy that allows efficient adaptive path selections in OLSB.
We evaluate the theoretical performance of OLSB by computing the regret, defined as the loss between
OLSB and a genie which holds full information on the link state means. We analyze the performance of
OLSB rigorously, and show that it achieves a logarithmic regret with time. Finally, extensive simulations
are presented to evaluate the performance of OLSB numerically as well. The numerical results support the
theoretical findings and demonstrate the high efficiency of OLSB.

INDEX TERMS Adaptive routing, online learning, cognitive radio networks, shortest path, backpressure.

I. INTRODUCTION
The demand for wireless communication services has
increased along with the rapid development of communi-
cation network technologies. However, spectrum scarcity
remains one of the major limitations in supporting this
growing demand. Therefore, being able to develop adap-
tive routing algorithms that utilize judiciously the spectral
resources and schedule data transmissions efficiently is a
main challenge in modern communication networks. Tra-
ditional algorithms assumed complete knowledge about the
link state means when scheduling and transmitting user data
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over selected paths. However, in a real environment, link
states vary randomly, and the distributions are often unknown.
Thus, these traditional algorithms have become inefficient
and suffer from performance degradation. This is particularly
relevant in the era of adaptive communications and dynamic
cognitive networking, where the user loads are dynamic and
heterogeneous, and need to be balanced in a challenging
unknown environment. Therefore, designing online learning
algorithms for adaptive routing in an unknown environment
has attracted a growing interest in recent years in the study
of dynamic networks, distributed learning, adaptive commu-
nications and cognitive radio networks [2], [3], [4], [5], [6],
[7], [8], [9], [10]. Specific applications include wireless sen-
sor networks, Internet of Things (IoT), and software-defined
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networking (SDN), where learning-based routing, particu-
larly the OLSB algorithm developed in this paper, can be used
to optimize data transmission between different devices and
sensors, reducing latency and improving queue stability and
network reliability.

In this paper, we consider a time-slotted wireless network,
where the state of each link is modeled by a random process
drawn from an unknown distribution, independent and iden-
tically distributed (i.i.d.) across time and other links, as in [2],
[3], [11], [12], [13], [14], and [15]. The random state of the
link is typically used to represent a channel effect of the
link quality caused by an external random process. Examples
for such models have been studied in hierarchical cognitive
radio networks, where primary users (licensed) are modeled
by external random processes, or a fading channel effect
in the open sharing wireless communication model [16].
As commonly done in routing and scheduling studies, the
state of a path (or its cost) at each time slot t is defined as
the accumulated states of all links on the path at time slot t
(e.g., when summing over path rate measures, delay effects,
small packet-drop probability effects [2], [15]). The source
node does not know the random state of a path before trans-
mission. Only after the transmitted packet reaches its destina-
tion, the source node observes the random state of the selected
path (e.g. by ACK signal information [17]). We denote a flow
f(s,d) in the network, as a traffic data from source node s to
destination node d , which generates a random number As,d (t)
of packets at each time slot t with arrival rate λs,d . We denote
the set of all flows in the network byF . We aim at developing
an online learning-based routing algorithm for flow trans-
missions in the network under unknown network state. It is
desired to achieve efficient learning of the network state to
maximize the network throughput, while preserving low sum
path costs over scheduled flows in the network. An explicit
formulation of the stochastic optimization problem is given
in Section II.

A. ROUTING DATA FLOWS WITH COMPLETE KNOWLEDGE
ON LINK STATES
Solving the shortest path problem in data networks is one
of the most popular approaches in routing algorithms. When
the link states are assumed to be completely known, the
shortest path for each source-destination pair (s, d) is defined
by the path with the minimal accumulated cost over links
in a path among all possible paths for data transmissions
from source node s to destination node d . For instance, the
popular Open Shortest Path First (OSPF) routing protocol
transmits data flows in the network over shortest paths, where
the computations of shortest path are implemented by the
well-known Dijkstra algorithm [17], [18]. The drawback of
using shortest paths to route data in communication net-
works is its tendency to increase congestion on short paths,
and consequently decrease performance in highly-loaded
networks. Backpressure routing is an alternative approach
used to overcome this issue. Using backpressure routing,
the data is transmitted through paths with low congestion.

Mathematically, the algorithm maximizes the differential
queue backlog between nodes when scheduling data trans-
missions. An important theoretical property of backpressure
routing is its ability to maximize the network throughput [17].
Therefore, it has attracted a growing attention in designing
routing algorithms [17], [19], [20], [21], [22], [23]. The
disadvantage of backpressure routing, however, is its inef-
ficiency when the network congestion is low. The reason
is that backpressure routing tends to send packets through
long paths to reduce the congestion over short paths. These
pros and cons of backpressure and shortest path routing men-
tioned above, led to a hybrid approach that takes advantage
of the strengths of both algorithms, shortest path and back-
pressure routing. The basic idea is to use shorter paths for
data transmissions when the network congestion decreases
(since using backpressure that causes large delays should
be limited in these network states), and longer paths when
the network congestion increases (since using shortest path
routing that increases congestion should be limited in these
network states) (see [24] and subsequent studies). A joint
optimization of backpressure and shortest path routing was
introduced in [24] that maximizes the network throughput as
in backpressure, but with much smaller path costs.

B. LEARNING TO ROUTE DATA FLOWS UNDER UNKNOWN
LINK STATES
In real-world communication networks, the link states are
random with unknown distributions. Consequently, the mean
values of the link states are unknown, and adaptive rout-
ing algorithms should be able to learn these values online.
Recent studies on cognitive radio networks and adaptive
communications have focused on addressing this challenge.
In these studies, various transmission scheduling algorithms
have been suggested that learn themean values of the network
states during time to update the transmission parameters and
improve the resource allocation in the network. Transmis-
sion scheduling algorithms have been studied from different
approaches and perspectives. In [25], [26], [27], [28], [29],
and [30], the multi-user dynamics was analyzed based on
game-theoretic optimization. In [31], [32], [33], [34], [35],
[36], [37], [38], [39], [40], and [41] the long-term reward
optimization of users in the network was analyzed based on
multi-armed bandit learning framework. The learning strat-
egy has been based on various methods such as reinforcement
learning and Upper Confidence Bound (UCB)-based algo-
rithms [10], [42], [43], [44], as well as deep reinforcement
learning that uses deep neural network in the reinforcement
learning optimization [45], [46], [47]. These online learn-
ing methods focused on single-hop transmissions. where in
this paper we perform the learning on multi-hop link states
to allow efficient routing. Existing learning methods for
adaptive routing in ad-hoc wireless networks were presented
in [2], [3], [6], [13], [15], [48], and [49]. In [6] the focus
was on developing energy-efficient routing, which is different
than the focus in this paper. In [49] the focus was on reinforce-
ment learning to scheduling routes based on the congestion
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level, but without considering noisy observations of the ran-
dom link states, and without theoretical guarantees on conver-
gence. The adaptive random problemwith noisy observations
of the random link states was studied in [2], [3], [13], [15], and
[48], where the focus was on solving the stochastic shortest
path routing. The challenge in these papers is to develop an
online learning algorithm that trades-off efficiently between
exploring paths to learn the network state, at the price of
selecting sub-optimal paths during this exploration phase, and
exploiting the information the algorithm has gained to solve
the shortest paths and schedule data transmissions through
these paths. One approach to schedule data transmissions is
to make decisions for end-to-end paths, and route packets
in these selected paths. This approach was adopted in [2],
[3], [13], and [48]. In [15], a different approach was used
in order to make hop-by-hop decisions. This approach was
shown to achieve better performance, particularly in adaptive
communication systems, since it allows to adjust dynamically
the inference outcome and consequently the selected routes.
The algorithm that we develop in this paper allows hop-by-
hop decisions as well. Those algorithms ([2], [3], [13], [15],
[48]) were shown to achieve efficient learning in terms of
converging to the shortest path solution. However, they all
suffer from poor performance in terms of load balancing
since they tend to increase the congestion over short paths.
This negative effect becomes especially pronouncedwhen the
network load increases, as explained in Subsection I-A.
There exist other path finding algorithms such as meta-

heuristic methods like ACO [50], PSO [51], and AI
approaches such as A*, RRT, BUG2 [52]. ACO and PSO
are metaheuristic algorithms inspired by the behavior of
social insects and bird flocking, respectively. They have been
used in networking applications to solve various optimization
problems, including routing tasks. However, both algorithms
can suffer from slow convergence and may not be suitable
for real-time routing decisions. Furthermore, our method
described in this paper allows us to prove strong theoretical
properties that have not been demonstrated using ACO and
PSO, as wewill explain later. AI approaches such as A*, RRT,
BUG2 are all routing algorithms used mainly in robotics,
autonomous vehicles, and other applications where path plan-
ning is required. A* is used to find the shortest path between
two points in a graph. RRT is designed to quickly explore
the configuration space and find a feasible path between the
start and goal points. BUG2 is designed for robot navigation
and uses a combination of gradient descent and heuristic
methods to navigate to the goal while avoiding obstacles.
These algorithms are not commonly used in packet routing
in communication networks, and typically used for path plan-
ning and navigation in robotics and autonomous systems. The
approach in this paper, however, is fundamentally different.
We adopt the optimization problem in [24] that was shown
to achieve throughput optimal performance. This paper is
the first attempt to solve [24] in the online learning context,
where the link states are unknown, and need to be inferred
online. This problem was not solved by other AI approaches

and metaheuristic algorithms as specified above. Note that
it is very difficult to estimate the theoretical speed of con-
vergence of those algorithms. By contrast, here we directly
solve the stochastic optimization problem by the proposed
OLSB algorithm, based on a rigorous UCB analysis. This
allows us to achieve strong theoretical convergence guaran-
tees of OLSB, which cannot be guaranteed in general using
metaheuristic algorithms, as discussed in the next subsection.
We refer the interested readers to [53] and [54] that offer
excellent recent overviews on routing algorithms.

C. CONTRIBUTIONS
The main contribution of this paper is the development and
analysis (theoretically and numerically) of a novel online
learning algorithm for adaptive routing under unknown link
state means, dubbed OLSB algorithm. This is the first paper
that solves the routing optimization problem introduced
in [24] in the online learning context, with rigorous theoreti-
cal analysis and performance guarantees. The main contribu-
tions are described below:

1) A NOVEL ONLINE LEARNING ALGORITHM FOR ROUTING
UNDER UNKNOWN LINK STATES
We tackle the problem of adaptive routing in the online
learning context, where the link states are unknown, and need
to be inferred online. The objective is to develop an online
learning algorithm that schedules and routes data transmis-
sions over the network such that the network throughput
is maximized, but keeps the path cost small. Mathemati-
cally, we adopt the routing optimization problem introduced
in [24] as described in Subsection I-A. Existing solutions and
algorithms to the deterministic optimization problem in [24]
(and its variations) were developed under the assumption
that the path states in the network are completely known,
as discussed earlier in Subsection I-A. However, solving
the problem in the online learning context, without relying
on this assumption remained an open research problem and
represents a significant challenge addressed by this work.
This is the first paper that solves this problem. In this paper,
we are thus facing a stochastic optimization problem associ-
ated with an exploration versus exploitation dilemma. On the
one hand, the algorithm should explore sub-optimal paths to
infer the network state, since link states are random vari-
ables following unknown distributions. On the other hand,
the algorithm should exploit the information gathered so far
to route packets in optimal paths, with the goal of converg-
ing to the deterministic optimization in [24]. We describe
the performance measure of the convergence rate rigorously
in Subsection I-C2.

To achieve the objective, we develop a novel online learn-
ing algorithm for adaptive routing under unknown link state
means, called Online Learning for Shortest path and Back-
pressure (OLSB) algorithm. By implementing OLSB, the
source node computes a desired upper bound on the cost of
all possible path selections for each new data flow that arrived
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for transmission. This computation is done by solving a
stochastic optimization that trades-off between the estimated
state of a path and its load, as well as the learning efficiency
of the unknown random states. In contrast to existing online
learning algorithms for adaptive routing that converge to a
single and fixed path which is optimal in terms of minimizing
the expected cost (see e.g., [2], [15] and references therein),
in this paper the optimal selection of a path is time-varying
since the backpressure scheduling term in the optimization
problem depends on the time-varying queue dynamics. As a
result, the learning algorithm is fundamentally different in
both the design and analysis. Specifically, we develop a novel
UCB-type rule to select paths for data flow transmissions,
named Queue UCB (QUCB), used in OLSB. The QUCB rule
maps the dynamic queue state and the empirical mean of
the path state into a path selection index, that dictates a cost
limit accordingly. OLSB uses the QUCB rule to determine
the cost limit for packet transmissions, and backpressures
packets through paths that meet the QUCB’s cost conditions.
Intuitively, when the load is low, QUCB assigns tight con-
straint to prioritize transmissions via short paths. As the load
increases, the cost constraint is relaxed to allow transmissions
via longer back-pressured paths. A detailed description of the
QUCB rule and the OLSB algorithm is given in Section III.
It is worth noting that the design of OLSB is competitive with
existing algorithms in terms of computational complexity as
well, as detailed in Subsection III-D.

2) THEORETICAL ANALYSIS AND PERFORMANCE
GUARANTEES
We provide rigorous theoretical analysis to evaluate the per-
formance of OLSB. To analyze the performance theoretically,
our benchmark for performance is a genie-aided algorithm
that has complete knowledge on the link state means, and
consequently solves the deterministic optimization problem
in [24], which was shown to be throughput optimal [24].
We define the regret as the performance loss of OLSB
(that learns online to route packets under unknown link state
means) compared to the genie-aided algorithm. As a result,
the regret evaluates how fast OLSB learns the side informa-
tion and approaches genie’s performance. We show analyti-
cally that the regret scales logarithmically with time, which
indicates that OLSB converges to genie’s performance with
the best known rate. The theoretical analyses are described in
detail in Section IV.

3) NUMERICAL ANALYSIS
Finally, we present extensive simulation results to demon-
strate the efficiency of OLSB. We simulated the identical
network of 64 nodes and 119 links as in [24]. An illustration
of the simulated network is shown in Fig. 1. The first part of
the simulations are used to validate the theoretical analysis
of the regret, and indeed the simulation results support the
theoretical findings for all parameter settings. In the sec-
ond part, we present an algorithm comparison to demon-
strate the efficiency of the OLSB algorithm, showing that

OLSB is superior to existing methods. The results were tested
under various network settings of lightly-loaded, moderately-
loaded, and highly-loaded networks, and performance mea-
sures of regret, queue length, end-to-end delay, and support-
able rates. The numerical analyses are described in detail
in Section V.

D. ORGANIZATION
The rest of this paper is organized as follows: In Section II,
we present the system model and formulate the problem.
In Section III, we present the proposed Online Learning for
Shortest path and Backpressure (OLSB) algorithm to achieve
the objective. In Section IV, we analyze the performance of
OLSB rigorously theoretically, and show that it achieves a
logarithmic regret with time. Detailed proofs are given in the
Appendix. In Section V, we present simulation results to val-
idate the theoretical findings, and demonstrate the efficiency
of OLSB. Section VI concludes the paper.

II. DESCRIPTION OF THE SYSTEM MODEL AND
PROBLEM STATEMENT
We start by describing the system model in Subsection II-A,
and then formulate the problem in Subsection II-B.

A. DESCRIPTION OF THE SYSTEM MODEL
We consider a time-slotted communication network, and we
denote the time slot index by t . Let V denote the set of
nodes (i.e., users) in the network, and E the set of edges
(i.e., communication links). The communication network is
thus modeled by a directed graph G = (V ,E). A directed
communication link between transmitter v and receiver u in
the communication network is modeled by a link (v, u) ∈ E
from node v ∈ V to node u ∈ V in the directed graph
(i.e., v, u are neighbors). Every node in the network maintains
a queue for packet transmissions through the links using a
certainMAC protocol (which we will describe later in detail).
We consider a general model of communication network
where multiple data flows need to be routed through the
network simultaneously and to share the network resources.
Let f(s,d) denote a data flow from source node s ∈ V
to destination node d ∈ V , with arrival rate λ(s,d). Let
F denote the set of all data flows in the communication
network. To model the transmission cost over a link, at each
time t , each link e ∈ E in the directed graph is associated with
a weight we(t). The weight we(t) is a random process drawn
from an unknown distribution, with support normalized to
[0, 1], i.i.d. across time slots and other links, as in [2], [3],
[11], [12], [13], [14], and [15]. Next, we define by P(v,d)
the set of all loop-free paths in the directed graph G from
node v to destination node d . We often indicate a loop-free
path p ∈ P(v,d) by a sequence of links from v to d , e.g.,
p = ((v, u), (u, x), . . . , (y, d)), or either by a sequence of
nodes from v to d , e.g., p = (v, u, x, . . . , y, d). Let Cp(t) be
the state of path p (or path cost) at time t . The path cost Cp(t)
is defined by the normalized sum of all link weights on path p:
Cp(t) =

1
|V |

∑
e∈p we(t). Note that 0 ≤ Cp(t) ≤ 1.
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B. PROBLEM STATEMENT
As introduced in [24] (with complete knowledge of all
path state means), the objective is to maximize the network
throughput, while obtaining low sum path costs over trans-
mitted flows in the network. Specifically, when the path state
means, µp =

∑
e∈p E(we(t)), p ∈ P(s,d), are completely

known, the throughput-optimal solution is to solve the follow-
ing deterministic optimization problem at each time t [24]:

arg min
p∈B(s,d)

(
Kµp + Q(s,d,m(µp))(t)

)
, (1)

where B(s,d) is a barycentric spanner on the path set P(s,d)
(see Section III-A for details), and Q(s,d,m(µp))(t) is the num-
ber of packets (i.e., queue state) in them(µp)th queue of node
s destined to node d by time t , where m(µp) is a mapping
function from µp to a queue index stored by the node. The
term K is a tuning parameter used to balance between short
paths and backpressured paths. Intuitively, the solution tends
to use short paths when the network congestion is light,
and backpressured long paths when the network congestion
increases.

Solutions to the deterministic optimization problem (1) and
variations have been studied in recent years under complete
knowledge of all path state means (see [24] and subsequent
studies). However, solving the problem in the online learn-
ing context without assuming prior knowledge of path state
means remained open. In this paper we address this problem.
The objective of this paper is thus to develop an algorithm
that converges (the performance measure is described later)
to the solution of (1) in the online learning context under
unknown path states. We are thus facing an online learning
problem with the well-known exploration versus exploitation
dilemma. On the one hand, the algorithm should explore all
paths in order to infer their states. On the other hand, it should
exploit the information gathered so far to route packets in the
optimal paths (which vary over time). To evaluate the perfor-
mance of online learning algorithms, it is common to define
the regret, which is the loss of an algorithm as compared
to the performance achieved by genie with side information
on the system. Here, we wish to design an algorithm that
minimizes the regret with respect to the optimal solution
of (1). In Section III, we develop the OLSB algorithm to solve
this problem. In Section IV, we analyze the performance
of OLSB rigorously and show analytically that the regret
scales logarithmically with time, which indicates that OLSB
converges to genie’s performance with the best known rate.

III. THE ONLINE LEARNING FOR SHORTEST PATH AND
BACKPRESSURE (OLSB) ALGORITHM
Wenowdevelop theOLSB algorithm to achieve the objective.
In the OLSB optimization, a cost constraint is computed
for each newly arrived packet based on the dynamic system
state. Then, a path for packet transmission is selected by
OLSB among the set of permitted paths that meet the cost
constraint. This allows to trade off between selecting paths
with small costs (i.e., short paths) and selecting path with low

congestion level (i.e., backpressured paths). At the same time,
the algorithm is required to efficiently learn the unknown
system state (as described later) to converge to the optimal
solution.

Algorithm parameters are defined as follows. Let
C0,C1, . . . ,CM be M + 1 quantization thresholds, such that
0 = C0 < C1 < · · · < CM−1 < 1 < CM , used to quantize
the path cost in the network (e.g., with uniform spacing).
Every node v ∈ V in the network maintains M queues
for each destination node, determined by the quantization
thresholds as described below.

Let m(c) : [0, 1] → {0, . . . ,M −1} be a mapping function
from a cost to a quantized cost level, such that m(c) = i iff
Ci ≤ c < Ci+1 (0 ≤ i ≤ M − 1). Consider a newly arrived
packet that arrives at node v, destined to node d , which is
associated with path cost constraint c, such that Ci ≤ c <

Ci+1 (0 ≤ i ≤ M − 1). Then, node v inserts the packet
to one of its queues 0, 1, 2, . . . ,m(c) = i (corresponding to
the quantization thresholdsC0,C1, . . . ,Ci, respectively) des-
tined to node d . The mechanism that determines the selected
queue is done by solving a stochastic optimization defined by
OLSB as detailed later. If node v inserts the arrived packet to
the jth queue (where 0 ≤ j ≤ i), then the algorithm updates
the path constraint for the packet to Cj. The packets stored
in queue j = 1, . . . , i are transmitted to the destination by
backpressure routing restricted to paths with cost lower than
Cj. As a result, OLSB trades off between the congestion level
by using backpressure routing and the overall path cost by
using a subset of the paths (i.e., short paths) for transmission
as we detail later. OLSB routes the packets stored in queue 0
(corresponding to path cost C0 = 0) through the shortest path
only. The queue state Q(v,d,m)(t) is defined by the number of
packets stored in the mth queue of node v destined to node d
by time t .

In the next subsections we describe in detail the three
main phases implemented by the OLSB algorithm. The pseu-
docode of OLSB is given in Algorithm 1.

A. AN INITIALIZATION STEP
We initialize OLSB by a preprocessing step used to span the
paths in the network, as commonly done in adaptive routing
algorithms (see e.g., [2], [55] and subsequent studies). This
step is done by exploiting dependencies between paths in
the network to reduce the number of paths that the nodes
need to learn by constructing a barycentric spanner [2], [55].
Consider node v and destination node d . OLSB constructs a
barycentric spanner on the path set P(v,d) to obtain a smaller
barycentric path set B(v,d) that spans P(v,d).

Recall that the link states and path costs to destinations are
random processes with unknown distributions, thus need to
be inferred. Let C̄p(t) be an estimate of the path cost mean
for path p by time t . Using OLSB, every node in the network
(say v) computes and holds C̄p(t) for all p ∈ B(v,d) for each
destination node d . Let Tp(t) be the number of times that
path p ∈ B(v,d) was selected for data transmission by time t .
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We use this property to design an efficient learning of the
path states in OLSB that allows convergence to the optimal
solution in the best-known rate as described and analyzed
rigorously later.

We kick off the algorithm by an exploration step, in which
each destination node (say d) routes a single packet for each
data flow (s, d) ∈ F through every path p ∈ B(s,d). Denote
path p by p = (s, v1, v2, . . . , vI , d) ∈ B(s,d), and a sub-path of
p by pi = (vi, vi+1, . . . , vI , d). The random costCp(0) of path
p is observed at the source node, and the random costCpi (0) of
sub-path pi is observed at node vi (e.g., each link on the path
adds its random cost to the message and consequently the cost
of any sub-path is observed through the path). The estimate
mean cost of sub-path pi is initialized to C̄pi (0) = Cpi (0) at
node vi for each node vi on path p, and the estimate mean cost
of path p is initialized by C̄p(0) = Cp(0) at the source node s.
We set Tp(0) = 1, ∀p ∈ B(s,d).

B. SCHEDULING PACKETS AT THE SOURCE NODE
We now present the routine of OLSB.We refer to time t when
describing the execution of the algorithm. The mechanism
described in the previous subsection is used to estimate the
network state during the routine of OLSB as well. Specifi-
cally, the learning mechanism uses ACK signals transmitted
from the destination node to the source node whenever a
packet (or a frame of packets) is routed through every path
in the barycentric spanner.1 The estimate mean cost C̄p(t) of
path p stored at the source node s, and C̄pi (t) of sub-path pi
stored at node vi ∈ p are updated by evaluating the empirical
mean of each path p ∈ B(s,d) for each flow (s, d) ∈ F .

We next describe the stochastic optimization problem
solved at the source node used to schedule a newly arrived
packet. Consider flow f(s,d) from source node s to destination
node d . Consider a newly arrived packet (or a frame of
packets) of flow f(s,d) at source node s. In OLSB, the source
node selects queue Q(s,d,m) (1 ≤ m ≤ M ) among the M
queues of flow f(s,d) it maintains, and stores the packet for
transmission in the selected queue. The queue selection is
based on the current queue states and the estimated path costs.
Intuitively, it is desired to store packets in queues with low
loads (to reduce the congestion in the network), as well as low
cost constraint (i.e., permitting transmissions through short
paths in terms of path cost).

Formally, to solve the scheduling problem under unknown
link states considered here, we develop a novel UCB-type
learning rule, called Queue UCB (QUCB). The Queue
UCB (QUCB) rule balances between the dynamic queue
states and the estimated path costs in the online scheduling
decision making. Specifically, at time t , a newly arrived
packet of flow f(s,d) is stored in the m(C̄p∗ (t))th queue,
i.e., Q(s,d,m(C̄p∗ (t)))

, where p∗ solves the following QUCB’s
stochastic

1Note that all paths in the network can be observed by a simple linear
combination of paths in the barycentric spanner [2].

optimization problem:

p∗
= arg min

p∈B(s,d)

(
KC̄p(t) + Q(s,d,m(C̄p(t)))(t) −

√
2 ln t
Tp(t)

)
.

(2)

Here, K is a design parameter that balances between schedul-
ing packets for transmission through short paths and through
low-congested paths. In the case where the mean cost
of paths (say µp of path p) are known, it was shown
in [24] that solving the following deterministic optimization:

argminp∈B(s,d)

(
Kµp + Q(s,d,m(µp))(t)

)
(which was formu-

lated in (1) in Section II) maximizes the network throughput,
while obtaining low sum path costs over the flows in the net-
work. Decreasing the path cost is done by increasing K , and
consequently increasing the priority of scheduling packets in
shorter paths. However, this comes at the price of increasing
the network congestion and consequently the queuing delay
(since packets are scheduled in queues with large backlogs).
In Section IV we analyze OLSB rigorously, showing that the
novel scheduler solved by QUCB’s stochastic optimization
converges to the optimal solution of the deterministic opti-
mization problem in (1) (i.e., as in the case where the path
state means are completely known) with a logarithmic regret
order with time.

C. ROUTING PACKETS THROUGH PERMITTED PATHS
Once the packet is stored in the selected queue based on
the QUCB rule, the path constraint of the queue dictates the
permitted paths for routing the packet, where only paths with
a smaller cost are permitted. We now describe the routing
algorithm through the permitted paths. Packets are routed
through the network using backpressure algorithm which
transmits them to neighbor queues, such that their differential
backlog is maximized. The selected queue at the neighbor
node is determined by the path constraint.

Specifically, for any node v, packets stored in themth queue
(i.e., with state Q(v,d,m)(t)) need to be send to destination
node d through a path whose cost is at most Cm. Also, once
transmitting the packets to a selected neighbor node (say v′),
they can only be stored in queues Q(v′,d,m′) where m′ is the
index of the m′th queue in v′, and Cm′ ≤ Cm. The selection
of the neighbor node is done by the configuration of the
backpressure parameter in OLSB as described later. Note
that the cost constraint of the packet is updated through the
path. To guarantee the routing under these path constraints,
the backpressure parameter in OLSB is defined as follows.
At time t , we define the backpressure value between neighbor
queues in nodes v and v′ to destination d , with queue levels
m and m′, respectively by:

P(v
′,d,m′)

(v,d,m) (t) ≜


Q(v,d,m)(t) − Q(v′,d,m′)(t),
if Cm′ ≤ max

(
Cm − w(v,v′)(t), 0

)
,

−∞, otherwise,

(3)
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and we define the backpressure value of link (v, v′) ∈ E by:

P(v,v′)(t) ≜ max
(
max
d,m,m′

(
P(v

′,d,m′)
(v,d,m) (t)

)
, 0

)
. (4)

At time t , the backpressure value P(v,v′)(t) is computed at
node v for each link (v, v′) ∈ E , with neighbor node v′. Then,
link (v, v∗) is selected for transmission, where node v∗ solves

v∗ = argmax
v′

P(v,v′)(t). (5)

The parameter values d,m,m′ that solve (4) for link (v, v∗)
dictate that the next transmitted packet through link (v, v∗)
leaves the mth queue destined to d at node v and enters the
m′th queue destined to d at node v∗. If the solution of (4)
is zero, then node v does not transmit a packet through link
(v, v∗) at time t . Note that in cases of half-duplex transmission
systems or the existence of interference between links, then
a certain MAC protocol can be readily applied to manage
multi-access transmissions in the link layer, as commonly
implemented by routing algorithms in wireless networks.

Finally, once packets reach the destination node d through
path p = (s, v1, v2, . . . , vI , d) originated at source node s, the
destination node d transmits back an ACK signal to source
node s through path p. Then, the nodes through the path use
the ACK signal to estimate the path cost, as described earlier
in Subsection III-A.

D. COMPLEXITY ANALYSIS
We now analyze the computational complexity of OLSB.
It was shown in [2], that by executing a barycentric spanner,
the growth in the number of paths is only cubic with the
number of nodes instead of an exponential growth of the
path complexity by executing a naive search. Hence, the
optimization in (2) used to schedule data packets at the source
node has only cubic complexity with |V |, O(|V |

3). Thus, the
path complexity of OLSB is similar to the path complexity
order in [2] and subsequent studies. Furthermore, when rout-
ing packets through permitted paths, each node (say node v)
executes at most O(NM |D|) computations in (3) and (4) in
order to implement the backpressure routing in OLSB. Here,
N is the number of neighbors of v,M is the number of queue
levels, and |D| is the number of destinations in the network
dictated by the data flows in the network. This backpressure
complexity order is similar to the one shown in [24] and
subsequent studies.

IV. PERFORMANCE ANALYSIS
In this section, we provide rigorous theoretical analysis to
evaluate the performance of OLSB. To analyze the perfor-
mance theoretically, our benchmark for performance is a
genie-aided algorithm that has complete knowledge of all
path state means, µp =

∑
e∈p E(we(t)), p ∈ P(s,d), and con-

sequently solves the deterministic optimization problem (1),
defined in Section II at each time t , which was shown to be
throughput optimal in [24].

The performance of online learning algorithms are com-
monly evaluated by the regret, defined as the loss of an

Algorithm 1 The OLSB Algorithm
Initialize: for every node v ∈ V and every flow with destina-
tion node d ∈ V do:
· Construct a barycentric spanner B(v,d) that spans the path
space P(v,d).
· At time t = 0, transmit one packet through every path
p ∈ B(v,d), observe the current random path cost, and set it as
the initial value of the estimate path cost C̄p(0), ∀p ∈ B(v,d).
· Set Tp(0) = 1, ∀p ∈ B(v,d).
· For time slot t ≥ 1, and each flow (say f(s,d)) do:
Step 1 (at the source node):
· Process a newly arrived packet (or a frame of packets) at
source node s for destination node d .
· Insert the packet to queue Q(s,d,m(C̄p∗ (t)))

, where p∗

solves (2).
Step 2 (at node v in the route):
· Let the packet arrive at node v in the route (and node v will
then transmit the packet forward).
·Compute the backpressure parameter P(v,v′)(t) for every link
(v, v′) ∈ E using (4).
· Consider link (v, v∗), where v∗ = argmaxv′ P(v,v′)(t).
· If P(v,v∗) > 0 and d,m,m′ solves (4) for link (v, v∗), then
transmits a packet that leavesQ(v,d,m) and store it inQ(v∗,d,m′)
at neighbor node v∗.
· Repeat Step 2 for every node in the route until reaching the
destination node.
Step 3 (at the destination node):
· Let the packet reaches the destination node d through path
p = (s, v1, . . . , vI , d).
· Update C̄p(t) at node s, and C̄pi (t) of each sub-path pi =

(vi, . . . , vI , d) at node vi..
· Repeat Steps 1-3 for all packets and for all data flows.

algorithm as compared to genie with side information on the
system. Here, we define the regret as the performance loss
of OLSB (that learns online to route packets under unknown
link state means) compared to the genie-aided algorithm,
described above. As a result, the regret evaluates how fast
OLSB learns the side information and approaches genie’s
performance. Below, we show analytically that the regret
scales logarithmically with time, which indicates that OLSB
converges to genie’s performance with the best known rate.
Specifically, to evaluate the performance measure, we con-
dition on the same queue states for both algorithms, and
define the regret ROLSBn at time n as the aggregated loss
in performance attained by OLSB as compared to genie’s
performance over time slots t = 1, . . . , n:

ROLSBn = E
[ n∑
t=1

(
KCpt + Q(s,d,m(Cpt (t)))

)]

−

n∑
t=1

min
p∈P(s,d)

(
Kµp + Q(s,d,m(µp))

)
, (6)
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where pt is the path selected by OLSB at time slot t , and
Cpt =

∑
e∈p we(t) is the actual path cost incurred through

the selected path pt at time slot t .
In the following theorem we provide the upper bound on

the regret ROLSBn for each flow and for all n, and show that it
scales logarithmically with time.
Theorem 1: The regret ROLSBn is upper bounded by:[

8
∑

i=1,...,L
i:1min

i ̸=0

9i ln n

(1min
i )2

]
+ (L − 1)(1 +

π2

3
)

L∑
i=1

9i, (7)

where

9i ≜ (Kµi + ηm(µi)) − (K min
j=1,...,L
j̸=i

µj + min
j=1,...,L
j̸=i

ηm(µj)),

(8)

1min
i ≜ min

j=1,...,L
j̸=i

(
(Kµj + ηm(µj)) − (Kµi + ηm(µi))

)
. (9)

Here, ln(·) is the natural logarithm, L is the number of
barycentric spanner paths of the flows, and ηm(µi) is the mean
value of queue m(µi) at the source node.
The proof is provided in the Appendix.

A. DISCUSSION ON THE THEORETICAL RESULTS
Here, we discuss the theoretical convergence and the effi-
ciency of the performance obtained under OLSB, as analyzed
in this section.

1) CONVERGING TO THE OPTIMAL TIME-VARYING
STRATEGY
Unlike existing online learning algorithms for adaptive rout-
ing that converge to a single and fixed path which is optimal in
terms of minimizing the expected cost (see e.g., [2], [15] and
references therein), the proposed OSLB algorithm converges
to the optimal time-varying selection of paths. The reason
is that the backpressure scheduling term (needed to achieve
throughput optimality [24]) in the stochastic optimization
problem depends on the time-varying queue dynamics. As a
result, the learning mechanism in OLSB is fundamentally
different in both the design and convergence analysis of the
learning algorithm. This can be observed in the design of the
QUCB rule that maps the dynamic queue state and the empir-
ical mean of the path state into a path selection index, that
dictates the cost limit of the paths accordingly. Then, OLSB
uses the QUCB rule to determine the cost limit for packet
transmissions, and backpressures packets through paths that
meet the QUCB’s cost conditions.

2) ACHIEVING STRONG REGRET UNDER OLSB
Differing from weak regret analysis used to simplify the
design of the learning algorithm by converging to a static
genie, which is restricted to select the same action over
time (see e.g., [56] and subsequent studies in [2], [15], [32],
[33], and [39]), here the algorithm converges to the optimal

time-varying selection of paths. The definition of genie is
consistent with the optimal time-varying selection of paths,
without restricting its selection rule. OLSB thus minimizes
strong regret, as analyzed in Theorem 1.

V. SIMULATION RESULTS
In this section, simulation results are presented to validate
the theoretical findings, and demonstrate the efficiency in
performance of OLSB.We simulated a directed network alike
the one in [24] with 64 nodes and 119 links. An illustration
of the network is shown in Fig. 1. The additional links were
inserted to model the case of different hopping transmissions
(as in 5G mesh networks). We simulated a network with nine
flows as shown in Table 1, such that two flows originate in
the same source node, two flows are targeted to the same
destination node and the last five are random flows. The
packet arrivals of all flows follow a Poisson process with rate
λ. We initialized the nodes with empty queues.

A. EVALUATING THE CONVERGENCE OF OLSB TO THE
OPTIMAL STRATEGY
In these simulations we demonstrate the learning efficiency
of OLSB as compared to the optimal solution by genie that
has complete knowledge of the path state means [24].

FIGURE 1. An illustration of the network used in the simulations.

We start by validating the theoretical analysis of the regret,
which measures the convergence speed of OLSB to the opti-
mal strategy. For this, we computed the regret empirically
according to (6) and normalized it by log(t) (i.e., converging
to a constant value validates the logarithmic order of the regret
with time). In Fig. 2, we show the impact of the value of the
K parameter (given in (2)) on the regret curve. We note that
since the coefficient of the logarithm in the regret expression
is inversely proportional to the value of K , lower values
of K result in a longer convergence time. This means that
it is easier to learn strategies that assign high priority for
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TABLE 1. The locations of flows used in the simulations. Flows 1 and 2
both originate at node (1, 2); flows 4 and 9 both destined to
reach node (8, 8).

transmissions over short paths. This observation is intuitively
satisfying, as the algorithm is required to learn smaller subsets
of path selections. It can be seen clearly that we obtain a
logarithmic regret order with time for each selection of K ,
which supports the theoretical results.

FIGURE 2. The empirical regret (normalized by log t) obtained by OLSB as
compared to genie’s performance, for K = [0.1, 1, 10] and λ = 1.

B. EVALUATING THE LATENCY AND NETWORK
CONGESTION UNDER OLSB
Next, we evaluate the latency and network congestion
achieved by OLSB. For this purpose, we present the average
end-to-end delay of all successful transmissions, along with
the average per-node queue lengths, and supportable rates
for different values of the K parameter, and for low, mod-
erate and high loads. We set the time slot duration to 20µs.
We compare the results with the following routing meth-
ods: (i) The backpressure routing algorithm, that routes data
in directions that maximize the differential queue backlog
between nodes to reduce the congestion [57]; (ii) theAdaptive

TABLE 2. Performance under lightly-loaded network.

Shortest Path Routing (ASPR) algorithm, that uses adaptive
strategies to learn the shortest path routing [2]; and (iii) the
recently suggested reinforcement learning routing method
that uses multi-armed bandit framework based on UCB1 for
path learning and packet transmissions (RL-UCB1) [44].

In Fig. 3, we present simulation results of a lightly-loaded
network (λ = 0.6). It is shown that setting larger K values in
OLSB leads to better performance in terms of average end-
to-end delay but results in higher queue loads. This is because
largeK values leads tomore frequent selections of short paths
by increasing this priority in the objective function. However,
we note that this is an acceptable behaviour for low arrival
rates, since the exploration of longer paths is not necessary
for load balancing. Furthermore, as discussed above, the
backpressure algorithm performs poorly under light loads
because of extensive and unnecessary exploration of paths
for network stability. Therefore, while backpressure routing
remains stable over time, it does not exploit better paths,
in terms of the total cost, as the OLSB algorithm. The ASPR
and RL-UCB1 tends to be unstable over time, as they fail to
balance the congestion in the network. In Table 2, we present
the specific supportable rates in Mbps and the average delay
over time for the various algorithms. It can be seen that
all algorithms were able to achieve supportable flow rate of
40Mbps. In this scenario, RL-UCB1 and ASPR achieves the
best delay (although more susceptible to instability due to
higher backlogged queues), since they learn shorter paths to
send packets. OLSB with K = 1 comes in third place in
terms of delay, as it provides a good balance between network
stability and delay. OLSB with K = 0.1 and backpressure
achieve significantly higher delay in this case.

In Fig. 4, we present simulation results of a moderately-
loaded network (λ = 1). We obtained a similar behaviour of
OLSB as in the lightly-loaded network, as it still performs
well. It can be seen that the improvement of OLSB over the
backpressure algorithm increases. The RL-UCB1 performs
well in this scenario as well, although its stability is lim-
ited. The ASPR tends to be unstable over time. In Table 3,
we present the specific supportable rates in Mbps and the
average delay over time for the various algorithms. It can
be seen that OLSB, backpressure, and RL-UCB1 algorithms
were able to achieve supportable flow rate of 67Mbps, where
ASPR was not able to support this rate. In this scenario, RL-
UCB1 achieves the best delay again (although more suscep-
tible to instability due to higher backlogged queues). OLSB
with K = 1 comes in second place in terms of delay, as it
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FIGURE 3. The average end-to-end delay, and average per-node queue
length in a lightly-loaded network (λ = 0.6).

TABLE 3. Performance under moderately-loaded network.

provides a good balance between network stability and delay.
OLSB with K = 0.1 and backpressure achieve significantly
higher delay in this case.

Finally, we simulated a highly-loaded network (λ = 1.5).
The results are presented in Fig. 5. It can be seen that both RL-
UCB1 and OLSB (with K = 1) learn the path cost quickly.
However, it can be inferred that the shortest-path queues
are filled quickly and the delay grows over time. This is an
undesired behaviour since sub-optimal queues remain mostly
unused. In this case, it can be seen that OLSB with K =

0.1 shows strong performance both in terms of end-to-end

FIGURE 4. The average end-to-end delay, and average per-node queue
length in a moderately-loaded network (λ = 1).

delay as well as queue stability. This is obtained by reducing
the priority of using short paths when decreasing K in the
OLSB optimization. This is intuitively satisfying, as increas-
ing the priority of backpressured transmissions together with
efficient path exploration and exploitation mechanism of
the OLSB optimization is desired in high loads. Finally,
the pure backpressure algorithm shows balanced behaviour,
as expected when all queues are utilized equally. Moreover,
it can be seen that OLSB with K = 0.1 achieves low con-
gestion level compared to the other algorithms. As expected,
both RL-UCB1 and ASPR perform poorly under high loads
in terms of average queue length since they highly prioritize
transmissions through short paths rather than transmissions
that achieve efficient queue balancing. Furthermore, it can be
seen that OLSB outperforms the RL-UCB1 and backpressure
algorithms. This is because RL-UCB1 learns a fixed set of
paths across time, while OLSB balances between the mini-
mal cost and the time-varying queue states. Also, the back-
pressure algorithm results in sending packets in long paths,
which reduces the performance in terms of end-to-end delay.
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FIGURE 5. The average end-to-end delay, and average per-node queue
lengths in a highly-loaded network (λ = 1.5).

TABLE 4. Performance under highly-loaded network.

In Table 4, we present the specific supportable rates in Mbps
and the average delay over time for the various algorithms.
It can be seen that only OLSB and backpressure algorithms
were able to achieve supportable flow rate of 100Mbps, where
RL-UCB1 andASPRwere not able to support this rate. OLSB
with K = 1 achieves the best delay, and provides an excellent
balance between network stability and delay. OLSB with
K = 0.1 and backpressure achieves higher delay in this case
again.

In summary, the superior performance of OLSB com-
pared to existing methods can be attributed to its hybrid

approach, which exploits the strengths of both backpressure
and shortest-path algorithms. The underlying idea of OLSB
is to use shorter paths for data transmissions during times of
low network congestion, while longer paths are used during
periods of high congestion. This strategy helps to limit the use
of backpressure (which can cause significant delays) during
periods of low congestion and restrict the use of shortest
path routing (which increases congestion) during periods of
high congestion. In our simulations, we observed excellent
performance of OLSB when the balance parameter K was set
to 1. The second reason for the strong performance of OLSB
is its ability to solve the stochastic optimization problem
associated with exploration versus exploitation of network
states. OLSB is carefully designed to achieve the best possible
regret order, as outlined in Theorem 1.

VI. CONCLUSION
We investigated in this paper the problem of efficient adap-
tive routing under unknown path states. We developed a
novel algorithm, dubbed OLSB, to maximize the network
throughput while maintaining small cost of end-to-end flows.
We have analyzed OLSB theoretically and showed that it
attained a logarithmic regret order as compared to genie
with complete knowledge of the path state means. We pre-
sented simulation results that support the theoretical findings,
and demonstrate strong performance of OLSB. Specifically,
OLSB demonstrated strong and robust performance in all
simulations, while other existing methods failed to present
robust performance. Furthermore, OLSB has the ability of
optimizing the performance depending on the network load
by adjusting a simple tuning parameter that controls the bal-
ancing between using short paths and reducing the congestion
level, which makes it simple for implementation in practical
networks.

There are several aspects for extending this work. Firstly,
it would be interesting to investigate whether the leading
factor in the logarithmic regret order could be improved to
enhance the learning efficiency. Secondly, it may be pos-
sible to develop techniques to dynamically optimize the
parameter K , which balances the use of short paths against
network congestion. Thirdly, although OLSB is proven
to achieve a logarithmic regret, the learning mechanism
becomes challenging as the network size increases (as in
other learning-based routing algorithms). Therefore, one can
extend OLSB by developing cluster-based OLSB to optimize
routing decisions over smaller clusters, as done in BGP that
exchanges routing data among autonomous systems (AS).
Another alternative is to utilize centralized computation units,
as seen in 5G deployments, which could potentially improve
the learning performance. This could reduce the exploration
phase required for inferring network states in the OLSB
algorithm, resulting in improved network performance.

APPENDIX
In this appendix, we provide the proof of Theorem 1.
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Throughout the proof we denote the source node and des-
tination node of the flow by s, d , respectively. The selected
path by OLSB at time t is denoted by pt . and let

gt ≜ arg min
p∈P(s,d)

{µp + Q(s,d,m(µp))(t)}

be the optimal path which is selected by genie at time step t .
The cumulative regret after n plays is given by:

Rn = E
[ n∑
t=1

(
KCpt (t) + Q(s,d,m(Cpt (t)))(t)

)

−

n∑
t=1

KCgt (t) + Q(s,d,m(Cgt (t)))(t)
)]

. (10)

We can rewrite the first term on the RHS of (10) by summing
the balanced cost over paths:

E
[ n∑
t=1

(
KCpt (t) + Q(s,d,m(Cpt (t)))(t)

)]
=

∑
p∈P(s,d)

(Kµp + ηm(µp))E[Tp(n)]. (11)

Next, we can bound the second term on the RHS of (10) by
using the linearity of expectation and summing the minimum
over Kµp plus the minimum over ηm(µp) at each time t:

E
[ n∑
t=1

KCgt (t) + Q(s,d,m(Cgt (t)))(t)
)]

≥

(
min

p∈P(s,d)
Kµp + min

p∈P(s,d)
ηm(µp)

)
n. (12)

By substituting (11) and (12) in (10), we can upper bound
the cumulative regret by:

Rn ≤

∑
p∈P(s,d)

(Kµp + ηm(µp))E[Tp(n)] −

−

(
min

p∈P(s,d)
Kµp + min

p∈P(s,d)
ηm(µp)

)
n. (13)

We next upper bound the expected value of the number of
times that path p was selected for transmission. Let

ct,s ≜

√
2 ln t
s

. (14)

Then,

Tp(n) =(a) 1 +

n∑
t=L+1

{
pt = p

}

≤(b) l +
n∑

t=L+1

{
pt = p,Tp(t − 1) ≥ l

}

≤(c) l +
n∑

t=L+1

{
K C̄gt−1(Tgt−1(t − 1))︸ ︷︷ ︸

¯≜Cg

+Q(s,d,m(C̄g))(t − 1) − ct−1,Tgt−1 (t−1)

≥ K C̄p(Tp(t − 1))︸ ︷︷ ︸
≜C̄p

+Q(s,d,m(C̄p))(t − 1)

− ct−1,Tp(t−1),Tp(t − 1) ≥ l
}

≤(d) l +
n∑

t=L+1

{
max

0<sg<t
min

r∈P(s,d)
r ̸=p

KC̄r (sg)

+Q(s,d,m(C̄r (sg)))(sg) − ct−1,sg

≥ min
l≤sp≤t

KC̄p(sp) + Q(s,d,m(C̄p(sp)))(sp)

− ct−1,sp

}
≤(e) l +

n∑
t=L+1

t−1∑
sg=1

t−1∑
sp=l

∑
r∈P(s,d)
r ̸=p{

KC̄r (sg) + Q(s,d,m(C̄r (sg)))(sg) − ct−1,sg

≥ KC̄p(sp) + Q(s,d,m(C̄p(sp)))(sp)

− ct−1,sp

}
, (15)

where
{
E

}
is the indicator function, which equals 1 when

event E is true, and equals 0 otherwise. Below, we explain
each bounding step of Tp(n) in (15):

(a) Step (a) follows since the number of times that path p
was selected for transmission up to time n is given by
the sum of one (due to the first initial path selection) plus
the number of time-slots in which path pwas selected by
the algorithm, i.e. p∗(t) = p.

(b) Step (b) follows since we take l − 1 occurrences out of
the sum and condition the sum to count path p selection
only after it was selected l times.

(c) Step (c) follows since the event pt = p occurs when
p solves the QUCB rule in OLSB:

p = arg min
r∈P(s,d)

KC̄r (t) + Q(s,d,m(C̄r (t)))(t) + ct,Tr (n).

Also, note that by the definition of minimization the
solution is smaller or equal than the value of the function
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when the argument is path gt which was selected by
genie, which yields Step (c).

(d) Step (d) further upper bounds the expression since if the
value of path p is smaller than the value of path gt−1
then its minimal value from time l to the current time t
is smaller than the maximum over all minimal values by
other path selections up to time t . When the condition
holds, we get one triplet of (r, sg, sp) that we count as
path p selection.

(e) Step (e) follows since we count every (r, sg, sp) triplet
that meets the condition.

Next, note that for condition

KC̄r (sg) + Q(s,d,m(C̄r (sg)))(sg) − ct,sg
≥ KC̄p(sp) + Q(s,d,m(C̄p(sp)))(sp) − ct,sp (16)

to hold, then for each r ̸= p at least one of the following
inequalities must hold:
Inequality 1:

KC̄r (sg) + Q(s,d,m(C̄r (sg)))(sg)

≥ Kµr + Q(s,d,m(C̄r (sg)))(sg) + ct,sg . (17)

Inequality 2:

KC̄p(sp) + Q(s,d,m(C̄p(sp)))(sp)

≤ Kµp + Q(s,d,m(C̄p(sp)))(sp) − ct,sp . (18)

Inequality 3:

Kµr + Q(s,d,m(C̄r (sg)))(sg)

> Kµp + Q(s,d,m(C̄p(sp)))(sp) − 2ct,sp . (19)

Therefore, we get L − 1 sets of these three inequalities.
We prove by contradiction that by assuming that if for all

r ∈ P(s,d), r ̸= p all inequalities are false, then:

Kµr + Q(s,d,m(C̄r (sg)))(sg)

>(a) KC̄r (sg) + Q(s,d,m(C̄r (sg)))(sg) − ct,sg
≥(b) KC̄p(sp) + Q(s,d,m(C̄p(sp)))(sp) − ct,sp
>(c) Kµp + Q(s,d,m(C̄p(sp)))(sp) − 2ct,sp . (20)

Below, we explain each bounding step in (20):
(a) Step (a) follows by assuming that inequality (17) is false.
(b) Step (b) follows by inequality (16).
(c) Step (c) follows by assuming that inequality (18) is false.
Therefore, we get:

Kµr + Q(s,d,m(C̄r (sg)))(sg)

< Kµp + Q(s,d,m(C̄p(sp)))(sp) − 2ct,sp (21)

which meets inequality (19), which is in contradiction to the
assumption that all three inequalities are false.

Next, we apply the Chernoff-Hoeffding bound on inequal-
ities (17) and (18), and get:

Pr(KC̄r (sg) − Kµr ≥ ct,sg )

≤ e−2sgc2t,sg = e
−2sg 2 ln t

sg = t−4, (22)

and

Pr(Kµp − KC̄p(sp) ≥ ct,sp )

≤ e−2spc2t,sp = e
−2sp 2 ln t

sp = t−4. (23)

Also, it suffices to choose inequality (19) to be false:

Kµr + Q(s,d,m(C̄r (sg)))(sg)

≤ Kµp + Q(s,d,m(C̄p(sp)))(sp) − 2ct,sp . (24)

We take expectation and get:

Kµr + ηm(µr ) ≤ Kµp + ηm(µp) − 2ct,sp , (25)

and by arranging terms we get:

2ct,sp ≤ Kµp + ηm(µp) − Kµr − ηm(µr ) ≜ 1r,p(K ).

Also, note that

2ct,sp = 2

√
2 ln t
sp

≤ 1r,p(K ), ∀r ∈ P(s,d), r ̸= p.

Note that we get this inequality L − 1 times, for all r ̸= p.
Next, we define:

1min
p (K ) ≜ min

r∈P(s,d)
r ̸=p

1r,p(K )

= min
r∈P(s,d)
r ̸=p

Kµp + ηm(µp) − Kµr − ηm(µr ). (26)

Now, we choose s̃p ∈ R such that 2ct,s̃p = |1min
p (K )| holds.

Thus,

2

√
2 ln t
s̃p

= |1min
p (K )|,

and we get

8 ln t
s̃p

= (1min
p (K ))2,

and finally, we get

s̃p =
8 ln t

(1min
p (K ))2

. (27)

Next, recall that by definition sp ≥ l and l ∈ N. Then,⌈
8 ln t

(1min
p (K ))2

⌉
= l ≤ sp.
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Now, we can upper bound Tp(n) as follows:

Tp(n) ≤

⌈
8 ln t

(1min
p (K ))2

⌉

+

n∑
t=1

∑
r∈P(s,d)
r ̸=p

t−1∑
sg=1

t−1∑
sp=l

[
Pr(KC̄r (sg) ≥ Kµr + ct,sg )

+Pr(KC̄p(sp) ≤ Kµp − ct,sp )
]

≤

⌈
8 ln t

(1min
p (K ))2

⌉
+

n∑
t=1

∑
r∈P(s,d)
r ̸=p

t−1∑
sg=1

t−1∑
sp=l

2t−4

≤

⌈
8 ln t

(1min
p (K ))2

⌉
+

∞∑
t=1

∑
r∈P(s,d)
r ̸=p

t∑
sg=1

t∑
sp=1

2t−4

=

⌈
8 ln t

(1min
p (K ))2

⌉
+ (L − 1)

∞∑
t=1

2t−2

≤

⌈
8 ln t

(1min
p (K ))2

⌉
+ (L − 1)(1 +

π2

3
). (28)

Finally, we substitute (28) in (13), which completes the proof.
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