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ABSTRACT In contemporary research, neural networks are being used to derive Ordinary Differential
Equations (ODEs) from observations. However, parameterized ODEs pose a more significant challenge
than non-parameterized ODEs since the networks are required to understand the roles of the parameters,
i.e., the structure of the equations. This paper proposes a novel approach by combining Symbolic Neural
Network (S-Net) with ODE Solver to solve this issue. First, S-Net learns the structure of the parameterized
ODEs and then predicts the dynamics based on the new parameters with the new initial states. To assess its
performance, we compare our approach with a widely used Ordinary Neural Network (O-Net) that directly
learns and predicts ODEs. Our numerical experiments demonstrate that our approach outperforms O-Net
when applied to the Lotka-Volterra and Lorenz equations.

INDEX TERMS Parameterized ordinary differential equations, neural networks, ODE solver.

I. INTRODUCTION
The combination of deep learning and differential equations
is a highly promising research direction. Deep learning can
help uncover the underlying differential equations governing
the behavior of many systems, such as electromagnetism,
aerodynamics, weather prediction, and geophysics. Dif-
ferential equation-guided network design can significantly
improve model interpretability and generalization perfor-
mance. The potential impact of this approach on scientific
discovery and innovation is immense.

Chen et al. [1] introduced Neural Ordinary Differential
Equations (NODEs), a new family of deep networks. They
used a neural network to parameterize the derivative of the
hidden state, serialized the neural network layers and param-
eters, and used the adjoint ODEmethod to optimize the neural
network instead of back-propagation, which saved memory.
Their work inspired research on variants of NODE meth-
ods, such as [2] and [3]. Other studies have also explored
the potential of neural networks to learn and solve differ-
ential equations. For example, Chen et al. [4] proposed the
Symplectic Recurrent Neural Network (SRNN) to capture
the dynamics of physical systems from regularly observed
data. Raissi et al. [5] introduced physics-informed neural net-
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works (PINNs) to solve data-driven solutions and data-driven
discovery problems of partial differential equations (PDEs).
Long et al. [6], [7] proposed PDE-Net, a feed-forward deep
network that predicts the dynamics of complex systems
and uncovers the underlying hidden PDE models. PDE-Net
implemented Symbolic Neural Network (S-Net) to learn the
structure of PDEs and demonstrated powerful learning abil-
ity. Similarly, [8], [9] also proved the competitive general-
ization capability of S-Net. These works show the potential
of deep learning in solving PDEs and discovering hidden
models.

Parameterized ODEs are a class of ODEs with solutions
that vary with parameters, representing multiple dynamics
specified by input parameter instances. They have been
extensively studied in computational science and engineering
domains, such as fluid dynamics and the ideal pendulum sys-
tem. In critical situations, computing high-fidelity solutions
of parameterized ODEs is necessary, either for numerous
input parameter instances or initial states. Data-driven meth-
ods have been used in recent years to estimate the evolution
of dynamical systems over time, including different initial
conditions [10] and system parameters [11]. To learn the
latent dynamics of complex dynamical processes in computa-
tional physics, Lee and Parish [11] proposed encoder-decoder
parameterized NODEs (PNODEs). Shimizu and Parish
[12] presented the windowed space-time least-squares
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Petrov-Galerkin method (WST-LSPG) for model reduction
of nonlinear parameterized dynamical systems. WST-LSPG
divides the time simulation into several windows and sequen-
tially minimizes the discrete-in-time residual within its own
unique low-dimensional space-time subspace. Lee and Trask
[13] introduced POUNODEs, a new variant of NODEs with
evolving model parameters. They modeled the evolution
using partition-of-unity networks, allowing for greater flex-
ibility in capturing the dynamics of complex systems.

To the best of our knowledge, the majority of existing
approaches for solving parameterized ODEs rely on black-
box methods, which employ neural networks directly to
simulate its behavior and make predictions. Our proposed
approach, on the other hand, aims to gain a deeper under-
standing of the underlying mechanics of the dynamic system
by first learning the structure of the ODEs. This understand-
ing enables us to predict the behavior of the dynamical system
more accurately and efficiently for new parameters and initial
states compared to black-box methods. The contributions of
this work are summarized as follows:

• Our proposed framework combines S-Net with an
ODE solver to learn parameterized ODEs. This novel
approach enables accurate and efficient modeling of the
dynamics of complex systems, even when the properties
of the governing equations vary across multiple input
parameters.

• To evaluate our approach, we compare its performance
with that of a baseline model, O-Net, which represents
a black-box approach. We empirically demonstrate the
advantages of our proposed framework in terms of both
accuracy and interpretability.

The remainder of this paper is organized as follows:
Section II presents related works. The considered parameter-
ized ODEs problem and the ODE Solver are briefly intro-
duced in Section III. Section IV illustrates the proposed
approach. We evaluate the performance of our method on two
case studies: the Lotka-Volterra Equation in Section V and
the Lorenz Lotka-Volterra Equation in Section VI. Finally,
in Section VII, we summarize our findings and discuss
potential avenues for future research.

II. RELATED WORK
Several studies have explored the use of Gaussian process
regression to develop tailored functional representations for
a given linear operator [14], [15], [16]. However, the local
linearization of nonlinear terms in time and prior assump-
tions of Gaussian process regression limit the representation
capacity of the model. Sparse regression, discussed in [17],
[18], [19], and [20], overcomes this limitation by developing
a dictionary of basic functions and partial derivatives that can
accurately represent the data using sparsity-promoting tech-
niques. However, the predictive and expressive capabilities
of the dictionary are restricted since the sparse regression
method necessitates predefining specific numerical approx-
imations for spatial differentiation.

Mesh-based simulations have recently shown significant
progress [21], [22], surpassing grid-based convolutional neu-
ral networks (CNNs) in terms of runtime and exhibiting
greater adaptivity to the simulation domain. While sev-
eral methods, such as AntisymmetricRNN [23] and the
continuous-time Gated Recurrent Unit with a Bayesian
update network [24], have leveraged the stability of underly-
ing differential equations to capture long-term dependencies,
they did not address the challenge of learning the expres-
sion of the equation to gain a deeper understanding of the
underlying mechanism behind the observed data. In another
work [25], the authors learned the unknown parameters of
the ODE system by constructing certain time-related features,
but this method did not address the expressiveness of the
equation.

III. KNOWLEDGE
In this section, we’ll define parameterized ODEs and dif-
ferentiate them from non-parameterized ODEs. Additionally,
we’ll introduce the ODE Solver, a crucial component in our
approach.

A. NON-PARAMETERIZED AND PARAMETERIZED ODES
Assume that ODEs take the following generic form, which
is usually used to describe some physical dynamics with
different functions f (s, p, r, α, β, γ), g(s, p, r, α, β, γ) and
h(s, p, r, α, β, γ),

ds
dt

= f (s, p, r, α, β, γ),
dp
dt

= g(s, p, r, α, β, γ),
dr
dt

= h(s, p, r, α, β, γ).

(1)

Here, we consider the nonlinear ODE system with indepen-
dent variables s, p, and r , and initial states s0, p0, and r0 at time
t0. The system also involves parameters α, β, and γ, where
t ∈ (0,T ] represents the time interval of interest.
In non-parameterized ODEs, parameters such as α, β, and

γ remain fixed during both model training and prediction,
whether they are known or unknown. Thus, we assume that
α = α1, β = β1, and γ = γ1, and denote the observations as:

Zfixed
=

{(
s(ti; s

j
0, p

j
0, r

j
0, α1, β1, γ1), p(ti; s

j
0, p

j
0, r

j
0, α1, β1,

× γ1), r(ti; s
j
0, p

j
0, r

j
0, α1, β1, γ1)

)∣∣∣∣i = 1, . . . ,Nobs,

× j = 1, . . . ,M} . (2)

The observations are denoted by a set of Nobs > 0 time
points, and the number of initial states is denoted by
M > 0. If (s∗0, p

∗

0, r
∗

0 ) ∈ {(sj0, p
j
0, r

j
0)|j = 1, . . .M},

we predict
(
s(t∗; s∗0, p

∗

0, r
∗

0 , α1, β1, γ1), p(t∗; s∗0, p
∗

0, r
∗

0 , α1,

β1, γ1), r(t∗; s∗0, p
∗

0, r
∗

0 , α1, β1, γ1)
)

at t∗ > tNobs . Other-
wise, we predict the dynamics at t∗ ∈ (0,T ]. The
non-parameterized ODEs problem has been widely studied
in [2], [3], and [4].
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FIGURE 1. Schematic diagram of the framework. Initial states s0, p0, r0 and parameters α, β, γ are fed into
the ANN model to predict the derivatives of s, p, and r with respect to time. These derivatives combined
with initial states s0, p0, r0 will be further fed into the ODE Solver to obtain the next state s1, p1, r1, and so
on. Finally we will get the trajectories of S = {s0, s1, . . . sT }, P = {p0, p1, . . . , pT } and R = {r0, r1, . . . , rT }.

Concerning the parameterized ODEs problem, the obser-
vation data

Zvariable
=

{(
s(ti; s

j
0, p

j
0, r

j
0, αk , βk , γk ), p(ti; s

j
0, p

j
0, r

j
0,

× αk , βk , γk ), r(ti; s
j
0, p

j
0, r

j
0, αk , βk , γk )

)∣∣∣∣i = 1,

× . . . ,Nobs, j = 1, . . . ,M , k = 1, . . . ,K } ,

(3)

is generated by different parameters (αk , βk , γk ) at some
specified time ti on different initial states (sj0, p

j
0, r

j
0). Here,

we define K > 0 as the number of parameters, Nobs > 0 as
the number of observation time points, and M > 0 as the
number of initial states.

In the scenario of parameterized ODEs, if (s∗0, p
∗

0, r
∗

0 ) ∈

{(sj0, p
j
0, r

j
0)|j = 1, . . .M} and (α∗, β∗, γ∗) ∈ {(αk , βk , γk )|

k = 1, . . .K }, we predict
(
s(t∗; s∗0, p

∗

0, r
∗

0 , α∗, β∗, γ∗), p(t∗;
s∗0, p

∗

0, r
∗

0 , α∗, β∗, γ∗), r(t∗; s∗0, p
∗

0, r
∗

0 , α∗, β∗, γ∗)
)
at t∗ >

tNobs . Otherwise, we predict the dynamics at t∗ ∈ (0,T ].
Parameterized ODEs find applications in various scenar-

ios. For instance, in [26], different parameters associated with
the ODEs represent distinct strategies for regulating cancer
tumor progression behavior. Given patient data describing the
evolution of a tumor, it would be advantageous to obtain the
functional form of the ODE system underlying this complex
system, both for the state variables and parameters. Subse-
quently, once we have constructed the functional form of the
ODE system using a neural network, we can directly compute
solutions of the ODE for new initial states and parameter sets.
Traffic flow problems represent another common application.
Changes in traffic flow over time at two specific locations x1,

x2 in a city can be modeled as
ds
dt

= f (s, p,w),
dp
dt

= g(s, p,w).
(4)

In this context, the number of cars at positions x1 and x2 are
represented by s and p, respectively, and the traffic flow
changes over time at these locations are modeled using func-
tions f and g. Here, t ∈ (0, 24] denotes a day for a cycle,
and the vector w represents external factors that influence
traffic conditions, such as weather, temperature, and so on.
We assume that the external factors w change daily, but the
expressions for f and g remain constant as the mechanism by
which each factor affects traffic flow remains the same. Once
we obtain the correct analytical formulas, we can accurately
predict the system.

This approach is effective for discrete chaotic maps,
using the Logistic map as an example. The Logistic map is
a straightforward, one-dimensional discrete-time dynamical
system characterized by the following equation:

xn+1 = γxn(1 − xn). (5)

Here, x is the state variable at time step n, and γ is a parameter.
We can employ the proposed method to learn the expression
on the right side of (5), which means that the input of the
S-Net consists of both γ and x.

B. ODE SOLVER
The ODE Solver, also known as a numerical integrator,
iterates a numerical scheme to obtain improved approxima-
tions of the solution. There exist works dedicated to design-
ing numerical integrators that produce more accurate solu-
tions [27], [28]. Typically, the ODE Solver is employed to
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approximate the true solution of the form dz
dt = F(z, t)

based on the initial state z0, where F(z, t) is a vector func-
tion. Considering the parameters are variable, parameters
α, β, and γ can not be embedded in F in our problem.
So F can be expressed in the form of F(z, t, α, β, γ) =

(f (z, t, α, β, γ), g(z, t, α, β, γ), h(z, t, α, β, γ)) and z(t; z0,
α, β, γ) ={s(t; z0, α, β, γ), p(t; z0, α, β, γ), r(t; z0, α, β,γ)}.
In this paper, we begin with Euler integrator [29], a popular

choice due to its simplicity, as demonstrated in previous
works [1], [2], [13]. Euler method also facilitates a fair com-
parison with black-box methods. Given the state zn at time
point tn = t0 + n1t , the state at the next time point can be
computed using the following formula:

zn+1 = zn + 1tF(zn, tn, α, β, γ). (6)

The time step size, denoted by 1t , is a crucial parameter
in numerical methods for solving ODEs. Specifically, Euler
method can generate unstable solutions for stiff ODE sys-
tems unless a very small 1t is employed, as noted in [30].
To maintain solution stability in our experiments, we metic-
ulously select an appropriate value for 1t . In Appendix A,
we present a rigorous proof of the convergence of Euler
method, which is essential for understanding the accuracy
of numerical solutions. Our approach can also be adapted
to learn unknown functions using semi-implicit solvers with
appropriate modifications. In Appendix B, we provide a brief
explanation of how to make the necessary adjustments to fit
semi-implicit solvers.

IV. OUR APPROACH
A. PIPELINE
We use initial states Z0 =

{
zj0|j = 1, . . . ,M

}
and parameters

W = {(αk , βk , γk )|k = 1, . . . ,K } for the training process.
Following the work [1], we let the right side of ODEs be a
parametric function Fθ (z, α, β, γ), where z = (s, p, r) and θ

is the vector of parameters of the neural network. After train-

ing, trajectories Ẑ =

{
ẑθ (ti; z

j
0, αk , βk , γk )

}Nobs

i=1
are generated

based on initial state zj0 ∈ Z0, parameters (αk , βk , γk ) ∈ W
and θ , i.e.,

ẑθ (ti; z
j
0, αk , βk , γk ) = ẑθ (ti−1; z

j
0, αk , βk , γk )

+ 1tFθ

(
ẑθ (ti−1; z

j
0, αk , βk , γk ),

× αk , βk , γk) , (7)

where i = 1, . . . ,Nobs.
Given a series of observationsZ =

{
z(ti; z

j
0, αk , βk , γk )|i ∈

{1, . . . ,Nobs}, j ∈ {1, . . . ,M}, k ∈ {1, . . . ,K }}, we esti-
mate the parameter θ by minimizing the error between the
observed trajectories Z and predicted trajectories Ẑ , denoted
as

Ldata =

Nobs∑
i=1

M∑
j=1

K∑
k=1

∥ẑθ (ti; z
j
0, αk , βk , γk )}

Algorithm 1 Algorithm for Solving the Parameter-
ized ODEs Problem
Input: Nobs: the number of observation time points;

Integrator: ODE Solver; Z0: initial state set; W :
parameter set; Fθ (s, p, r, α, β, γ): neural network;
θ0: initial parameters of neural network; Z : observed
trajectories of initial state Z0 and parameters W ;
nepochs: the number of epoch; 1t: time step; L: loss
function

Output: Ẑ : estimated trajectories of initial state Z0 and
parameters W ; Fθ∗ : the trained neural network

θ = θ0
for i = 1, . . . , nepochs do

Ẑ = []
for j = 1, . . . ,M do

Select one element (sj0, p
j
0, r

j
0) from Z0

for k = 1, . . . ,K do
Select one element (αk , βk , γk ) from W
for i = 1, . . . ,Nobs do

( dsdt ,
dp
dt ,

dr
dt ) =

Fθ (s
j
i−1, p

j
i−1, r

j
i−1, αk , βk , γk )

sji = integrator(sji−1, 1t,
ds
dt )

pji = integrator(pji−1, 1t,
dp
dt )

r ji = integrator(r ji−1, 1t,
dr
dt )

Add (sji, p
j
i, r

j
i ) to Ẑ .

end
end

end
Loss = L(Ẑ ,Z )
Update parameters θ based on Loss

end

− z(ti; z
j
0, αk , βk , γk )}∥2. (8)

Inspired by [7], we also add the regularization term LS-Net to
the loss function to avoid overfitting and enhance the gener-
alization capability of the model. LS-Net is defined as (9),

LS-Net =

∑
p∈θLS-Net

ls1(p), (9)

where ls1(x) =

 |x| −
s
2
, if |x| > s

1
2s
x2, otherwise

and s = 0.001.

Ldata and LS-Net constitute the loss function L, that is

L = Ldata + LS-Net. (10)

Figure 1 provides a detailed illustration of how to generate
a trajectory based on the initial state z0 = (s0, p0, r0) ∈

Z0 and parameters (α, β, γ) ∈ W . Herein, we denote
si = s(ti; z0, α, β, γ), pi = p(ti; z0, α, β, γ) and ri =

r(ti; z0, α, β, γ) to represent the states of s, p and r at time
ti. Algorithm 1 illustrates the pipeline for solving the param-
eterized ODE problem. We back-propagate the loss and use
it to update the parameter θ , which allows us to obtain the
best θ∗. This value represents the ODE system and enables
us to predict the dynamics based on new initial states and
parameters.
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FIGURE 2. Schematic diagram of the O-Net. States of s, p, and r and
parameters of α, β,γ are the input vector. The input vector goes through a
four-layer network structure. Each layer has 512 units and a relu function.
There are three parts for ds

dt , dp
dt and dr

dt respectively after four layers. Each
part has two layers: the first layer has 512 units with the tanh activation
function, and the second layer outputs the derivatives of ds

dt , dp
dt and dr

dt .

Algorithm 2 O-Net
Input: s, p, r, α, β, γ ∈ R
Output: dsdt ,

dp
dt ,

dr
dt

y1 = relu(wT1 (s, p, r, α, β, γ)T + b1),
w1 ∈ R6×512, b1 ∈ R512×1;
y2 = relu(wT2 y1 + b2),
w2 ∈ R512×512, b2 ∈ R512×1

;

y3 = relu(wT3 y2 + b3),
w3 ∈ R512×512, b3 ∈ R512×1

;

y4 = relu(wT4 y3 + b4),
w4 ∈ R512×512, b4 ∈ R512×1

;

y51 = tanh(wT51y4 + b51),
w51 ∈ R512×512, b51 ∈ R512×1

;

y52 = tanh(wT52y4 + b52),
w52 ∈ R512×512, b52 ∈ R512×1

;

y53 = tanh(wT53y4 + b53),
w53 ∈ R512×512, b53 ∈ R512×1

;
ds
dt = wT61y51 + b61,w61 ∈ R512×1, b61 ∈ R;
dp
dt = wT62y52 + b62,w62 ∈ R512×1, b62 ∈ R;
dr
dt = wT63y53 + b63,w63 ∈ R512×1, b63 ∈ R;

B. ARTIFICIAL NEURAL NETWORKS:O-NET AND S-NET
In Algorithm 1, we can use any form of the neural net-
work, but we adopt the O-Net as our baseline, which is
commonly used for regression tasks without exploring the
underlying mechanism connecting inputs and outputs. How-
ever, to learn the combinations of different variables and
parameters, we design S-Net, inspired by [6], [7], [8], and
[9]. Unlike O-Net, S-Net first learns the analytic expression
of ODEs and then predicts the dynamics. Notably, S-Net has
no activation functions, and the most significant difference
between O-Net and S-Net is the mapping between units in
the layers.

1) O-NET
O-Net uses fully connected layers to learn the mapping from
low to high-dimensional space and uses activation functions
to learn the nonlinear relationship. Consider an O-Net with

four shared layers and two unique layers for ds
dt ,

dp
dt and

dr
dt , as illustrated in Figure 2. To better understand O-Net,
which is usually used for regression, we present a mathe-
matical description in Algorithm 2 showing how O-Net is
constructed.

O-Net is ineffective in solving variable parameters ODEs
problems as it fails to capture the role of parameters.
Although both parameters and variables are treated as input
features, they behave differently. Specifically, at each time
point, the input vector is (z, α, β, γ), where z changes over
time while (α, β, γ) do not. As a result, it is challenging for
α, β, γ to find appropriate weights in a fully connected neural
network, making it difficult for O-Net to effectively learn the
underlying dynamics of the system.

2) S-NET
S-Net possesses the ability to learn analytical expressions
that can generalize to new domains effectively. The primary
distinction between O-Net and S-Net lies in their layer-unit
mapping, where S-Net is designed to capture the interaction
between various variables and parameters efficiently. This is
accomplished through two types of transformations: identity
and linear combination maps, which enable S-Net to learn the
underlying dynamics of the system accurately.

As an example, consider a two-layer S-Net that aims to
learn the function f ∈ F in (1), as illustrated in Figure 3.
With the appropriate number of layers, S-Net can represent all
polynomials of the variables (s, p, r, α, β, γ). Herein, we only
use addition and multiplication operators in S-Net. If neces-
sary, we can add more operations to the S-Net to increase
the capacity of the network. To better understand S-Net,
we present an example in Algorithm 3 showing how S-Net
is constructed. Particularly, we illustrate the learning process
of αs− βr using S-Net in (11), (12), (13), (14) , and (15).

(δ1, ε1)T = w1 ×
[
s, p, r, α, β, γ

]T

=

[
1 0 0 0 0 0
0 0 0 1 0 0

]
×


s
p
r
α

β

γ

, (11)

f1 = δ1ε1 = αs, (12)

(δ2, ε2)T = w2 ×
[
s, p, r, α, β, γ, αs

]T

=

[
0 0 1 0 0 0 0
0 0 0 0 1 0 0

]
×



s
p
r
α

β

γ
αs


,

(13)

f2 = δ2ε2 = βr, (14)

w3 ×
[
s, p, r, α, β, γ, αs, βr

]T
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FIGURE 3. Schematic diagram of the S-Net. The identity map directly
transfers s, p, r , α, β, γ from input layer to the first hidden layer. The
linear combination chooses two elements remarked by δ1 and ε1 from
the input vector using w1 and b1. The expressions f1 = δ1ε1and f1 =

δ1
ε1

correspond to the multiplication and division of two elements,
respectively. We only implement the multiplication operation in this
work. Apart from s, p, r , α, β and γ gotten by the identity map, f1 will also
be input to the second hidden layer. Similar to the first hidden layer,
we get the further combination f2 = δ2ε2 by w2 and b2. Finally, we obtain
the analytic expression of function f . It is necessary to enforce the
sparsity of S-Net since it helps reduce overfitting and enables more
robust predictions.

=
[
0 0 0 0 0 0 1 −1

]
×



s
p
r
α

β

γ
αs
βr


= αs− βr . (15)

Our analysis of αs − βr reveals that the sparsity of S-Net
is a critical factor. Therefore, we introduced a regularization
term into the loss function to promote model sparsity, as dis-
cussed in section IV-A.

V. NUMERICAL STUDIES: LOTKA-VOLTERRA EQUATION
The Lotka-Volterra model is frequently used to describe the
dynamics of ecological systems where two species inter-
act. [31] shows that cannibalism has both positive and nega-
tive effects on the stability of the Lotka-Volterra predator-prey
model. It depends on the dynamic behaviors of the original
system.

In this section, we consider Lotka-Volterra Equation (16),
where different ecological systems have different parameters
of α, β, δ and γ and initial states of x0 and y0,

dx
dt

= αx − βxy,
dy
dt

= −δy+ γxy.
(16)

The Euler integrator simulates ground truth trajectories in
both training and testing stages with the time step 1t = 0.1,
which empirically meets the stability requirements. The train-
ing and testing data consist of 150 and 33 trajectories, respec-
tively, each of which starts from random initial state (x0, y0)
in the interval [0.6, 1.4] and parameters of (α, β, δ, γ) in the
interval ([1.0, 2.0], [0.5, 1.5], [2.5, 3.5], [0.5, 1.5]) respec-
tively. There is no overlap between the training and test data.

Algorithm 3 S-Net
Input: s, p, r, α, β, γ ∈ R
Output: F

(δ1, ε1)T = w1(s, p, r, α, β, γ)T + b1,
w1 ∈ R2×6, b1 ∈ R2×1;
f1 = δ1ε1;
(δ2, ε2)T = w2(s, p, r, α, β, γ, f1)T + b2,
w2 ∈ R2×7, b2 ∈ R2×1;
f2 = δ2ε2;
F = w3(s, p, r, α, β, γ, f1, f2)T + b3,
w3 ∈ R1×8, b3 ∈ R;

The performance of O-Net and S-Net could get improved
with a reasonable increase in the number of time points, i.e.,
Nobs, in the training data. We set four group experiments on
training data with Nobs = 10, 15, 20, and 25. If the number
of observation points is too large, it will also hurt the effec-
tiveness of the model. Once there are too many observations,
the accumulated error will be too large for one trajectory,
which is not conducive to model training. We train S-Net
with the L-BFGS optimizer [32] and use maximum iterations
of 30000, a batch size of 150. We train O-Net with ADAM
optimizer [33] for 5000 epochs using a batch size of 50, and a
learning rate of 5e-3. We predict trajectories based on various
initial states and parameters on t ∈ (0, 10].

A. RESULTS AND DISCUSSIONS
Our study shows that S-Net is able to effectively recover
the ODEs for the unknown variables of x and y, as well as
the parameters α, β, δ, and γ. We use the notation MNobs

to represent the model trained on training data with Nobs
time points. The results, summarized in Table 1, demonstrate
that we are able to accurately recover the terms of (16).
We observe that increasing the number of time points within a
specific range results in higher model accuracy. Specifically,
we find that when MNobs = 25, the coefficients of αx, βxy,
δy, and γxy match those of the true equation. Additionally,
we find that the terms not included in (16) have relatively
small coefficients.

To evaluate the ability of the models to generate
correct trajectories for new initial states and parame-
ters, we feed 33 testing trajectories into the well-trained
models and obtained predicted trajectories. Figure 4
shows the results of S-Net and O-Net with Nobs =

10, 15, 20, 25 for a specific test example (x0, y0, α, β, δ, γ) =

(0.71468, 1.01860, 1.10023, 1.17939, 2.78173, 1.18328).
We find that S-Net can accurately predict the trajectory in
the period of t ∈ [0, 801t] = (0, 8], but its accuracy
decreases when t ∈ (8, 10]. However, we observe that
increasing the number of time points used in the training
process improves the prediction of the S-Net of long-time
dynamics. Specifically, S-Net trained onMNobs = 25 predicts
with higher accuracy for t ∈ (8, 10] than S-Net trained on
MNobs = 10. On the other hand, O-Net performs poorly in all
four cases, even though it performs well in the early stages
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FIGURE 4. Lotka-Volterra: Testing results on (x0, y0, α, β, δ, γ) = (0.71468, 1.01860, 1.10023, 1.17939, 2.78173, 1.18328) by S-Net and
O-Net with time points 10, 15, 20 and 25 for the x-component (left) and y-component (right). In each plot, the horizontal axis indicates
the time of prediction in the interval (0, 1001t ] = (0, 10], and the vertical axis shows the values. The solid red line is the ground truth.
The blue and orange dashed lines show the O-Net and S-Net results, respectively.

FIGURE 5. Lotka-Volterra: Prediction errors of the O-Net(orange) and S-Net(green) with different training
time points 20 and 25. In each plot, the horizontal axis indicates the time of prediction in the interval
(0, 1001t ] = (0, 10], and the vertical axis shows the errors. The banded curves indicate the 25% − 100%
percentile of the relative errors among 33 test samples. The dark regions indicate the 25% − 75%
percentile of the relative error, which shows that S-Net performs significantly better than O-Net. The
upper row is for variable x and the bottom low is for variable y .

for a short period, its predictions often deviate significantly
from the actual trajectory. In some cases, O-Net even predicts
trends that are opposite to the actual situation. Therefore,
we conclude that S-Net has a stronger generalization ability
than O-Net.

We define the error between observations Z and predic-

tions Ẑ as ϵ =

√
||Z − Ẑ ||2. The error plots are shown in

Figure 5 for two different time points, 20 and 25. In both
cases, the error of O-Net is significantly larger than that of
S-Net. For example, in Figure 5(c), we can observe that the
error of O-Net sharply increases over time and soon reaches
500. In contrast, the error of S-Net increases at a relatively
slower rate and reaches a maximum of approximately 100.
Specifically, Table 2 shows the error of S-Net and O-Net for
different models. The error of O-Net can be five or six times
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TABLE 1. Lotka-Volterra identification with different time points.

TABLE 2. MSE of S-Net and O-Net for equations of different models.

that of S-Net when MNobs is 10 or 25, respectively. Clearly,
S-Net performs significantly better than O-Net, suggesting
that proper discretization is crucial when the ODE structure
is unknown. Appendix C presents the findings of three other
cases using different models obtained byMNobs = 10, 15, 20,
and 25, respectively.

VI. NUMERICAL STUDIES: LORENZ EQUATION
In this section, we consider Lorenz Equations (17) where
different ecological systems have different parameters σ , ρ

and β and initial states x0, y0 and z0.
dx
dt

= σ (y− x),
dy
dt

= x(ρ − z) − y,
dz
dt

= xy− βz.

(17)

Both the training and testing data consist of 150 and 60 tra-
jectories, respectively, simulated by the Euler integrator with
a time step of 1t = 0.01. The initial states and parameters
are randomly selected from the intervals [0.8, 1.2], [0, 0.2],
[0, 0.3], [5, 15], [23, 33], and [2, 3], respectively, without
any overlap between the two sets. We conduct four group
experiments on the training data with different numbers of
time points: 4, 6, 10, and 20. For training S-Net, we use the

TABLE 3. Lorenz identification with different models.

L-BFGS optimizer with a maximum of 50,000 iterations and
a batch size of 150. For training O-Net, we use the ADAM
optimizer with a learning rate of 5e-3, a batch size of 100,
and 5,000 epochs. We predict trajectories for various initial
states and parameters on the time interval t ∈ (0, 1].

A. RESULTS AND DISCUSSIONS
Table 3 presents the capability of the trained S-Net to identify
the underlying ODE model, showing the top five terms of
coefficient weights recovered by S-Net with certain accuracy.
Notably, when MNobs = 20, the coefficients of σy, σx, and
xρ match those of the true equation with high precision.
The coefficients of the remaining four terms, namely xz, y,
xy, and βz, deviate only slightly from the true values, with
a maximum difference of 0.01. These results demonstrate
the effectiveness of S-Net in recovering the underlying ODE
model.

We evaluate the predictive performance of S-Net and
O-Net on (17) using 60 testing trajectories and obtain
corresponding predictions from the trained models. Fig-
ure 6 shows the results of S-Net and O-Net with Nobs =

4, 6, 10, 20 for a specific test example (x0, y0, z0, σ, ρ, β) =

(0.82841, 0.14785, 0.17099, 12.39551, 32.03720, 2.67205).
We predict the trajectories of x, y and z on t ∈ (0, 1001t] =

(0, 1] using the learned models. When MNobs = 4, both
O-Net and S-Net predictions are very poor. As the number
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FIGURE 6. Lorenz: Testing results on (x0, y0, z0, σ, ρ, β) = (0.82841, 0.14785, 0.17099, 12.39551, 32.03720, 2.67205) by S-Net and O-Net with time
points 4, 6, 10 and 20 for the x-component (left), y-component (middle) and z-component (right). In each plot, the horizontal axis indicates the time
of prediction in the interval (0, 1001t ] = (0, 1], and the vertical axis shows the values. The solid red line is the ground truth. The blue and orange
dashed lines show the O-Net and S-Net results, respectively.

FIGURE 7. Lorenz: Prediction errors of the O-Net(orange) and S-Net(green) with different training time points 4, 6, 10, and 20. In each
plot, the horizontal axis indicates the time of prediction in the interval (0, 1001t ] = (0, 1], and the vertical axis shows the errors. The
banded curves indicate the 25% − 100% percentile of the relative errors among 60 test samples and the dark regions indicate the
25% − 75% percentile of the relative error.

of time points increased, the performance of S-Net improve
significantly, but the performance of O-Net remain almost
unchanged, as shown in Figures 6(b), 6(c), and 6(d). Even
in the initial stages of each subfigure, O-Net was unable to
perform well.

The error plots for four different time points (4, 6, 10, and
20) are presented in Figure 7. In each case, O-Net exhibits

significantly larger errors than S-Net. For instance, consider
Figure 7(l). The error of O-Net increases sharply with time
and soon reaches 1400, while the error of S-Net increases
relatively slowly with time and reaches a maximum of about
100. Table 2 shows the errors of S-Net and O-Net of various
time points. The error of O-Net can be up to a thousand
times larger than that of S-Net. Clearly, S-Net outperforms
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FIGURE 8. Testing results on (x0, y0, α, β, δ, γ) ∈ {(1.03591, 0.71055, 1.64399, 0.73789, 2.63207, 0.58110), (1.34048, 1.08388, 1.29828, 1.44437,

3.24866, 0.58960), (1.39070, 1.15958, 1.20000, 1.01820, 3.32212, 0.93040)} by S-Net and O-Net with time points 10, 15, 20 and 25 for the x-component
(left) and y-component (right).

O-Net significantly. We provide the findings of two other
cases using different models obtained byNobs = 4, 6, 10, and
20, respectively, in Appendix D.

VII. CONCLUSION
Exploring parameterized ODEs is a broad area in computa-
tional science and engineering. Parameterized ODEs prob-
lems are particularly challenging to solve because the solu-
tions to these problems can vary with the parameters used.
Black-box methods offer some insights, but their general-
ization performance is often subpar due to a limited under-
standing of underlying mechanisms. To address this issue,
we propose a novel framework that combines the S-Net
with an ODE Solver to learn parameterized ODEs. Unlike
the black-box O-Net method that simply fits the observed
data, S-Net learns the expressions of the equations based on
the observed data. We use the Euler method as the ODE
Solver due to its simplicity. Experiments show the S-Net
framework surpasses the O-Net method in learning parame-
terized ODEs, evidenced by superior efficiency and accuracy
in tests involving the Lotka-Volterra and Lorenz Equations.

The proposed framework marks a significant advancement in
studying parameterized ODEs in computational science and
engineering.

However, there are several limitations to address in future
research. Firstly, the current version of S-Net only supports
basic operators such as addition, subtraction, and multi-
plication, which limits its application to complex systems.
To broaden its applicability, it is necessary to incorporate
more advanced operators such as division, trigonometric
functions, powers, and fractional calculation operators. Sec-
ond, enhancing simulation accuracy requires implementing
other ODE Solvers. Thirdly, the present approach is not
applicable to arbitrary order systems, which present a more
complex challenge. The combinatorial relationship between
variables and parameters must be known, and the observa-
tions are supplied based on the information on variables.
An additional step may be required to predict the number of
variables or parameters based on the current method. Finally,
while S-Net has proven resilient against noisy data in [9],
testing with real data is necessary to establish its applicability
to diverse domains.
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FIGURE 9. Testing results on (x0, y0, z0, σ, ρ, β) ∈ {(0.84731, 0.11332, 0.24186, 5.24679, 29.69917, 2.26212), (0.92617, 0.04462, 0.21900,

14.47371, 27.97391, 2.57754)} by S-Net and O-Net with time points 4, 6, 10 and 20 for the x-component (left), y-component (middle) and
z-component (right).

APPENDIX A
CONVERGENCE OF THE EULER METHOD
Our subsequent analysis establishes the convergence of the
Euler method when solving the initial-value problem of a
first-order differential equation, as stated in (18)

dy
dx

= f (x, y), x > x0,

y(x0) = y0.
(18)

Here, the unknown function is denoted by y(x), the known
function by f (x, y), and the initial data by y0.

Theorem 1: Assume the following one-step method cor-
responding to the initial value problem (18) be the p-order
accuracy

yn+1 = yn + hφ(xn, yn, h)

and the function φ satisfies the Lipschitz condition for y, i.e.,
∃L > 0,

|φ(x, y1, h) − φ(x, y2, h)| ≤ L|y1 − y2|, ∀y1, y2

and y0 = y(x0), then the one-step method is convergent and
y(xn) − yn = O(hp).
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Proof: Let en = y(xn) − yn, then

y(xn+1) = y(xn) + hφ(xn, y(xn), h) + Tn+1,

i.e.,

en+1 = en + h[φ(xn, y(xn), h) − φ(xn, yn, h)] + Tn+1.

Since the one-step method is the p-order accuracy, then
∃h0, 0 < h ≤ h0, satisfy |Tn+1| ≤ Chp+1 where C is a
constant. That is

|en+1| ≤ |en| + hL|en| + Chp+1
= α|en| + β,

where α = 1 + hL, β = Chp+1. So we can get

|en| ≤ α|en−1| + β ≤ α2
|en−2| + αβ + β

≤ α3
|en−3| + β(1 + α + α2) ≤ . . . ≤ . (19)

From the known conditions, we get

|en| ≤ exp (L(xn − x0))|e0| + ChpL−1(exp (L(xn − x0)) − 1)

= ChpL−1(exp (L(xn − x0)) − 1). (20)

From (20), we know when h → 0, then |en| → 0.

APPENDIX B
THE SEMI-IMPLICIT SOLVERS
Our approach can be adapted to learn unknown functions
utilizing semi-implicit solvers with suitable modifications.
For instance, consider the semi-implicit Euler method, which
can be employed for a pair of differential equations with the
form

dx
dt

= f (t, y),

dy
dt

= g(t, x), (21)

where f and g are unknown functions that we want to learn.
The semi-implicit Euler method produces an approximateÂ
discreteÂ solution by iterating

yn+1 = yn + g(tn, xn)1t,

xn+1 = xn + f (tn, yn+1)1t, (22)

where 1t is the time step. The difference with the standard
Euler method is that the semi-implicit Euler method uses yn+1
in the equation for xn+1, while the standard Euler method uses
yn. Given that the expressions for f and g are represented
by S-Nets, S-Netf and S-Netg, it is necessary to provide
them with known information. In the semi-implicit Euler
method, we use a positive time step to compute xn+1 from
yn+1 generated by S-Netg based on starting points x0, y0, that
is

xn+1 = xn + S-Netf (tn,S-Netg(tn, xn)1t). (23)

In this context, y is not utilized as an observable variable;
instead, it serves as a component to generate the observable
variable x. With this approach, as the expression for gmust be
learned through the x variable, we require additional observa-
tions on the x variable and no longer need observations on the
y variable.

APPENDIX C
LOTKA-VOLTERRA
In Figure 8, we present the outcomes of three distinct models
obtained by utilizing Nobs = 10, 15, 20, and 25, respec-
tively. The rows indicate the prediction results of the dif-
ferent models for three test samples. The first two columns
in each row demonstrate the evolution of the two vari-
ables x and y for the first test sample (x0, y0, α, β, δ, γ) =

(1.03591, 0.71055, 1.64399, 0.73789, 2.63207, 0.58110).
The center two columns illustrate the changes in the variables
x and y over time for the second test sample (x0, y0, α, β, δ, γ)
= (1.34048, 1.08388, 1.29828, 1.44437, 3.24866, 0.58960).
Finally, the last two columns show how the variables x and y
varied over time for the third test sample (x0, y0, α, β, δ, γ) =

(1.39070, 1.15958, 1.20000, 1.01820, 3.32212, 0.93040).
Each subplot displays the time of prediction on the horizontal
axis within the interval (0, 1001t] = (0, 10], while the ver-
tical axis indicates the corresponding values. The solid red
line represents the ground truth, while the orange and blue
dashed lines show the O-Net and S-Net prediction results,
respectively. Notably, within a specific range, the prediction
accuracy of the model increases with a higher number of
observation points used to train the model.

APPENDIX D
LORENZ
In Figure 9, we present the outcomes of two examples
utilizing distinct models derived from Nobs = 4, 6, 10, and
20, respectively. Each row represents the prediction results of
different models on two test samples. The first three columns
of each row demonstrate the progression of the three variables
x, y, and z for the first test sample (x0, y0, z0, σ, ρ, β) =

(0.84731, 0.11332, 0.24186, 5.24679, 29.69917, 2.26212),
while the last three columns depict how the three vari-
ables x, y, and z evolve over time for the third test
sample (x0, y0, z0, σ, ρ, β) = (0.92617, 0.04462, 0.21900,
14.47371, 27.97391, 2.57754). Each plot shows the predic-
tion time in the interval (0, 1001t] = (0, 1] on the horizontal
axis and the corresponding values on the vertical axis. The
solid red line in each subplot represents the actual ground
truth, while the orange and blue dashed lines show the
O-Net and S-Net prediction results, respectively. Notably, the
prediction accuracy of the model improves with an increase
in the number of observation points used to train the model.
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