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ABSTRACT Image Super-resolution (SR) has gained considerable attention in artificial intelligence
(AI) research and image-based applications. Recent deep learning-based SR models have demonstrated
remarkable accuracy and perceptual quality in the resulting images. However, the computational cost and
model parameters are the most challenging limitations in real-world applications. Additionally, designing an
efficient and lightweight SR algorithm to improve the perceptual quality of the SR images is a critical issue.
According to these considerations, we propose a Multi-FusNet of Cross Channel Network (MFCC) network
by modeling a multipath residual network, namedmulti-RG, with cross-filtering fusion. Additionally, a pixel
shuffling fusion technique is used to fuse low-level features into the up-sampled features of the multi-RG.
The experimental results show the comparison of the proposed MFCC to the state-of-the-art SR models. The
proposed method significantly reduces the number of network parameters (8.4 times compared to RCAN)
while preserving the visual quality of the result and achieving the best PSNR value compared to the other
state-of-the-art methods.

INDEX TERMS Residual network, super-resolution, multipath residual.

I. INTRODUCTION
The image Super-resolution (SR) technique aims to recon-
struct a high-resolution (HR) image from the low-resolution
(LR) input. The SR is considered an ill-posed problem.
Therefore, many SR techniques have been developed for
producing HR images. However, the perceptual quality and
execution time of the SR model are two critical factors in
designing an effective and robust SR model for real-world
applications. A real-world problem in utilizing closed-circuit
television (CCTV) [1] for intelligent monitoring [2], such as
traffic congestion and accidents [3], home management secu-
rity [4], face recognition [5], and social identification [6], has
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appeared because of the low-resolution (LR) images captured
by CCTV cameras [7].

Many research topics, such as feature preservation in
video coding [8], [9] and super-resolution [10], [11], [12],
have been published to solve the low-resolution problem.
Deep Convolutional Neural Networks (CNN) have recently
become a powerful model for solving the ill-posed SR prob-
lem [13]. Dong et al. [14], [15] proposed a super-resolution
algorithm using a three-layer deep convolutional neural net-
work (SRCNN) that was linearly stacked together. In this
shallow and straightforward architecture, the first layer is
designed to extract the features from the LR input, the second
layer is used for non-linear mapping from low-dimensional
to high-dimensional features, and the final layer is respon-
sible for aggregating the feature maps of the earlier layer
to the final HR result. This SR network is trained using an
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end-to-end approach to minimize the Mean Squared Error
(MSE) between the ground truth (GT) image and the recon-
structed (SR) image. Following the SRCNN model, other
models, such as Very Deep Super-resolution [16] (VDSR)
and Deeply Recursive Convolutional Network (DRCN),
achieved significant improvements by increasing the depth
of their CNN architectures.

Following the DRCN and VDSR models, various archi-
tectures based on different image reconstruction approaches,
including the residual network [12], [17], [18], [19],
[20], [21], [22], [23], [24], Recursive Network [25], [26],
[27], progressive reconstruction [28], dense connection net-
works [29], [30], multi-branch architectures [31], [32], and
attention-based mechanisms [33], [34], have been proposed
to improve the results of SR models by increasing the data
flow in the deep learning architecture.

Inspired by the Residual Network architecture [17]
(ResNet), some SR models have attempted to design deeper
architectures. Lim et al. proposed a deep SR architecture
called Enhanced Deep Residual Network [35] (EDSR) based
on the residual concept. This SRmodel stacks residual blocks
to design deeper networks (almost 165 convolutional lay-
ers) and achieves considerable improvement compared with
earlier SR models. However, training such a deep trainable
network, such as EDSR [35] is challenging, and the large
number of parameters in a deep network is a significant obsta-
cle to fast execution in real-world applications and hardware
implementations.

On the other hand, some recent CNN-based models [23],
[25], [28], [31], [32] utilize a multipath network architecture
to solve the limitations of deep networks. In this approach,
rather than using a single-path network, the multipath net-
work operates in parallel. Based on this concept, the depth
of the network decreases, whereas the performance of the
SR model increases. Based on the multipath structure, Hui
et al. proposed an Information Distillation Network (IDN)
by designing cascaded network paths operating in parallel.
This implies that the layers of the network do not require
waiting for the calculations of previous layers. Additionally,
the different types of extracted features from each path are
mixed, which improves the SR model’s operation time and
the perceptual quality of the result. Although the SR models
based on the multipath approach achieved acceptable perfor-
mance and execution time, their results achieved low PSNR
and SSIM values.

Additionally, the low-level feature-sharing approach is
used in some SR models [20], [21], [24], [33] to enhance
the low-frequency information flow in the SR network
structure. This low-level feature-sharing approach attempts
to transfer the low-level features of the early CNN layer,
to the latest layers and fuse the low and high-level fea-
tures. Hence, this technique improves reconstruction quality
by enhancing the sharpness of the SR image. Motivated
by this technique, SR models such as the Feedback Net-
work [20] (SRFBN), Adaptive Weighted Super-Resolution

Network [24] (AWSRN), SelNet [33], and Attentive Auxil-
iary Features [21] (A2F) utilize the feature sharing approach.
This idea demonstrates more effective enhancement of the
lightweight architecture.

To address these issues, we propose an efficient lightweight
SR model for image enlargement, with the following main
contributions:

1) Proposing the multi-depth cross-channel network to
obtain local pixel attention features from low-resolution
images.

2) Investigating the doubling stage of the residual identity
connection to retrieve merged features represented by low-
level features.

3) Exploring low-level feature sharing to fuse low-level
information with unsampled features enhances the model’s
reconstruction ability.

The remainder of this paper is organized as follows. Sec-
tion II presents a review of related works. Section III explains
the proposed method. Section IV discusses the experimental
results, and Section V presents the conclusions.

II. RELATED WORKS
Numerous image SR models have been studied in computer
vision. Single Image Super-Resolution (SISR) [13] exten-
sively utilizes deep Convolutional Neural Networks (CNN).
CNN uses the LR image as the input and reconstructs the
SR image. Excellent networks [36] based on CNN can be
categorized into six groups: Linear Networks [14], [15], [27],
[37], [38], Residual Networks [16], [25], [28], [29], [30],
[34], [35], Recursive Network [25], [26], [27], Progressive
Reconstructions Network [28], Multi-Branch Nets [31], [32],
and Attention Based Networks [33], [34].

A. LINEAR NETWORKS
Linear networks have simple architectures with a single
path that linearly stacks the convolution layers to allow the
information to flow in the network. These linear models are
further categorized into early and late up-sampling designs.
The early up-sampling design was inspired by SRCNN [14],
[15], which operates based on up-samples of the LR image
in the first stage and, then reconstructs the HR image. This
model uses an early up-sampling design. This model [16]
obtains a larger region of contextual information to improve
the results. Additionally, they increased the depth of the
VDSR network by stacking 20 convolutional layers. The
FSRCNN model [37] uses the late up-sampling framework.
This framework performs an up-sampling operation toward
the end of the network to improve the computational cost. The
architecture of the FSRCNN contains four convolution layers
and one deconvolution layer at the end of the model to pro-
duce the upscaled image. The output result was reconstructed
by combining residual learning with bicubic interpolation.
This model was designed for rapid processing in real-time
applications.
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B. RESIDUAL NETWORKS
The Residual Network introduces skip connections into the
neural network architecture. This idea attempts to focus
on high-frequency information in a very deep network.
The residual network concept is further categorized into
single-stage and multi-stage residual networks. Inspired
by the Residual Network architecture [17] (ResNet), the
Enhanced Deep Super-Resolution (EDSR) was modified
by removing Batch Normalization (BN) layers and ReLU
activation. This model decreases the number of parameters
while simultaneously improving the performance of the SR
model. This method [18] proposes a cascading mechanism to
improve the performance of the model and weight trade-offs.
CARN uses the ResNet [17] architecture, and a cascading
mechanism at the local and global levels is used to include
features from all layers. The multi-scale residual network
(MSRN) [19] has been proposed to address feature utilization
and the adaptation of arbitrary scaling factor problems. This
model can fuse the image features at different scales. This
is the first multi-scale module based on a residual structure,
which is very easy to train. The model shows superior perfor-
mance compared to other state-of-the-art models on various
benchmark datasets.

The Adaptive Weight SR Network (AWSRN) [24] was
designed to resolve the heavy computational cost problem.
This model consists of Local Fusion Blocks (LFB) designed
with residual learning-based embryonic adaptive voluminous
residual units (ARWU) and a local residual fusion entity
(LRFU). Apart from the LFB, it also contains an adaptive
weight multi-scale module (AWMS) to enhance the recon-
struction layer. The AWMS is an important contributor to the
design of lightweight network structures. The Inception Net-
work [12] proposed an asymmetric residual architecture to
reduce the number of parameters. They were inspired by the
Inception network concept, Muhammad et al. [12] proposed
Multi-Scale Inception Based Super-Resolution (MSISRD).
In this SR model, the short and long feature information is
directly extracted using a locally residual asymmetric convo-
lutional block and an inception-based asymmetric convolu-
tional block architecture by the model.

The A2F model [21] utilizes additional features and a
channel attention mechanism to improve the model’s per-
formance while reducing the weight of model. This study
has proven that having fewer auxiliary features results in
less high-frequency information and consequently decreases
the accuracy of the SR model. In addition, the A2F model
outperforms other state-of-the-art models on all scales and
has a faster execution time. The FALSRmethod [23], Fast and
Lightweight SR with Neural Architecture Search contributes
to maximizing the balance between the image restoration and
the models’ weight. In the proposed model, an elastic search
approach is used, which is based on a hybrid controller at both
the micro and macro levels.

SFFN [39] proposed an efficient feature fusion block,
along with lightweight and shallow residual blocks. This
model efficiently fuses the features of different blocks and

improves themodel’s performance and execution time.More-
over, they introduced an attention mechanism for reinforc-
ing the useful cross-layer features of each channel. This
lightweight SR model outperformed other state-of-the-art
methods.

C. RECURSIVE NETWORKS
This design focuses on breaking the more significant SR
problem into a simple smaller entity. The contributions of
this network design are as follows. The DRCN model [25]
is based on a recursive CNN containing almost 16 layers of
recursion. This method improves the performance without
increasing the parameters. The only drawback, that is the
learning difficulty of this method, can be solved by recursive
supervision or skipping connections. This model reduces the
weight of the network by introducing recursion and skip
connections. This reduced the training difficulty of themodel.

D. PROGRESSIVE RECONSTRUCTION NETWORKS
The progressive reconstruction approach suggests a progres-
sive network in the SR area to improve the SR results with
larger scaling factors. Another benefit of the progressive
approach is that the predictions are made in multiple sub
steps. The Laplacian Pyramid Framework [28] (LapSRN)
uses progressive up-sampling to reconstruct fast and accu-
rate residuals of HR images. Some important limitations of
previous state-of-the-art models, such as high computational
cost, blurry images, and learning difficulty, were overcome
by the LapSRNmodel because of the progressive approach in
the architecture of the SR model. This method uses cascaded
CNNs to predict the sub-band surplus in a rough-to-fine
texture. The LapSRN method has 27 layers overall, takes
LR as input, uses residual learning, and performs progres-
sive reconstruction with a char bonnier loss function. The
proposed method constructs high-quality HR images faster
than other state-of-the-art methods. It also helps to remove
the blurred kernels. The only problem with this model is that
it does not hallucinate fine details over large scales.

E. MULTI-BRANCH NETS
The multi-branch architecture proposed a successful model
for increasing the information flows between the network
layers. To obtain diverse information and features from
multiple scales, a multi-branch network architecture was
used. This architecture obtains complementary information
and merges them for better HR reconstruction. Informa-
tion Multi-distillation Network [32] (IMDN) proposed a
lightweight multi-branch architecture to solve the learning
complexity limitation caused by the numerous convolutional
layers. In this multi-branch architecture, a distillation block
is designed to extract hierarchical features and combine
them using cascaded Information Multi-distillation Blocks
(IMDB). The IMDB blocks are formed from distillation
blocks, and the fusion module extracts features at a coarse
level, retaining partial information. It then aggregates them
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using the channel attention mechanism to improve the refined
information (edges, corners, and textures).

F. ATTENTION BASED NETWORKS
To improve the performance of learning-based SR models,
an attention-based technique was designed as an enhance-
ment module to pay attention to specific varying features.
A deep CNN with Selection Units [33] (SelNet) is motivated
by CNN’s linear mapping techniques. The Rectified Linear
Unit (RLU) was used for linearly mapping the LR images,
inspiring the creation of a non-linear unit known as the
Selection Unit (SU). Because SU combines identity mapping
and a sigmoid switching function, it has better control over
the data passed through than ReLU [40]. The results show
that the proposed network has a much lower computational
complexity and outperforms the baseline model with only
ReLU and state-of-the-art SR methods. Very Deep Resid-
ual Channel Attention Networks [34] (RCAN) utilizes the
Residual Channel Attention architecture for their SR model.
They designed residual in residual (RIR) architecture block
consisting of Residual Group (RG) and a Residual Channel
Attention (RCA) block. The RG structure uses a short skip
connection as a residual component, whereas the RCA uti-
lizes a long skip connection to target the LR feature compo-
nents. Additionally, channel attention (CA) was introduced
to affect the feature rescaling channel. Although RCAN pro-
duces high-quality SR results, the complexity of the archi-
tecture increases processing time [13], [36]. Channel Split
Image Super-Resolution (CSISR) [41] improves the learning
capability of the SR model with a novel channel attention
mechanism. The proposed attention mechanism utilizes a
combination of global average and standard deviation pool-
ing along with the non-linear mapping layers. In addition,
CSISR demonstrated an efficient and lightweight architecture
to enhance computational complexity problems and outper-
formed other state-of-the-art models. Based on the dynamic
residual attention (DRA) approach [42], the dynamic residual
self-attention network (DRSAN) proposed a lightweight SR
model. The proper weights for each residual path statistical
investigation of the input image, and interrelation between
residual paths boost the reconstruction capability of this
model. Additionally, a residual self-attention (RSA) block
was proposed to generate 3-D attention maps without addi-
tional parameters. In [43], the Information-Growth Attention
Network (IGAN) has introduced a new type of attention
mechanism called the ‘‘information-growth attention.’’ This
attention mechanism focuses on features that have the poten-
tial for large information-growth capacity by analyzing the
differences between the current features and the previous fea-
tures within the network. The Context Reasoning Attention
Network (CRAN) [44] adoptively adjusts the convolution
kernel based on the global context. This model first extracts
global context descriptors and, then introduces channel and
spatial interactions to produce a context reasoning atten-
tion mask. In [45], a second-order attention network (SAN)
used a trainable second-order channel attention (SOCA)

module to rescale channel-wise features with second-order
feature statistics. This approach results inmore discriminative
representations.

III. MULTI-FusNet OF CROSS CHANNEL NETWORK
The proposed SR network is designed based on a multipath
residual architecture that provides a wider network rather
than a deeper one, resulting in more efficient and faster
execution. The architecture, named Multi-FusNet of Cross
Channel Network (MFCC), consists of four main modules:
feature extraction, Residual Group (Multi-RG), enlargement,
and low-level fusing, as illustrated in Figure 1. TheMulti-RG
architecture has been designed by integrating the RCAN [34]
with a multi-identical residual link. Due to the increase in the
number of multiplicities (possible paths from the input to the
output layer) in the proposed architecture, the information
flow between RG blocks gradually increases, which helps
reduce the computational complexity. The first convolution
layer is the feature extraction module, which feeds low-level
features to the RG blocks and low-level fusion module. The
proposed cascading topology in the MFCC network is com-
posed of three different paths, that form a multipath residual
configuration.

Each Residual Group (RG) block consists of N stacked
Residual Channel Attention (RCA) blocks and a short resid-
ual skip connection within the block. The first path consists
of two stacked Residual Group blocks, whereas the second
path has one Residual Group block cascaded with the first
path. The third path of the model bypasses the low-level
details of the earlier layer and fuses themwith the up-sampled
features of multi-RGs, as shown in Figure 1. The proposed
SR model begins by feeding the LR input to a convolutional
layer. The resulting features are then passed through three
different paths, with a kernel size of k× k . To perform image
enlargement, we utilize the pixel shuffle technique, which
transforms low-level feature maps into different channels and
shuffles the features to enlarge them.

Although the RCAN model offers high accuracy, its large
number of parameters results in slow execution times which
makes its implementation in real-time applications challeng-
ing. To create a lightweight architecture, we reduce the num-
ber of residual groups in our model and incorporate a multi-
path residual network architecture. This design improves both
accuracy and processing speed, resulting in a more efficient
model compared to those that use a non-cascading (deep)
architecture. To further improve our model’s capability to
extract sharp attribute details, we exploit the low-level fea-
tures of early CNN layers and share themwith the up-sampled
features of our multipath residual network. Many SR mod-
els suffer from over-smooth degradation due to the lack of
high-frequency details in the latest layer of CNN, leading to
perceptually unpleasant images at large scales. By incorporat-
ing a pixel shuffling fusion technique, we can overcome this
limitation and produce high-quality results. The following
section describes the residual group block, multipath residual
configuration, and pixel shuffle fusion method.
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FIGURE 1. Multi-FusNet of cross channel network.

A. RESIDUAL GROUP
In this section, the Residual Group (RG), which is a robust
feature extraction of low-resolution, is presented. The pro-
posed Residual Group is constructed by applying identity
residual connection at the edge of N sequences of the sta-
tistical Channel Attention network in [34], where N > 0. The
output of RG is denoted by ORG, and defines as in Eq. (1).

ORG = IRG +WRG(FRCAN ) (1)

where IRG represents RG input. WRG denotes the weight
parameter in the Residual Group block, and FRCAN is the
channel-wise feature of the Residual Channel Attention
(RCA) block. The channel-wise feature from the RCA can
be determined by Eq. (2) and (3).

FRCAN = HN
RCA

(
FRCAN−1

)
(2)

FRCA0 = H0
RCA (IRCA) (3)

where FRCAN and FRCAN−1 denote the outputs of N th and
(N − 1)th Residual Channel Attention blocks, respectively.
HRCA shows the corresponding operation function of the
RCA. FRCA0 is the output of the first Residual Channel Atten-
tion block. IRG shows the input of the first Residual Channel
Attention block. The Channel Attention (CA) mechanism is a
technique that uses the interdependencies among the feature
channels. The CA technique leads to more focus on informa-
tive features in the SR model and consequently improves the
image reconstruction capability of the model. More details on
the CA mechanism and the corresponding operation function
in the Residual Channel Attention block can be found in
RCAN [34].

B. MULTIPATH RESIDUAL
As shown in Figure 1, the combination of Residual Group
blocks under the multipath-residual architecture [46] is used
in our model. Based on multipath residual evidence [47],
a wider residual architecture significantly improves the accu-
racy and computation speed of the model compared with a
deeper residual architecture. These improvements are related
to the increasing multiplicity of the wider residual network.
Multiplicity implies the number of possible paths from the
input layer to the output layer. A sequence of two Residual
Group blocks is utilized in the first path of our model, and
one Residual Group block is employed in the second path.
Eq.4 defines the multipath output of the proposed model.

OMR = O2
RG + O1

RG (4)

where O2
RG and O1

RG denote the outputs of two Residual
Group blocks in the first path and a Residual Group block
in the second path, respectively. OMR denotes the output of
the proposed multipath residual architecture.

C. PIXEL SHUFFLE FUSION
A low-level feature-sharing approach is employed to improve
the sharpness of reconstructed results. Because the low-level
features of the early layer contain more high-frequency infor-
mation, sharing them improves the challenging weakness of
the SR model in recovering the sharp attributes of the lines
and edges. Simultaneously, it preserves our model against
over-smoothing degradation.
Our model utilizes the pixel shuffle fusion approach to

bypass the low-frequency features of the early layer of the
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FIGURE 2. Comparison PSNR vs. parameter of number RCA with residual group.

SR network to up-sampled features. The proposed model
employs the pixel shuffle [48] to up-sample the image. Based
on the feature sharing concept, the features of the early layer
are also up-sampled by the pixel shufflemodel and fused with
the up-sampled features of the multipath residual network,
as shown in Figure 1.

PSFus = PS1 (WMR (OMR)) + PS2(Wp (FL)) (5)

where, PS1 and PS2 represent the pixel shuffle up-sampling
on the multipath residual network and low-level features
sharing, respectively.WMR andWp represent the convolution
operations of the multipath residual output and up-sampled
low-level features, respectively. The pixel shuffle can be
mathematically expressed as Eq.6.

PS(U )i,j,c = U[
i/a

]
,

[
j/a

],C · a · mod (i, a)

+ C · a · mod (i, a) + c (6)

wherePS(U ) is the output, a is the scale factor, i, j, show pixel
coordinates. c is the channel position. To modernize the final
SR image, the up-sampled high-frequency details of the early

layer are fused with the up-sampled features of the multipath
residual model.

SR = WSR(PSFus) (7)

where PSFus denotes the fusing pixel shuffle result and,WSR
defines the last convolution operation to produce the final
SR result. Utilizing the proposed fused approach improves
the capability of our model to recover the sharp attributes
of images and improves the perceptual quality of results by
preventing an over-smoothing problem.

L1 (∅) =
1

n× m

n∑
i=1

m∑
j=1

∥SR(i, j) − y(i, j)∥ (8)

where SR and y are the result and the reference image, respec-
tively, n and m are parameters related to the training dataset.

IV. EXPERIMENTAL RESULTS
In this section, several experiments were conducted to vali-
date the performance of our model. First, the hyper-parameter
settings of the proposedmodel are explained. The experimen-
tal results and analysis are then demonstrated.
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TABLE 1. The extension of residual in based line model.

A. PARAMETER SETTINGS
To train our SR model, we utilized the DIV2K [49] dataset,
which included 800 images. For testing our SR model, five
standard benchmark datasets including Set5 [49], Set14 [50],
B100 [51], Urban100, and Manga109 were considered. For
the degradation models, we apply Bicubic Interpolation (BI)
was used in our experiments. Y- PSNR, and Y-SSIM were
used to evaluate SR model accuracy. For data augmentation,
800 training images were randomly applied with three rota-
tions such as 90, 180, 120 degrees, and horizontal flipping.
We extracted 16 in 48 × 48 test LR color patches to get the
input for each training batch. We train our model with an
ADAM optimizer, and the parameter values of β1, β2, and
ϵ are 0.9, 0.999, and 10−8, respectively. Initially, we set the
learning rate to 10−4 and reduced it to half every 2 × 105

iterations. The models were implemented using PyTorch on
a Titan Xp GPU.

B. EXPERIMENTAL RESULTS AND ANALYSIS
Figure 2 shows the performance of the SR model using
various RCA and Residual Group (RG) combinations. The
results of various SR configurations on the Set5 dataset with
a scale factor of two, whichwere trained under a fixed seed for
50 epochs with the DIV2K dataset, are depicted in this graph.
The horizontal axis of the graph displays 20 distinct RCA
and Residual Group combinations, arranged in descending
order from the highest number of parameters to the lowest.
The baseline model (RCAN architecture) comprises 20 RCA
configurations and 10 Residual Groups, with 15 million
parameters showing the highest performance.

The other combinations differed based on the number of
RCA and Residual Groups. Regarding lightweight archi-
tecture, the Residual technique provides a wider network
architecture and optimizes network parameters and accu-
racy. Residual Networks [52] optimize residual blocks by
expanding the residual information to a broader network
architecture. This network architecture improves processing
speed by removing some parts of the sequential block from
a parallel block. It was also proven that the results showed
better accuracy and convergence.

According to the graph, RG has a negligible impact on
quality. Therefore, only one RG block is used to reduce the
number of parameters. However, if the number of RCAs
reduce, there is a considerable decrease in the PSNR value.
Regarding our contribution to the design of a lightweight

SR architecture, it is important to ensure that the network
parameters should be constrained to less than 2 million.

As shown in Figure 2, the PSNR decreases gradually as
we move from the baseline architecture to lighter network
architectures. Considering the constraint of network param-
eters for a lightweight model, combining 20 RCA with one
RG indicates the optimum trade-off between the minimum
number of parameters and the maximum PSNR for our
lightweight network. In addition, by checking the effective-
ness of RCA and RG, we found that the PSNR drops faster
than decreasing the number of RG layers if we reduce the
number of RCA layers. Moreover, by reducing the number
of RCA layers, the performance of the parameter is reduced
less than by decreasing the number of RG layers. Figure 2
presents a comparison between the baseline model and var-
ious extensions of the RCA and Residual Group (20 RCA
with one RG). The PSNR values, whichwere calculated using
the Set5 dataset with a scale factor of two, are shown. The
models were trained for 600 epochs by using a fixed seed. The
baseline architecture, with 20 RCA and 10 Residual Group
(RG) configuration has a total of 15 million parameters and,
achieved the highest PSNR. Among the other lightweight
extensions of RCA and RG, a configuration with 20 RCAs
and two Residual Network achieved 38.16 PSNR.

It’s worth noting that this network configuration (shown
in Figure 1) reduced the network parameters by 88%, while
only decreasing the accuracy by only 0.09 dB compared to the
baseline. Another benefit of this extension is that the 20RCAs

FIGURE 3. Performance and number of parameters evaluated on Set5
dataset at scale ×4.
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TABLE 2. The extension of residual in based line model.

and two Residual Networks with upscaling converge faster
than the other extensions, reaching convergence at the
417th epoch. It is noticeable that the upscale parameter in
this table refers to the up sampled low-level feature sharing,
as demonstrated in Figure 1. Our experiment shows that the
edges of the SR images recovered more clearly using this
configuration. The proposed network architecture reduces
the number of parameters by up to eight times compared to
RCAN, with comparable quality.

Table 2 presents comparisons of our proposed model with
other state-of-the-art models on scaling factors of ×2, ×3,
×4, and ×8. The evaluation was performed using five bench-
mark datasets: Set5, Set14, B100, Urban100, and Manga109.
Moreover, the comparison includes the number of param-
eters and multi-adds of each model. The best performance
is denoted by red numbers and the second-best perfor-
mance is represented by blue numbers. Based on Table 2,
it can be seen that our model outperforms other in terms of
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FIGURE 4. Statistical analysis of average of PSNR and SSIM on All dataset.

FIGURE 5. Qualitative comparison of barbara image belongs to Set14 dataset for scale ×4.

achieving higher performance with a reasonable number of
parameters and multi-adds. Specifically, in comparison to the
second-best PSNR at scale factor of 2, our model provides
an improvement of 0.05 dB, 0.07 dB, 0.02 dB, 0.16 dB, and
0.16 dB for Set5, Set14, B100, Urban100, and Mango109,
respectively.

Our model demonstrates a notable improvement in PSNR
for upscale factors of 3× and 4×, with an accuracy of 0.3 dB
and 0.26 dB compared to the second best on the Manga109
dataset, respectively. For the most challenging scale of 8×,

our model exhibits superior performance on all datasets,
except for the SSIM of the Set14 dataset. Nonetheless, our
performance on SSIM is the second-best and differs only
slightly (0.0002) from the AWSRN [24] model. Figure 4
shows the statistical analysis of our model, focusing on the
PSNR and SSIM performance on all datasets across different
scaling factors. The charts also provide a comparison with
four other lightweight SR models: MSRN [19], IMDN [32],
AWSRN [24], and A2F-L [21]. According to the statisti-
cal analysis of PSNR and SSIM, our model outperforms
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FIGURE 6. Qualitative comparison of image 148026 belongs to B100 dataset for scale ×4.

FIGURE 7. Qualitative comparison of img073 belongs to Urban100 dataset for scale ×4.

FIGURE 8. Qualitative comparison of img093 belongs to Urban100 dataset for scale ×8.

other lightweight state-of-the-art models for all scale factors.
Figure 5, Figure 6, and Figure 7 demonstrate the visual
comparisons of our proposed model at scale ×4 with other
state-of-the-art models, including VDSR [16], IMDN [32],
LapSRN [28], AWSRN [24], CARN [18], and MSRN [19].
The demonstrated patches were added according to the net-
work parameters of the models.

Figure 5 illustrates a visual comparison of ‘‘Barbara’’
image belonging to the Set14 dataset at scale ×4. From
the observation of the demonstration, it is apparent that
our lightweight model demonstrates a strong capability to
accurately reconstruct parallel lines. Additionally, theMRCC
model achieved the highest PSNR and SSIM, indicating its
superiority over the other models.
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FIGURE 9. Qualitative comparison of an image belongs to Manga109 dataset for scale ×8.

Figure 6 shows the visual comparison of ‘‘148026’’
belonging to the B100 dataset at scale ×4. The MFCC model
achieved the highest PSNR and SSIM compared with other
state-of-the-art models. Additionally, the high-frequency
details of the tiny lines were recovered more effectively
without any over-smoothing degradation. Figure 7 shows a
visual comparison of ‘‘img037’’ belonging to the Urban100
dataset at scale×4. Our lightweight MFCCmodel effectively
produces an SR image that closely resembles the ground-truth
(GT) image. Conversely, the results obtained from the other
models exhibit shortcomings when reconstructing a sharp
image. Our model achieved the highest PSNR and SSIM
values.

The values (PSNR and SSIM) indicate our model’s supe-
riority over the other models. Figure 8, and Figure 9 display
the visual comparisons of our proposed model at scale ×8
with other state-of-the-art models, including LapSRN [28],
MSRN [19], and RCAN [34]. Figure 8 illustrates a visual
comparison of ‘‘img093’’, which belongs to the Urban100
dataset. Compared to the other models, our lightweight model
reconstructs the high-frequency details of lines, similar to
the GT image. The PSNR and SSIM of our resultant image
show significant improvement compared to other state-of-
the-art models. Figure 8 compares the results of ‘‘Kyokugen-
Cyclone’’ image which belongs to Manga109 dataset. The
PSNR and SSIM of the proposed model are the highest. The
other models could not reconstruct the parallel lines located at
the top of the selected patch and merged the lines. In contrast,

our model shows a robust ability to produce tiny edges at this
scale.

Figure 3 compares the number of parameters and the
performance of different SR models at a scale of ×4 on
the Set5 dataset. Several state-of-the-art approaches includ-
ing VDSR [16], LapSRN [18], DRCN [25], SelNet [33],
CARN [18], IMDN [32], A2F-L [21] and AWSRN [24]
were chosen to analyze our model’s performance. As demon-
strated in the graph, our MFCC model has the highest PSNR
(32.42 dB), while the number of parameters in our model is
2.15 million.

V. CONCLUSION
This study proposed a lightweight single-image super-
resolution model based on constructing Residual Group
blocks on amultipath residual architecture (MFCC). Utilizing
a multipath residual network increases the efficiency of the
proposed lightweight model. In addition, we addressed the
lack of low-frequency details by employing the pixel-shuffle
fusion method. Based on this approach, the low-frequency
details of the early layer are up-sampled and bypassed into the
up-sampled features of the multipath residual network. The
high and low-frequency information of these layers are fused,
which improves the line and edge reconstruction capability
of the proposed model. The experimental results on five
benchmark datasets demonstrate that our lightweight MFCC
model outperforms other state-of-the-art models, particularly
on a scale of ×8.
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In future work, the proposedmodel will be tuned to achieve
the optimum parameters and then implemented on FPGAs to
support real-world applications.
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