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ABSTRACT With the advancement of computer vision, human action recognition (HAR) has shown its
broad researchworth and application prospects in awide range of fields such as intelligent security, automatic
driving and human-machine interaction. Based on the type of data captured by cameras and sensors, e.g.,
RGB, depth, skeleton, and infrared data, HARmethods can be classified into RGB-based and skeleton-based.
RGB data is easy and inexpensive to obtain, but RGB-based methods need to cope with a large amount of
irrelevant background information and are easily affected by factors such as lighting and shooting angle. The
skeleton-based methods eliminate the impact of background variables and require little computational work
due to their skeleton-focused features, but they lack the context data necessary for HAR. This paper gives
a thorough survey of these two approaches, covering deep learning methods, handcrafted feature extraction
methods, common datasets, challenges, and future research directions. The skeleton-based action recognition
methods section specifically presents the most well-liked 2D and 3D pose estimation algorithms. This survey
aims to give researchers new to the area or engaged in a long-term study a selection of datasets and algorithms,
as well as an overview of the present issues and expected future directions in the field.

INDEX TERMS Action dataset, deep learning, pose estimation, RGB-based action recognition, skeleton-
based action recognition, systematic survey.

I. INTRODUCTION
Human action recognition (HAR) aims to develop an auto-
mated system that mimics the human visual system to under-
stand and describe human actions in a given scene. HAR
refers to detecting static features in the same frame and
dynamic features between several adjacent frames from time
sequences (video frames, human skeleton sequences, etc.)
containing the complete action execution and classifying
human actions, as shown in Fig. 1 (a for applying eye makeup
and b for pull-ups). With the increasing demands on and
dependence on machine intelligence, the application of HAR
technology is becoming more widespread and has high com-
mercial value in the fields of intelligent security [1], [2],
virtual reality [3], [4], [5], human-computer interaction [6],
[7],etc.

The data for HAR is now more diverse than it was in the
past, including data from new modalities including depth,
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skeleton, and infrared, thanks to ongoing research on wear-
able sensors and depth cameras. RGB data contains rich
texture and context information yet includes a complex back-
ground environment, while the new modality data is more
robust to noise than RGB data. Depending on the type of
input data, popular research methods for HAR include the
RGB-based method and the skeleton-based method, both of
which are hot directions in the field.

The initial research approach focused on feature extraction
from RGB static images, which recognizes human actions
from a single image without considering temporal informa-
tion. Guo et al. [8] surveyed HAR based on static RGB
images, discussing different methods ofmachine learning and
deep learning for low-level feature extraction and high-level
action representation. Vrigkas et al. [9] similarly surveyed
HAR based on RGB static image representation, detailing
both unimodal and multimodal types of approaches. In terms
of feature representation, Vishwakarma et al. [10] summa-
rized the classical HAR methods, dividing them into hier-
archical and non-hierarchical methods. Survey [11] shows a
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FIGURE 1. (a) shows an example of RGB-based HAR and (b) shows an
example of skeleton-based HAR.

comprehensive overview of the handcrafted methods used in
HAR. In addition, some surveys [12], [13], [14], [15] discuss
the merits and demerits of handcrafted and deep learning in
detail and highlight the benefits of deep learning-based meth-
ods.More recently, Saleem et al. [16] compared and analyzed
various studies based on predefined parameter analysis of
46 state-of-the-art methods proposed since 2011, providing
an update on recent trends of HAR research and emphasizing
open challenges for future research. However, these surveys
do not provide a comprehensive understanding of methods
for HAR research based on other data modalities.

In recent years, the advantages of combining skeleton
data with deep learning have been gradually demonstrated.
Many researchers have gradually focused on the study of
skeleton-based HAR, successively proposing many impres-
sive methods, especially GCN-based methods. Xing et al.
[17] described the development of HAR based on 3D skele-
ton data, meanwhile reviewing the existing variants of three
mainstream techniques based on deep learning and compar-
ing their performance in three dimensions. The survey [18],
[19] not only detailed graph convolutional network struc-
tures and data modalities for HAR but also focused on the
application of GCNs in HAR. Gupta et al. [20] investigated
the current and future frontiers of skeleton-based HAR and
introduced a large-scale action dataset, named skeleton-152,
which opens up a new field. As human pose is also crucial
for HAR, Song et al. [21] review the research progress on
human pose estimation and its application in HAR. In addi-
tion, [22] focused on data fusion and recognition techniques
in a visual context from an RGB-D perspective. [23], [24]
reviewed popular approaches using vision and inertial sensors
for HAR. However, these surveys lack comparative studies
with RGB-basedmethods and amacroscopic and comprehen-
sive presentation.

Therefore, we perform a comprehensive survey of the two
popular methods mentioned above, which are RGB-based
and skeleton-based HAR methods. The specifics include
four parts: feature representation methods, common datasets,
challenges, and prospects. The extraction of significantly
distinguishable action features from video data is a crucial
step in HAR. Our study details both handcrafted features
and deep learning-based feature extraction approaches for
RGB and skeleton data, and it discusses the advantages and
disadvantages of the milestone algorithms. Our investigation
includes a comprehensive public dataset on RGB and skele-
ton data for common datasets and their importance as algo-
rithms. While many excellent and efficient algorithms have
been proposed in succession, factors such as the surrounding
environment and the limitations of hardware devices still
pose many challenges in this field. This survey also ana-
lyzes the challenges of both RGB-based and skeleton-based
approaches separately. We also discuss the future direction of
the field. Considering that the acquisition of the skeleton data
relies on sensors and pose estimation algorithms, the current
popular 2D and 3D pose estimation algorithms are presented
before discussing the skeleton-based feature representation
methods.

The four key contributions are as follows.
1) For RGB and skeleton data, we give a thorough survey

of handcrafted features and deep learning-based feature
extraction approaches (as shown in Fig. 4), and we
discuss the benefits and drawbacks of conventional
approaches.

2) We present and compare the current public available
common datasets for HAR, including details of the
RGB dataset and the skeleton dataset.

3) In the context of skeleton-based HAR, this paper pro-
vides a comprehensive review of recent 2D and 3D
deep human pose estimation models and their applica-
tions in the field of HAR.

4) We address the challenges and open issues facing the
field based on the two approaches, respectively, and
prospect for future directions to promote HAR.

The rest of this paper is organized as follows: Section II
reviews RGB-based approaches, from shallow features to
deep architectures. Section III collates the recently popular
2D and 3D deep human pose estimationmodels and discusses
the skeleton-based approach from handcrafted features to
deep learning. Section IV presents a comprehensive dataset
of both RGB and skeleton data modalities. Section V ana-
lyzes the current challenges in the field for each of the two
approaches. Section VI prospects the future research direc-
tions of HAR. Finally, Section VI concludes the survey. The
detailed framework of this paper is shown in Fig. 2.

II. RGB-BASED ACTION RECOGNITION METHOD
Early studies were conducted based on RGB data. Initially,
feature extraction relied on manual annotation [25], [26],
[27], [28], which tended to rely on more a priori knowledge.
Then, deep architectures were gradually adopted to extract
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FIGURE 2. The framework of this paper.

features, with remarkable results. The following is a method-
ological review of RGB-based handcrafted features and deep
architectures respectively.

A. RGB-BASED HANDCRAFTED FEATURE METHOD
Action representation and action classification are often the
two key steps of handcrafted feature-based HAR methods
[29], [30], [31]. In the action representation step, RGB data
is transformed into a feature vector [32], [33], [34] or a set of
feature vectors [35], [36], [37], and the vectors are then fed
to classifiers [38], [39], [40] to get the results in the action
classification step.

1) ACTION REPRESENTATION
The extraction of representative and distinct information
about human actions is essential for feature representation
since it significantly improves recognition precision. There
are two types of action representation methods: holistic rep-
resentation and local representation.

• Holistic representation:
Holistic representation captures the motion information
of the whole human subject. Bobick et al. [41] proposed
motion energy image (MEI) and motion history image
(MHI) to encode dynamic human motion into a single
image based on the holistic representation, as shown in
Fig. 3. It is sensitive to noise from the background.
However, it inevitably introduces irrelevant background
information noise besides the foreground for the infor-
mation capture region, which is a fixed rectangle.

• Local representation:
Local representation identifies just local regions
with significant motion information, overcoming the
problems of holistic representation. For example,

spatio-temporal interest points [32], [34], [42], motion
trajectories [31], [43] and other methods are robust to
background information noise, camera motion, appear-
ance changes, etc.

2) ACTION CLASSIFIERS
The action classifiers are employed to generate results fol-
lowed by the action representation. The classification meth-
ods, classifiers and their descriptions are shown in Table 1.

B. RGB-BASED DEEP ARCHITECTURES METHODS
While holistic and local features yielded significant results,
these handcrafted features require a large amount of prior
knowledge to predefine the parameters. Moreover, for sizable
datasets, they usually do not generalize well.

Deep neural networks [65], [66], [67] have recently been
used with remarkable success in HAR to process large
datasets. Convolutional neural networks (CNNs) [68] were
initially applied to feature extraction and classification in 2D
only. For spatio-temporal feature extraction, researchers have
proposed different ideas, which are broadly classified into
three genre branches, namely, two-stream network-based,
3D convolutional network-based, and hybrid network-based
approaches.

1) TWO-STREAM NETWORKS
The motion of an object or scene can be effectively repre-
sented by optical flow [71]. Histogram ofOptical Flow (HOF)
and Motion Boundary Histogram (MBH), which can support
optical flow, are examples of traditional handcrafted features
that also include optical flow-like features.
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TABLE 1. Action classification methods, classifiers and their descriptions.

FIGURE 3. Examples in [41] of the input video frame and the comparison
of MEI and MHI.

In light of this, Simonyan et al. [69] presented a
two-stream network (as shown in Fig. 5) that combines
spatial and temporal streams. The spatial stream takes the
original video frames as input to capture the visual appear-
ance information. The temporal stream takes the optical
flow image information as an input to capture the motion
information between video frames. Since the network uses a
relatively shallow network architecture [72], Wang et al. [73]
introduced cross-modal initialization, batch normalization,
and multiscale cropping to prevent overfitting of the network
at deeper levels, enabling the network to be trained using
VGG16 [74] and to be far superior to [69] on UCF101.

The performance of classification is significantly impacted
by feature fusion methods. Late fusion [69], [73], which
weighted averages the prediction scores of the two
streams, is the easiest and most straightforward method.
Feichtenhofer et al. [75] also looked into where and how

to fuse the network, and they made the case that fusing
interactions early in the model learning process results in
richer features and better performance. Feichtenhofer [76]
extended ResNet [77] to the spatio-temporal domain by
introducing a residual connection between two streams.
Based on [76], Feichtenhofer et al. [65] further proposed a
multiplicative gating function for the residual network to
learn better spatio-temporal features. Wang et al. [78] per-
formed hierarchical early fusion between two streams using a
spatio-temporal pyramid. Feichtenhofer et al. also suggested
SlowFastNet [70], shown in Fig. 6. The network replicates
the characteristics of human visual cells, where slow paths
can concentrate more on spatial and semantic information
and fast paths can maintain temporal fidelity, while adopting
lateral connections to fuse the features extracted by each
path. The Fast path’s low computational effort and high
channel capacity greatly increase the overall effectiveness of
SlowFast.

2) THE RISE OF 3D CNNs
Two-stream approaches always divide spatial and tempo-
ral information, which makes them unsuitable for real-time
deployment. Afterward, other researchers put forth 3D convo-
lutional methods that directly extract information in the three
dimensions.

Ji et al. [79] first use a 3D CNN for HAR, which con-
sists of five hardwired kernels that perform 3D convolution
on adjacent frames to extract features from the spatial and
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FIGURE 4. Milestone method for HAR. The blue font is the RGB-based milestone algorithm. The red font is the
skeleton-based milestone algorithm.

FIGURE 5. Two-stream architecture for video classification in [69].

FIGURE 6. The SlowFast network in [70], which has a Slow pathway,
a Fast pathway, and Lateral connections.

temporal dimensions. Tran et al. [80] proposed C3D based on
an extension of 3DCNN [79]. The network can be seen as
a 3D version of the VGG16 [74] network and shows strong
generalization ability. However, to better train C3D networks,
large-scale datasets with different contents and classes are
often required. To improve the generalization capability even
further, Carreira et al. [81] proposed I3D, which inflates the
network into a spatio-temporal feature extractor along the
temporal dimension. It adapts well-established image classi-
fication architectures for use in 3D CNNs and inflates the 2D
model weights pre-trained by ImageNet to the corresponding
weights in the 3D model.

P3D [82] and R(2+1)D [83] employ the concept of fac-
torization to simplify 3D network training by combining a

FIGURE 7. The framework of X3D networks.

2D spatial convolution (1×3) and a 1D temporal convolution
(3×1×1) in place of the conventional 3D convolution (3×3).
To better process motion, the trajectory convolution [84]
employs deformable convolution for the temporal compo-
nent. Combining 2D and 3D convolutions in a single neural
network to produce richer and more illuminating feature
maps is another method for simplifying 3D CNNs, such as
MiCTNet [85], ARTNet [86], S3D [87].

To improve the efficiency of 3DCNN, CSN [88] demon-
strated that it is a good idea to discompose 3D convolution
by isolating channel interactions from spatio-temporal inter-
actions in order to get cutting-edge performance. It can accel-
erate two to three times faster than the previous best method.
Feichtenhofer et al. proposed the X3D algorithm [89], whose
structure is shown in Fig. 7. The X3D network is not
only expanded in temporal and spatial dimensions, but also
improved in spatial resolution, input resolution, and chan-
nel dimension. X3D pushes 3D model decomposition to the
extreme, which can meet different target complexity require-
ments. Yang et al. [90] considered that somemorphologically
similar actions such as walking, jogging, and running need to
rely on visual speed-assisted discrimination, and proposed a
Temporal Pyramid Network (TPN) similarity to X3D. With
this model, the network can extract features at different rates,
reducing the computational effort while improving efficiency.

Wang et al. [91] suggested a temporal segment network
(TSN) in response to the network’s inability to capture
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FIGURE 8. The FAST-GRU architecture.

long-time information and resulting feature loss. By utilizing
a sparse sampling strategy, the TSN is able to create long-term
dependencies while lowering the cost of training. The tempo-
ral relationship network [92] is also capable of learning and
analyzing the temporal relationships between video frames
on various time scales. Later, a new building block known as
the non-local block was developed by Wang et al [93]. Like
self-attention [94], non-local is a plug-and-play technique.
A 4D CNN with 4D convolution was recently offered by
V4D [95] to model the evolution of distant spatio-temporal
representations.

In general, 3DCNNs create the relationship between tem-
poral and spatial features in different ways, rather than replac-
ing two-stream networks or being mutually exclusive.

3) HYBRID NETWORK
Adding more recurrent layers to CNN to create hybrid
networks [96], [97], like LSTM and RNN, is another well-
liked method for HAR. This hybrid network exhibits out-
standing superiority in extracting spatial dimensional features
and long-term feature dependence because it incorporates the
benefits of both CNN and LSTM [67], [98], [99].

Donahue et al. investigated LSTM and proposed LRCN
[96] for modeling CNN-generated spatial features over tem-
poral sequences. Ng et al. [97] used CNN and LSTM to
evaluate six different time-dimension pooling operations,
including Slow pooling and Conv pooling, among others.
Next, He et al. [100] suggested a deep bidirectional LSTM
that similarly combined the benefits of temporal informa-
tion extraction with bi-LSTM and spatial features extraction
with CNN. The method can process long videos by ana-
lyzing features at predetermined intervals, producing bet-
ter results. A lightweight motion-based attention mechanism
and a correlation-based spatial attention mechanism are both
included in the suggested VideoLSTM [101]. By learning
separate hidden state transitions of storage units at separate
spatial locations, the Lattice LSTM [102] extends the LSTM
and can precisely describe long-term and complex motions.

Due to the LSTM module’s construction, parallel comput-
ing is not feasible. The most widely used deep learning archi-
tecture nowadays, Transformer [94], is capable of resolving
this issue. Girdhar Rohit et al. [103] combined context fea-
tures using Transformer’s architecture and added an attention
mechanism. Using mutual attention fusion and inter-frame
attention encoder blocks, Li et al. [104] introduced the

Transformer-based RGB-D egocentric action recognition
framework (Trear). Moreover, ShuttleNet [105] emphasizes
parallel workwhile taking into account feedforward and feed-
back connections in RNNs, learning long-term relationships,
and parallel computation. FAST-GRU is a strategy created by
FASTER [106] that expedites training by lowering the cost of
redundant frame processing, as shown in Fig. 8.

III. SKELETON-BASED ACTION RECOGNITION METHOD
It has become simpler to obtain joint position data as a result
of the advancement of depth cameras like Kinect, Asus Xtion,
and Intel RealSense and the maturing of joint coordinate esti-
mation algorithms like OpenPose and SDK [107]. Skeleton
data also has better robustness to illumination, view angle,
and backdrop occlusion compared to RGB data, and it can
better prevent noise influence. Researchers prefer the HAR
based on skeleton data because it has more focused infor-
mation and significantly lowers the calculation of redundant
information.

By feature extraction method, HAR based on skeleton data
can be divided into deep learning methods based on deep
features and machine learning methods based on handcrafted
features. Additionally, as skeleton data is dependent on
pose estimation algorithms, this section methodically covers
well-known posture estimation algorithms and offers work
on skeleton-based action recognition from the perspective of
features.

A. POSE ESTIMATION
In order to reconstruct the human limb trunk, the human
pose is estimated by detecting the position information of the
joints in the human skeleton and determining the connection
between the joints. Traditional methods for estimating human
pose [108] rely on manually labeling features and regression
to obtain the joint coordinates, but the accuracy is low. Deep
learning-based human pose estimation, which can be sepa-
rated into 2D and 3D pose estimation, has emerged as a key
research area.

1) 2D HUMAN POSE ESTIMATION
The goal of a 2D human pose estimate is to locate the
important human body parts in an image and connect them
in a sequential manner to create a human skeleton graph.
The classification of single and multiple human targets is
generally used in research.

There is only one target to be discovered in the
single-person pose estimate image. All the joints in the target
body are first recognized, followed by the bounding box
image of the target. In general, there are two categories
of single-person pose estimation models. First is the direct
regression-based approach, which involves regressing key
points directly from features, as shown in Fig. 9. Exam-
ples are DeepPose [109], Deconstructive Key Point Regres-
sion (DEKR) [110], Self-Correction Model [111], and the
Structure-Aware Regression Method [112]. The alternative,

VOLUME 11, 2023 53885



C. Wang, J. Yan: Comprehensive Survey of RGB-Based and Skeleton-Based Human Action Recognition

FIGURE 9. An example of regressing the key-points in [110].

known as a heat map-based framework [113], [114], [115],
[116], involves first creating a heat map first and determining
the locations of the critical points from the heat map.

Multi-person pose estimation necessitates the concurrent
processing of detection and localization operations, unlike
single-person pose estimation. Depending on the detecting
step, top-down and bottom-up approaches for estimating
human pose can be distinguished. Top-down based methods
execute pose estimation on a single human target after using
a target detection algorithm to detect multiple people in the
image. G-RMI [117], Mask R-CNN [118], AlphaPose [119],
HRNet [120], and DNAnet [121] are a few examples. The
bottom-up approach includes joint detection and clustering,
which first detects every joint in the image and then clusters
the joints into a person using the appropriate algorithm to
estimate pose. DeepCut [122], OpenPose [123], Lightweight
OpenPose [124], PiPaf [125], and HigherHRNet [126] are
examples of bottom-up approaches that do away with the
notion of first detecting people.

2) 3D HUMAN POSE ESTIMATION
By estimating information such as the 3D coordinate posi-
tions and angles of body joints, 3D human pose estimation
attempts to construct a body representation. The three major
categories of deep learning-based 3D human pose estimation
are listed below.

These methods directly forecast 3D pose coordinates
from a single image using a large network structure. Deep
learning was first applied to a 3D human pose estimation
study by Li et al. [127]. Based on this, Park et al. [128]and
Tekin et al. [129] conducted more research. Heatmap regres-
sion can preserve more image data, and it is generally
accepted to use the heatmap of key human skeleton points to
estimate 3D human poses [114], [130], [131], [132], [133].

Researchers have tried combining 2D and 3D pose net-
works [134], [135], [136], [137] or using 2D skeleton
sequences as input [116], [138], [139], [140] in an effort to
overcome the limitations of the direct regression method and
networks in model optimization and their usefulness in a real-
world setting.

These methods require 2D pose information with
complementary data on human joint points and motion char-
acteristics to develop a network model for a 3D human
pose estimate [112], [141], [142]. They are based on 2D
information with additional image information, geometric
constraints, and other requirements.

B. SKELETON-BASED HANDCRAFTED ACTION
RECOGNITION
Handcrafted features are specified by the researcher based on
prior knowledge or statistical features retrieved from action
data, which can be used to describe the dynamics or statistical
characteristics of the action.

Depth motion map (DMM) [143] was proposed in an
effort to represent actions by calculating motion data from
depth information. DMM created three motion history maps
by projecting and compressing the spatiotemporal depth
structure from the top, side, and front viewpoints, and then
represented them with HOG features. Lastly, actions were
described by concatenating the extracted features. Yang et
al. [144] constructed a super normal vector feature(SNV)
to represent actions based on the depth map sequence.
Local binary-valued pattern features were employed by
Chen et al. [145] to describe the DMM-based actions instead
of HOG.

Numerous academics suggested various skeleton represen-
tation methods to boost the algorithm’s effectiveness and
efficiency. Vemulapalli et al. [146] employed curves in the
Lie group to mimic the motion after modeling the geo-
metric connections between various body components using
three-dimensional rotation and translation operations. The
low-latency oriented model proposed by Cai et al [147].
is robust in computing joint position-related features. A new
approach that enables real-time tracking was proposed by
Papadopoulos et al. [148] and is based on the determination
of the spherical angle between the joints. Su et al. [149]
recently extracted features of statistical attributes, such as
mean and variance, as well as features of physical attributes,
such as relative location of joints, to conduct research.

Handcrafted features are highly interpretable and straight-
forward. Yet, they fall short of fully describing the overall
state of the motion because they depend on the researcher’s
a priori knowledge, which is more individualized and difficult
to generalize.

C. DEEP LEARNING-BASED ACTION RECOGNITION WITH
SKELETON
Recently, the benefits of merging skeleton data with deep
learning have been gradually demonstrated, and a number of
outstanding approaches, primarily based on RNN, CNN, and
GCN, have been developed.

1) RNN-BASED METHODS
Recurrent neural networks (RNNs) are used in natural lan-
guage processing (NLP) [150], video analysis [151], [152],
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FIGURE 10. The framework of PoseConv3D.

[153], and RGB-based action recognition [154] and offer con-
siderable advantages for processing variable-length sequence
data [155], [156].

If the sequence is too long during actual training, gradient
explosion and disappearance may occur during optimization.
The independent recurrent neural network (IndRNN) [157]
has been suggested as a solution to this issue. Gradient back-
propagation is regulated by IndRNN over time, enabling the
network to acquire long-term dependencies. The function of
neurons in each layer can also be explained by the fact that
neurons in the same layer are independent of one another and
linked across layers.

By developing ‘‘recurrent bodies,’’ long short-term mem-
ory (LSTM) networks improve upon RNNs’ drawbacks
and have significant benefits in the extraction of temporal
sequence features. Lee et al. [158] propose that LSTM net-
works with varying time steps may ‘‘remember’’ distinct
attributes. They suggested an integrated temporal sliding
long short term memory (TS-LSTM) network that takes into
account both short- and medium-term features in addition to
long-term ones.

When all joints are used as inputs, irrelevant joints degrade
the network’s performance as noise, so more attention should
be given to joints with important information. Considering the
interference of noisy data, Liu et al. [159] suggested a global
context-aware attention LSTM (GCA-LSTM) with a circular
attention mechanism. With the aid of global context memory
units, GCA-LSTM is better able to selectively pay attention
to the joints of varying importance. To increase the network’s
expressiveness, they integrate coarse- and fine-grained atten-
tion simultaneously.

Co-occurrence features improve the expressiveness of net-
work features by combining features from different dimen-
sions. Zhu et al. [160] proposed a regularization technique
for investigating skeleton co-occurrence features. Si et
al. [161] introduced the attention-enhanced graph convolu-
tion LSTM network (AGC-LSTM), which can extract the

co-occurrence feature of the spatio-temporal dimension, and
incorporate an attention method to improve the informa-
tion of key joints. Additionally, they suggested a tempo-
ral hierarchy to expand the AGC-LSTM layer’s temporal
perceptual domain, which improves the high-level semantic
representation and greatly lowers the computing cost. The
attention recurrent relational networks (ARRN-LSTM) that
Zheng et al. [162] suggested can modularize both spatial lay-
out and temporal motion features.

2) CNN-BASED METHODS
The CNN model, which is frequently employed in
skeleton-based action recognition, has a great ability to
extract high-level semantic information fast and readily.

To meet the criteria of CNN input, it is crucial to convert
3D skeleton data from vector frames to pseudo-images and
afterwards extract the features of the pseudo-images. Du et
al. [164] developed an end-to-end hierarchical structure using
spatial relations as an innovator of skeleton image represen-
tation. They represented the coordinates of the 3D skeleton
as sequences and linked them in time. The final step was
to extract and identify features from the generated pictures
using a CNN. Following [164], Ke et al. [165] suggested an
improved skeleton sequence representation in which 3D coor-
dinates were divided into three grayscale images. Inspired by
the RGB-based two-stream CNN [69], Li et al. proposed a
skeleton-based two-stream CNN [166], in which one stream
receives the initial skeleton coordinates as input, and the other
stream receives the difference in joint coordinates between
two subsequent frames. Ding et al. [167] employed CNN
to obtain high-level semantic features from RGB textured
images that were generated from the skeletal data.

The aforementioned approaches require a lot of processing
work and frequently miss critical information. To get around
this problem, Caetano et al. specified SkeleMotion [168]
as a novel skeleton image representation to be used as an
input to the neural network. Then Caetano et al. conducted
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FIGURE 11. Spatio-temporal graph convolution model (ST-GCN).

FIGURE 12. Illustration of the overall architecture of the 2s-AGCN in [163]. The scores of two streams are added to obtain the
final prediction.

additional research [169] so that the input is no longer limited
to the skeleton’s coordinates. The tree structure reference
joint image (TSRJI) was used as the skeleton representation
in this research, and the reference joint and the tree structure
skeleton were used together to prevent CNN’s disregard of
the skeleton structure.

Numerous researchers have attempted to find a solu-
tion to the long-time dependence problem because con-
volutional neural networks are not effective at extracting
long-distance motion information. A subsequence atten-
tion network (SSAN) was suggested by Liu et al. [170] to
more effectively record long-term features after applying
3DCNN to skeleton data in the initial stages. Liu et al. [171]
exploited the macro-temporal correlations between skeleton
joints using Fourier time pyramids, and then caught the
micro-temporal interactions using a hierarchical method.

Recently, Duan et al. [172] developed a novel framework
for skeleton-based HAR, PoseConv3D, as shown in Fig. 10.
PoseConv3D outperforms the GCN-based method in terms
of learning spatio-temporal features, resistance to pose esti-
mation noise, and cross-dataset generalization. PoseConv3D
can also handle multi-person scenes without incurring extra
computation costs.

3) GCN-BASED METHODS
Both CNNs and RNNs learn with alignment regularity for
euclidean data, but they are unable to deal with non-euclidean
data. Gori et al. [173] first suggested GNNs in 2005 as a way
to explore graph data. Later, by extending CNN on graph
data, the graph convolutional neural network (GCN) was
gradually suggested. GCN can be used to learn graph data
directly because human skeleton data, which consists of joint
points and skeletal lines, can be thought of as non-Euclidean

graph data. Spectral GCN and spatial GCN are the two major
branches of GCN, respectively.

• Spectral GCN:
Using the eigenvalues and eigenvectors of the graph
Laplacian matrix, spectral GCN converts the graph from
the temporal domain to the frequency domain [174],
but the computation is laborious. By only allowing the
filter to operate on one neighbor node around each
node, Kipf et al. [175] improved the spectral GCN
method. A new spectral multi-Laplacian graph convo-
lution network (MLGCN) was recently suggested by
Mazari et al. [176] to learn the graph Laplacian, which is
used as a convex combination of other basic Laplacians.
Although spectral GCN has demonstrated its efficacy in
HAR tasks, the computational expense makes it chal-
lenging to capture high-level information from graphs.

• Spatial GCN:
Spatial GCNs are more efficient and work better than
spectral GCNs in terms of computation cost. Therefore,
spatial GCN is the main emphasis of the majority of the
current GCN-based HAR techniques. Yan et al. [177]
made the initial concept for a spatio-temporal graph
convolutional network model (ST-GCN). As shown in
Fig. 11, ST-GCN takes the bodily joints as the vertices
and take the bodily bones in the same frame as well as
the sequence frame, as the edges of the spatio-temporal
graph.
The flexibility of the graph network is somewhat
reduced because each layer’s parameters are fixed. Shi
et al. [163] suggested a novel two-stream adaptive
graph convolutional network (2sAGCN) to address this
issue, shown in Fig. 12. Either the BP algorithm or an
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end-to-end method can be used to learn the topology of
the graph in the model. The 2sAGCN model is more
adaptable to diverse data samples thanks to this data-
driven methodology, which boosts its flexibility. The
attention mechanism is also introduced to make the
2sAGCN more robust. In light of the fact that the joint
importance varies for each action, Shiraki et al. [178]
presented the spatio-temporal attentional graph convo-
lutional network (STA-GCN). The STA-GCNmethod is
the first to take into account the significance and interre-
lationship of joints, which inspired some researchers to
look into drawing more focus to the GCN [179], [180].
The development of GCN-based models has been the
subject of numerous studies. As an illustration, the
innovative shift-graph operation in shift-GCN [181]
improves the flexibility of the spatio-temporal graph’s
receptive domain, and the lightweight dot convolution
aids in the reduction of the number of feature channels.
With bottleneck structure and partial attention blocks,
ResGCN [182] is an algorithm for residual graph con-
volution networks that boosts the efficiency, speed, and
readability of GCN for HAR.
Thakkar et al. and Li et al. suggested various techniques
for segmenting body parts, which were inspired by the
notion that the human skeleton is a combination of
numerous body parts. Thakkar et al. [183] proposed a
partial-based graph convolutional network (PB-GCN).
Four node-sharing subgraphs of the skeleton graph are
learned using the PB-GCN algorithm. Another one is
the spatio-temporal graph routing (STGR) scheme that
Li et al. [184] suggested in order to untangle the seman-
tic connections between joints.

IV. COMMON DATASET
With the continuous exploration of HAR, a large number of
datasets related to action recognition have been created to
evaluate and examine the performance of algorithms. Based
on the types of data, the datasets are divided in this survey
into RGB datasets and skeleton sequence datasets.

A. RGB DATASETS
The widely used RGB dataset, which may be gathered
directly from actual situations, will be presented in this part.
Table 2 lists the basic information of some commonly used
RGB datasets.

• UCF101 [185]
There are 13,320 videos overall and 101 action cate-
gories in this compilation of real-world YouTube videos.
UCF101 is the most diverse category of action, includ-
ing camera movement, object shape and pose, object
scale, perspective, complex backgrounds, and lighting
conditions.

• KTH [29]
KTH is a video intercept from a monitoring device over
time that contains one or more sequences of human

TABLE 2. The basic information of some commonly used RGB datasets.

behavior. A distinct time step is used to represent
each sequence of human actions. Each human behavior
sequence is segmented, and the segmented dataset is
then broken down into roughly 60,000 sub-segments
with a range of 5 to 20 actions apiece.

• HMDB51 [186]
HMDB51 is an open source human behavior dataset that
contains approximately 7000 video clips organized into
51 action categories. Each action consists of at least
101 video clips and has a different temporal and spatial
scale. Each clip has a label identifying the activity as
well as information about the visible body parts, camera
motion, camera angle, number of participants in the
action, and video quality.

• Sports-1M [68]
It contains 1133,158 video URLs, automatically labeled
with 487 tags. This is one of the largest video datasets
containing videos of various sports, including Shaolin
Temple Kung Fu and Wing Chun Kung Fu. The dataset
is very complex and challenging with great variation in
appearance and pose, camera motion, and background
noise.

• Kinetics
It contains a series of datasets, including Kinetics-
400 [187], Kinetics-600 [188], Kinetics-700 [189], AVA
Kinetics [190], andKinetics 700-2020 [191]. Depending
on the version of the dataset, 400/600/700 categories of
human actions were covered. For each class of action,
there are at least 400/600/700 video clips. With a dura-
tion of around 10 seconds, each clip is tagged by an
action category. It serves as a significant benchmark in
HAR, similar to ImageNet in image recognition. This
dataset appears in many contexts and has the ability to
pre-train some datasets before training, in addition to
direct clip recognition. Kinetics is largely regarded as
the first major, large video-categorization dataset. The
accuracy of this dataset can be further improved.

• ActivityNet [192]
The ActivityNet series has gone through various iter-
ations since it was first made accessible in 2015. The
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most recent version, ActivityNet 200 (V1.3), includes
200 daily life activities. It has 1024 training, 4926 vali-
dation and 5044 test videos. Per class, there are approx-
imately 137 untrimmed films and 1.41 action occur-
rences.

• YouTube8M [193]
With 8 million YouTube videos (500,000 hours of video
in total) and 3,862 action classifications, it is the largest
video database to date. The video annotation system
on YouTube assigns one or more tags to each video.
A training set, a validation set, and a test set were created
from the dataset in the following proportions: 70:20:10.
Additionally, temporal location data was included to the
validation dataset.

• HACS [194]
This dataset is a new large-scale dataset introduced
in 2019 to track and detect human actions collected
from online videos. HACS contains 504K clip videos,
of which 1.4K million videos have full action videos
(from the beginning to the end of the action). These
videos were annotated with the 200 action categories
used in ActivityNet (V1.3) [192].

• HVU [195]
This dataset was released in 2020 and focuses on
three tasks of video classification, video description and
video clustering to help understand multi-label multi-
task videos. The dataset has 3142 classeswith an average
of 2112 labeled data in one class, of which 481K are
used for training, 31K for validation and 65K for testing.
HVU describes video information with more compre-
hensive labels (scene, objects, actions, events, attributes,
concepts).

• AViD [196]
Introduced in 2020, the AViD dataset collects anony-
mous videos from different countries to constitute
a large video dataset containing 467k videos and
887 action classes, with each video clip lasting between
3 and 15 seconds. The writers deleted the facial identify
during the data gathering procedure to safeguard the pri-
vacy of the video producers. Consequently, it’s possible
that the AViD dataset is not the best option for detecting
facially significant activities.

• Moments-in-Time [197]
The MIT dataset contains 1 million tagged video clips,
of which 802,264 were used for training, 33,900 for
validation and 67,800 for testing, distributed across
339 categories. The visual components of the videos
on MIT include individuals, animals, objects, or natural
events. The information is used to create models that
can abstract and make inferences about complicated
behavior among individuals.

B. SKELETON-BASED ACTION RECOGNITION DATASETS
Many deep skeleton sequence datasets have also been pro-
duced with the use of some depth sensors, such as Microsoft

Kinect. In this section, we present several commonly used
skeleton datasets. Table 3 lists the basic information of some
commonly used deep skeleton sequence datasets, including
the data modality, number of captures, and number of cate-
gories of the datasets.

• CMU Mocap [198]
A 3D skeleton with six degrees of freedom in each
joint was created by the motion capture database at
Carnegie Mellon University using 12 VICON MX-40
infrared cameras. 144 people participated in the inter-
active and single-subject activities. The activities were
broken down into 23 subcategories encompassing con-
text and scenario, mobility, physical activity and sport,
human contact, and environment interaction.

• HDM05 [199]
Five amateur actors performed the action sequences in
the HDM05 dataset, which was released in 2005. Each
of the nearly 70 activity categories in the dataset has
between 10 and 50 performers. The C3D mocap file
format is used to store the produced 3D trajectory data.
The VICONMX system included six RGB cameras and
six IR cameras to record the videos.

• MSR Action3D [200]
The dataset consisted of 20 actions of the console inter-
action, performed three times by each of the 7 subjects.
Depth data was recorded at 15 frames per second (fps).
The activities were divided into three categories: AS1,
AS2, and AS3, where AS1 and AS2 represent com-
parable acts and AS3 represents sophisticated actions.
Without RGB video, the dataset just contains depth and
skeleton data.

• CAD 60 [201]
RGB video and depth maps were recorded with Kinect.
The dataset recorded four subjects performing 12 dif-
ferent activities (including several sub-activities) in five
different environments. These included daily actions in
the office, kitchen, bedroom, bathroom, and living room.

• UT-Kinect [202] 10 subjects performed 10 different
indoor actions, and video was recorded with a still
Kinect. Each subject performed each action twice,
repeatedly. The dataset recorded RGB video, depth, and
skeletons.

• CAD-120 [203]
After collecting 120 videos of human-object interac-
tions, we labeled the dataset with human skeleton tra-
jectories, object trajectories, object labels, subactiv-
ity labels, and high-level actions for each video. Four
participants performed a total of 10 sub-activities in
10 different situations, including cooking oatmeal, tak-
ing medicine, and putting things away.

• UWA3D Multiview [204]
The dataset contains 30 videos of daily indoor actions
taken by 10 different people at different scales, all taken
with Kinect. The high degree of similarity in this dataset
poses an additional challenge.
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TABLE 3. The basic information of some commonly used deep skeleton sequence datasets,where RGB denotes RGB data, IR denotes infrared data,
S denotes skeletal data, and D denotes depth data.

• NTU RGB+D [205]
Three Kinect V2 cameras were used to record the
2016-created NTU RGB+D dataset, which includes
56,880 video samples and 60 action categories. Each
sample includes RGB video, infrared video, depth image
sequences, and 3D skeleton images. A skeleton contains
25 joints in total. 11 of the activities were interac-
tive, while 49 of the acts were completed by a single
individual.

• SYSU [206]
This dataset records 40 participants’ interactions
between people and objects. Each participant used six
different objects in 12 different manipulations. The
skeleton data, depth sequences, and RGB video were all
recorded by Kinect in one view.

• Kinetics-Skeleton [187]
The Kinetics-Skeleton dataset is derived from the Kinet-
ics video action recognition dataset. Using Openpose’s
pose estimation algorithm, they searched all major skele-
ton joints in the videos to create Kinetics-Skeleton,
a database of nearly 300,000 videos and 400 actions that
is still widely used today.

• UW-IOM [207]
The University of Washington’s indoor object manipu-
lation dataset, which includes films of 20 persons clas-
sified into 17 different movement categories, is intended
to identify hazards to the human body. Each participant
controlled six objects in the films, which were separated
into 17 action categories and averaged 12 frames per
second on the Kinect.

• NTU RGB+D 120 [208]
The NTU RGB+D dataset was upgraded in 2019 with
the addition of 60 classes and 57,600 extra video sam-
ples. The cameras and data types are identical to those of
NTU RGB+D. There are 82 daily activities, 12 health-
related actions (e.g., nose blowing,throwing up), and
26 interactive actions. (e.g., shaking hands, pushing each
other).

• HiEve [209]
The dataset focuses on human-centric analysis of
a variety of people and complex events: videos of
9 different scenes and 32 different realistic environ-
ments were collected. Each subject in the videos has
a bounding box, 14 joints skeletons, human identity,
and human actions. Overall, there are 14 types of
actions.

V. CHALLENGE
Although significant advancements have been made in HAR
based on two data modalities, a number of difficulties still
exist as a result of the complexity of the numerous facets of
this task.

A. RGB-BASED CHALLENGES
• Huge Amount of Calculations
Compared to images, RGB video offers a lot more data,
necessitating the creation of strong neural network mod-
els. In real-world contexts, it is challenging to meet the
demands of real-time applications due to the hardware
constraints imposed by the CPU and GPU, which sig-
nificantly degrade the efficiency of network computa-
tion. Also, the labor and time expenses for precise and
efficient labeling of video data are enormous due to the
variety and size of the data.

• Complexity of The Environment
Some action recognition algorithms perform well in sit-
uations that can be controlled, while they underperform
in uncontrolled outside settings. This is mostly due
to the fact that motion vector noise can drastically
impair resolution and that extracting action features
from complicated images is extremely difficult. For
instance, accurate action feature extraction is hard due
to the camera’s quick movement. Accurate recognition
will also be impacted by other environmental issues,
including poor lighting, shifting perspectives, dynamic
backgrounds, etc.
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• Limitations of The Dataset
The dataset contains both intra-class differences and
inter-class similarities. Several people present the same
action in different ways, and even the same person
may perform it in various ways. For different actions,
there may be similar presentations. Moreover, many
available datasets contain unpruned sequences, which
might diminish the timeliness and lower the recognition
accuracy of the network.

B. SKELETON-BASED CHALLENGES
• Pose Preparation
Since the acquisition of skeleton data relies on depth
cameras and sensors, it is influenced by the environ-
ment’s complexity and diversity, the duration of the cap-
ture, and the exposure conditions of the capture equip-
ment. Another common issue in daily life is occlusion,
which is brought either by surrounding objects or human
interaction. All of them raise the detection error for
skeletons.

• Viewpoint Variation
It is challenging to precisely distinguish skeleton fea-
tures from one perspective from another, because some
features are lost during the view change. While current
RGBD cameras [210], [211], [212], [213] can normalize
3D human skeletons [214], [215] from various view-
points to a single pose with viewpoint invariance using
a pose estimation transformation matrix, some of the
relative motion between the original skeletons may be
lost in the process.

• Single Data Scale
Since most skeleton datasets provide information based
on the body joint scale, many approaches only extract
human joint scale features, which results in the loss of
fine joint features. Additionally, some actions, like tooth
brushing, shaving, applying lipstick, etc., show similar
joint interactions. Hence, it is crucial to improve local
feature extraction without sacrificing holistic feature
extraction [216], [217], [218], [219].

VI. FUTURE RESEARCH TRENDS
We describe a few potential future research trends after
synthesizing the current situation and issues with research
methodologies and applications of RGB-based and skeleton-
based action recognition.

A. DEVELOPMENT OF NEW DATASETS
Data are just as crucial to deep learning as model building.
It is still challenging to generalize to realistic scenes when
using existing datasets because of aspects like realistic sur-
roundings and dataset size.Moreover, the majority of datasets
are oriented toward spatial representation [220], and there
aren’t many that can be long-term modeled. However, due
to regional limitations and privacy concerns, such as those
mentioned above, YouTube dataset managers usually only
provide IDs or video links for users to download, not the
actual videos. As a result, some videos are no longer view-

able, resulting in a loss of 5% of videos annually on average
[12]. These difficulties spur us to gather fresh datasets in
order to advance our research.

B. DATA AUGMENTATION
Deep neural networks perform exceptionally well when given
a wide variety of datasets; hence, it is essential to incorporate
data augmentation as a data space solution to address the
issue of restricted data. In the field of image recognition,
a variety of data augmentation methods have been proposed,
including deep learning-based and basic image processing
methods. These methods include kernel filters [221], random
erasing [222], feature space augmentation [223], adversarial
training [224], generative adversarial networks [225], and
meta-learning [226], [227]. In the field of action recogni-
tion, typical data augmentation methods include horizontal
flipping, clipping subclips, and video splicing [228], [229],
[230].The generated videos, however, lack realism. More-
over, Zhang et al. [231] employedGAN to generate new sam-
ples and ‘‘self-paced selection’’ for training. Gowda recently
put up the Learn2Augment [232] proposal, which chooses
video synthesis of the foreground and background videos as a
data augmentation technique, producing diverse and realistic
new samples.

C. IMPROVEMENTS IN MODELS
HAR study is dominated by deep learning models, similar to
other computer vision developments. Currently, the contin-
ual advancement of deep architectures is necessary for both
RGB-based and skeleton-based methods of action recogni-
tion. The following three areas generally correspond to model
improvements.

• Long-term Dependency Modeling:
Long-term correlations describe the sequence of actions
that take place in lengthy sequences, which are similar
to the storage in our brains. One pattern evokes the
next when we think back on an incident. It is crucial to
concentrate on the temporal component in addition to
the spatial modeling because this indicates that there are
extremely strong correlations between adjacent tempo-
ral features.

• Multi-modality Modeling:
Multi-modality modeling relies on the fusion of data
from various devices (e.g., audiovisual data). The two
major types of multi-modality video understanding are
described below. One is the use of multi-modality data
to improve video representations, such as scene, object,
action, and audio [233], [234]. Recently, there has been
an increase in interest in multi-modality fusion using
depth, skeleton, and RGB data. The alternative strategy
is to create a model that can be pre-trained to manage the
signal using multi-modality data [235], [236], [237].

• Efficient Modeling:
It is necessary to create an effective network architecture
because the majority of existing methods have problems
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with the complexity of the models, the enormous num-
ber of parameters, and the inability to accomplish real-
time. We can use efficient methods suggested for image
classification, such as distributed training [238], [239],
mobile networks [240], [241], hybrid precision training,
etc., as well as model compression, model quantization,
and model pruning.

D. ACTIONS PREDICTION
Short-term prediction and long-term prediction are the two
main kinds of action prediction tasks. The goal of short-term
prediction is to infer action labels based on temporally incom-
plete actions, which focuses on quick action videos that typ-
ically last a few seconds. The process of making long-term
predictions involves presuming that present behavior will
influence future behavior. It focuses on lengthy films that
continue for many minutes in an effort to simulate action
changes. More formally, given an action video xa, where
xa can be a complete or incomplete action execution, the
goal is to infer the next action xb. Here, xa and xb are
two independent, semantically meaningful, and temporally
related actions [14].

Finding and modeling temporal correlations in massive
amounts of data is the key to this action prediction research.
The interpretability of time scales, how to model long-term
correlations, and how to use multimodal data to improve
predictive models are just a few of the unexplored directions
for this research.

VII. CONCLUSION
This survey provides a comprehensive overview of human
action recognition methods and systematically summarizes
and concludes the methods according to data types including
RGB data and skeleton data. It also provides relevant analysis
and discussion of various methods, indicating the advantages
and disadvantages of each method. In addition, the existing
popular human action datasets, including RGB datasets and
skeleton datasets, are also introduced. Finally, we analyze the
great challenges currently facing the task of human action
recognition based on RGB and skeleton data, respectively,
and summarize the promising research directions in the field
of action recognition to help scholars entering the field or
conducting long-term research.
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