
Received 7 April 2023, accepted 24 May 2023, date of publication 2 June 2023, date of current version 8 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3282176

Survey of Model-Based Security Testing
Approaches in the Automotive Domain
FLORIAN SOMMER 1, REINER KRIESTEN 1, AND FRANK KARGL 2, (Member, IEEE)
1Institute of Energy Efficient Mobility, Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany
2Institute of Distributed Systems, Ulm University, 89081 Ulm, Germany

Corresponding author: Florian Sommer (florian.sommer@h-ka.de)

This work was supported by the German Ministry of Education and Research (BMBF) through the Security For Connected,
Autonomous caRs (SecForCARs)-Securing Automated VEhicles - Japan-Germany (SAVE) under Grant 16KIS0796.

ABSTRACT Modern connected or autonomous vehicles (AVs) are highly complex cyber-physical systems.
As a result of the high number of different technologies and connectivity features involved, testing these
systems to identify security vulnerabilities is a big challenge. Security testing techniques, such as penetration
testing, are often manual methods that are applied comparatively late in the vehicle development process.
Thus, vulnerabilities are only detected late or after development, leading to higher costs and more patching
effort. To reduce the amount of testing resources in general and enable early and automated testing, model-
based testing methods have been established in several domains, such as information technology and the
automotive domain. The transfer of model-based testing approaches to automotive security testing could
help to detect vulnerabilities earlier than other, manual methods by automatically generating, executing,
or simulating security tests. In this study, we review the literature on model-based test approaches in the
automotive domain. First, we consider security-independent approaches to obtain an overview of applied
models, formalisms, test selection criteria, and test generation techniques. In addition, we investigate,
whether and how model-based approaches are applied for automotive security testing. Overall, we identified
63 publications related to model-based testing and 29 publications with regard to model-based security
testing. The aim of this study is to provide an overview and direct comparison between these approaches.
In this manner, the state of model-based security testing in the automotive domain, current challenges, and
potential research areas are determined.

INDEX TERMS Automotive security, model-based testing, model-based security testing.

I. INTRODUCTION
A large number of electronic and information technology
components have been integrated into modern vehicles. The
number of Electronic Control Units (ECUs) per vehicle has
increased to 150 in recent years [1]. ECUs are connected
through various communication technologies. Communica-
tion systems, such as Controller Area Network (CAN) [2],
FlexRay [3], and Automotive Ethernet [4], are used. In recent
years, there has also been an increase in communication
between vehicles and their environments. Vehicles have
evolved from closed to open systems by introducing tech-

The associate editor coordinating the review of this manuscript and

approving it for publication was Agostino Forestiero .

nologies, such as Wireless Local Area Network (WLAN) [5],
Bluetooth [6], and mobile communications. Thus, a modern
vehicle represents a complex system of communicating enti-
ties. This complexity further increases with the trend towards
autonomous driving [7]. Autonomous vehicles partially or
completely drive on the road without human intervention.
To realize self-driving cars, multiple sensors are required
to recognize the environment, for example, cameras, Radio
Detecting and Ranging (RADAR), and Light Detection and
Ranging (LiDAR) systems. Image processing methods and
artificial intelligence algorithms are used to process the large
amount of data generated by these sensors. As a result,
autonomous vehicles have a high degree of communication
and data exchange, which makes testing more important and

55474 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4009-7164
https://orcid.org/0000-0001-8599-5999
https://orcid.org/0000-0003-3800-8369
https://orcid.org/0000-0002-3025-7689


F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

challenging for vehicle developers and suppliers to ensure
reliable operation. Software testing plays an important role
in the development process. It is estimated that approximately
50 % of the total development costs is invested in testing [8].
In the automotive sector, testing plays a key role in ensuring
the reliability, safety, and security of vehicles. While secu-
rity is still comparatively new to the automotive domain,
a great effort is currently being made to develop concepts and
measures to guarantee security. Several attacks on vehicles
have been recorded over the last few years [9], and some
even lead to safety-critical situations, which could be life
threatening for vehicle occupants and traffic participants in
the worst case. Thus, security testing activities for all phases
of the development cycle are necessary to protect vehicles by
identifying threats and vulnerabilities.

Automotive security-related standards, such as SAE
J3061 [10] and ISO/SAE 21434 [11], address cybersecurity
aspects by defining a comprehensive development and test
process. Therefore, activities, such as Threat Analysis and
Risk Assessment (TARA), deriving security concepts, and
implementing security measures, are required to protect vehi-
cles from cyber attacks. However, to ensure that the number
of potential remaining vulnerabilities in the vehicle is at
an acceptable minimum, further security tests are required.
ISO/SAE 21434 [11] suggests penetration testing, vulnera-
bility scanning, and fuzzing for this purpose. However, since
these test methods are typically carried out late in develop-
ment after a vehicle and its components are implemented,
potential vulnerabilities are found comparatively late. The
elimination of these vulnerabilities can lead to increased costs
and patching effort [12]. At that point, vulnerabilities that
result from software or network architecture designs may not
be eliminated or only at a high expense. Especially pene-
tration testing is a manual and explorative test method that
largely relies on the expertise of the tester. Thus, a significant
amount of time and resources is necessary to detect vulnera-
bilities in a vehicle.

Marksteiner et al. [13] claim that manual test methods
reach their limits in modern vehicles and propose an automa-
tion of the security test process. Jakobs et al. [14] further
argue that formal methods should support security testing.
Formal methods have been thoroughly employed in Model-
Based Testing (MBT) to automate test activities. Several
surveys (e.g., [15], [16], [17]) show that model-based testing
is broadly used in the automotive domain and Khan et al. [16]
highlight its ability to handle the complexity of testing mod-
ern vehicles. This raises the question whether transferring
model-based methods to security testing can help to address
current challenges, such as late testing and late vulnerability
identification.

In this survey, we review literature to identify publications
on (security-related) model-based testing methods in the
automotive domain. There are several reasons for focusing on
automobiles. First, there is a large number ofmodel-based test
methods in most technical domains (Section II), which must
be filtered in a meaningfully for this survey. Furthermore,

modern vehicles represent safety-critical and highly complex
systems consisting of a multitude of different technologies
that need to be tested. In addition, since the publication of UN
R155 [18] and ISO/SAE 21434 [11] at the beginning of 2021,
manufacturers are required to address security throughout the
vehicle life cycle. Thus, there is a need for new and up-to-
date security solutions for vehicles. Therefore, we exclusively
address the automotive domain in this study by examining
model-based test methods. The overall goal of this survey
is to compare conventional and security-related model-based
test approaches. We aim to evaluate whether advantages
of model-based approaches can be transferred to security
testing. In this way, the current state of Model-Based Security
Testing (MBST) in the automotive domain, challenges, and
potential research areas are determined. For this purpose,
we first investigate 63 identified MBT publications and their
application in the automotive sector with a focus on the vehi-
cle development process, but without considering security.
The goal of this step is to provide the state-of-the-art in terms
of applied models, formalisms, test selection criteria, and test
generation techniques. We further determine respective test
or development stages and vehicle technologies (e.g., CAN
communication or ECU applications), which can be tested by
these methods. In the second step, the same investigation is
performed on 29MBST approaches. In particular, the current
state of model-based security testing is highlighted. Modern
vehicles combine several aspects, such as functional safety,
a large number of system components and communication
systems, autonomous driving, and external communication.
Our goal is to evaluate whether current MBSTmethods cover
these aspects. Based on the results, we determine current
challenges in MBST and point out where further research is
necessary.

This paper is structured as follows: In Section II, an intro-
duction of fundamentals for MBT and MBST is presented.
In particular, formalisms, test selection criteria, and tech-
niques for test case generation and execution are addressed.
In Section III, related publications and surveys are covered
and a distinction of our survey is provided. Furthermore,
we describe the procedure and realization of this litera-
ture review. The investigated databases and libraries as well
as the selection process according to defined filter criteria
are illustrated. In Section IV, 63 identified approaches of
model-based testing in the automotive sector are presented,
whereas Section V shows 29 security-relevant approaches.
In Section VI, we analyze the existing approaches to compare
MBT and MBST. In this way, current testing challenges and
further research areas are detected. Finally, a conclusion and
an outlook on future work follows in Section VII.

II. BACKGROUND
In this section, an introduction to model-based testing and
model-based security testing is presented.

A. MODEL-BASED TESTING (MBT)
MBT aims to automate the test process and enable early
test generation or execution in software development [19].

VOLUME 11, 2023 55475



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 1. Overview of a model-based testing process. System information and specifications (1) are used to create one or multiple system models
(2). A test specification (3) is applied to the model to generate test cases (4). Depending on the employed MBT approach and the availability of
suitable tools, executable test scripts can be generated from the derived test cases to test the target system (5).

In literature [19], [20], [21], [22], [23], the term MBT is
thoroughly described by multiple definitions. For example,
Utting et al. [22] define model-based testing as a process in
which a system or its environment are modeled to gener-
ate test cases for system testing. While subtle differences
exist between the literature definitions, the process of system
modeling and the automated derivation and execution of test
cases are generally recognized as central aspects of MBT.
Formal models are created based on the system require-
ments or specifications. Thus, the MBT process can begin
early in development [19] and tests can be automatically
created. If the model is executable (e.g., Simulinkmodels, see
Section II-A1), tests can be executed at model level before
software code has been produced. Thus, system concepts,
designs, or architectures can be examined for faults through
analyzes or simulations. As a result, these faults are elimi-
nated cost-effectively because the system design or develop-
ment is not yet complete. Fig. 1 presents an exemplary MBT
process.

First, system specifications, such as requirements or use
cases, are specified during development. Based on these arti-
facts, a formal model (or several models) of this system is
created. In Fig. 1, the system model is represented by an
exemplary state machine. To derive test cases from the state
machine, a test specification is applied to the system model.
For this purpose, coverage criteria, such as state coverage,
can be used. The resulting test cases are typically represented
in an abstract manner (e.g., paths through the state machine).
Subsequently, when the system is specified in more detail,

these abstract test cases can be further refined. For example,
test cases can consist of test scripts in C code with concrete
test data. These test cases are then applied to the System
Under Test (SUT) during test execution. This last step can be
automated using specific test tools or frameworks. To discuss
different aspects of model-based testing, we refer to the work
of Utting et al. [22], in which a distinction is made between
the categories: model specification, test specification, and test
execution.

1) MODEL SPECIFICATION
Models are used to describe systems, tests, and specifications
in an abstract and formal manner [19]. Typically, a distinction
is made between system and test models. System models
describe structural or behavioral aspects of a system, whereas
test models consider test-specific aspects, such as test selec-
tion criteria, and test cases. Some approaches further apply
environment models that describe the environment in which
a system is located or operating. A variety of formalisms
andmodeling languages exist for specifying individual model
types. In this context, a common and standardized modeling
framework is the Unified Modeling Language (UML) [24].
It provides 14 graphical diagrams, which are classified
into structural and behavioral diagrams. Structural diagrams
describe static structures or connections of a system’s compo-
nents, such as classes of a software application. Among oth-
ers, the class, component, and deployment diagrams belong to
this group. Behavioral diagrams describe the dynamic behav-
ior of a system, such as the sequential procedure of a software

55476 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

application. These include use case, state, activity, sequence,
and communication diagrams. As discussed in later chapters,
many model-based test approaches use UML. An overview
of test case generation approaches based on UML behavior
diagrams is given in [25]. A common UML variant is the
Systems Modeling Language (SysML) [26], which is applied
in systems engineering (e.g., in the automotive sector [17]).
SysML adopts a subset of UML diagram types directly or
in an adapted form and introduces new diagram types, such
as requirement diagrams. Another commonMBTmodel type
is represented by automata, especially Finite State Machines
(FSMs) [27]. Several types of state machines exist, such as
Extended Finite State Machines (EFSMs) [28], Communi-
cating Extended Finite State Machines (CEFSMs) [29], and
Statecharts [30]. Testing based on finite state machines has
been extensively investigated. A comprehensive overview
of the historical development of state-machine-based test
approaches is presented in [27]. Simulink models are often
employed in the automotive sector to specify and simulate
vehicle models. Simulink [31] is an add-on environment to
MATLAB [32] and models continuous or discrete systems
as graphical block diagrams. It provides a library of blocks
that are used to model signal flows. There is an exten-
sive toolset for automatic C code generation from Simulink
models, or interfaces to other applications, such as Vector
CANoe [33], which allows simulations of bus systems and
other communication technologies in vehicles. Tomodel state
machines in Simulink, the extension Stateflow [34] is used.

In general, a large number of other specification and mod-
eling frameworks is available for model-based testing. Thus,
testers must be familiar with these formalisms and related
tools. The presented modeling formalisms are only a subset.
A more comprehensive and detailed overview of formalisms
can be found in [35].

2) TEST SPECIFICATION
A test specification contains information about test designs,
procedures, and test cases. In this work, we focus on the
generation of test cases, which is typically done by applying
test selection criteria [22]. The criteria to consider depend on
the individual test goals or modeling frameworks. As shown
in Fig. 1, coverage-criteria can be used for test selection.
In models, such as state machines or graphs, coverage can
be based on the model structure (e.g., nodes or edges in a
graph). In data-related models, coverage can be based on
datasets. From a development perspective, it is also reason-
able to select tests based on the requirements of a system.
For systems, in which specific types of faults and failures are
important (e.g., safety-critical systems), faults can be used
as a test selection criterion. Test selection criteria can also
depend on specific characteristics or domains of a system.
For example, in cyber security development and testing, the
risk or likelihood of an attack plays a major role. Therefore,
risk-related test case generation [36] methods are applied for
this purpose.

FIGURE 2. Relationship between model-based testing, security testing,
and model-based security testing.

Overall, several test generation techniques exist for gen-
erating test cases based on selection criteria, whereas
Utting et al. [22] differentiate model checking, random gen-
eration, search-based techniques, symbolic execution, theo-
rem proving, and constraint solving. In Section IV, we elab-
orate on further details and present the approaches in which
these techniques are applied in practice.

3) TEST EXECUTION
In terms of test execution, Utting et al. [22] distinguish
between online and offline tests. Online tests describe a
process in which test generation and execution are per-
formed simultaneously. In offline tests, test case genera-
tion and execution are performed separately. Based on this,
Zander et al. [37] introduce a taxonomy formodel-based test-
ing of embedded systems, which further divides test execu-
tion into more detailed elements. These include Model-in-
the-Loop (MiL), Software-in-the-Loop (SiL), and Hardware-
in-the-Loop (HiL) testing, which are common methods in
the automotive sector [38]. Executing test cases on a tar-
get system depends on the SUT, system models, test gen-
eration techniques, and especially on the available test-
ing tools. A comprehensive overview of existing testing
tools and their deployment is provided in [39], which
addresses different approaches to model functional black-box
tests. Shafique et al. [40] introduce and investigate further
model-based testing tools.

B. MODEL-BASED SECURITY TESTING (MBST)
InMBST, security testing is complemented by the advantages
of MBT. This relationship is illustrated in Fig. 2.

Security testing aims to verify and validate whether a
system is sufficiently protected against cyber attacks. For
this purpose, two types of tests can be differentiated [41].
On the one hand, security mechanisms (e.g., encryption) are
tested for correct implementation and conformance to their
requirements. This process is called positive or functional
testing [42] and can be conducted within traditional software

VOLUME 11, 2023 55477



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

testing or MBT. However, a system can also be tested for
security vulnerabilities. This process is referred to as neg-
ative, non-functional, or security vulnerability testing [42].
Penetration testing is often performed for this purpose. Tra-
ditional testing aims to test a system for faults, whereas
penetration testing [43] is used to identify vulnerabilities an
attacker can exploit to compromise the system. Testers act
as attackers and attempt to attack the system by exploiting its
vulnerabilities. Thus, cyber attacks are used as test cases. As a
result, security test cases are successful when vulnerabilities
are discovered or exploited.

Regarding its fundamental procedure, MBST strongly
resemblesMBT [44].Models are created from existing devel-
opment artifacts, such as system requirements. Based on these
models, test cases are derived, which include attacks that are
used for security testing. In conclusion, by applying model-
based approaches to security testing, we expect to transfer the
advantages of MBT, such as early testing or test automation,
to the security testing domain. Through an early identification
of vulnerabilities, mitigation in the concept or design phase
is possible.

III. RELATED WORK AND SURVEY METHODOLOGY
In this section, an overview of related publications and sur-
veys for model-based (security) testing in the automotive and
other domains is provided. We further underline how our
study differs from existing surveys. In addition, the system-
atic search and selection process for this literature survey is
described and a brief overview of the results is provided.

A. RELATED WORK
Model-based testing has been applied in many domains.
Particularly in Information Technology (IT), numerous
approaches have been covered by various surveys. Dias
Neto et al. [20] provide an overview of 78 model-based test-
ing publications targeting different test stages and behav-
ior modeling methods. Su et al. [45] focus on data-flow
test techniques, for example, symbolic execution or model
checking. A total of 97 approaches from 1976 to 2015 are
covered. Fraser et al. [46] focus exclusively on model check-
ing techniques for test generation. In particular, coverage-
based and mutation-based approaches are addressed.
Hartman et al. [47] present a survey on test modeling lan-
guages. The survey of Jia and Harman [48] covers muta-
tion testing methods published between 1977 and 2009.
Application methods, cost reduction techniques, tools, and
mutant detection methods are described. Another survey
was conducted by Anand et al. [49], who present methods
to automatically generate test cases. In addition to clas-
sical IT, MBT is employed in other technical domains.
Abbors et al. [50] present an application of MBT in the
telecommunication domain. Other approaches, such as the
work of Andrews et al. [51], are centered on robotics. Fur-
thermore, safety-critical domains, such as health care [52]
and aerospace [53], also use MBT. An exemplary survey

of model-based testing in the automotive domain was con-
ducted by Altinger et al. [15]. In this survey, 68 people were
interviewed who work at Original Equipment Manufacturers
(OEMs), suppliers, software vendors, or universities. Each
participant was asked a total of 24 questions about employed
tools, test environments (e.g., HiL), and automation methods.
Based on the interviews, the authors conclude that formal
methods are mainly used for system specification, whereas
they are rarely applied in testing. Furthermore, while the
generation of test cases is typically performed manually,
test case execution on the SUT is largely performed in an
automated manner.

Regarding security testing, Felderer et al. [54] present a
large-scale survey of security testing techniques. A distinc-
tion is made between the categories of model-based secu-
rity testing (applied in the analysis and design phase of the
system life cycle), code-based testing and static analysis
(applied in the development phase), penetration testing and
dynamic analysis (applied in the deployment and mainte-
nance phase), and security regression testing (applied in the
maintenance phase). In IT, numerous MBST publications
exist that focus on testing security policies of access con-
trol systems or firewalls [55]. Regarding functional security
testing, Martin [56] provides an automated test generation
method to test the correctness of access control policies. Non-
functional security testing is addressed by Salas et al. [57].
Since many IT systems communicate via the Internet, there
are numerous MBST approaches for web applications [58],
[59]. Furthermore, MBST is covered in health care [60] and
aerospace [61], [62].

Mahmood et al. [63] present a survey of seven test beds
for security testing in the automotive field. The respective
publications are examined and compared with regard to cov-
ered network technologies (e.g., CAN), attack surfaces, and
attack techniques. In addition, four methods that can be
used for security testing are described: penetration testing,
fuzz testing, vulnerability scanning, and model-based secu-
rity testing. Luo et al. [64] examine security testing methods
that are used in the automotive sector. The authors distinguish
between knowledge-based, automation-based, threat-based,
risk-based, requirement-based, and model-based security
testing. Threat-based testing is subdivided into penetra-
tion testing, fuzzing, and vulnerability testing. Furthermore,
related test beds are investigated. In total, 73 publications are
presented, of which 10 are related to MBST. In the automo-
tive domain, MBST is covered in surveys regarding general
security testing approaches. For example, Pekaric et al. [65]
list 39 security testing approaches used in the automotive
development process. The authors examine how testing activ-
ities are used at different points in the development (e.g.,
design phase) and life cycle of a vehicle. These methods
are classified as model-based, code-based, risk-based, regres-
sion, penetration testing, and dynamic analysis. The iden-
tified methods are mapped to the different layers of the
AUTomotive Open System ARchitecture (AUTOSAR) [66].
Thus, 39 publications are classified. In total, 12 approaches

55478 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

are assigned asMBST. However, most of the approaches (26)
are considered penetration testing methods.

Existing surveys [15], [17] suggest that MBT is commonly
applied in the automotive domain. However, the available
surveys treat MBT and security testing separately. To date,
there has been no survey targeting both areas in combina-
tion. In contrast, our study examines MBT approaches in the
automotive field and security-related (MBST) approaches.
We aim to directly compare MBT and MBST. A partial goal
of our survey is to investigate which MBT approaches are
used and which development stages are addressed, which
formalisms and tools are used. We further investigate the
extent to which automotive technologies (e.g., ECU applica-
tions or communication protocols) can be tested using these
approaches. Since cyber security is still relatively new to
the automotive domain, the body of research on automo-
tive security testing is comparatively young. As shown by
Pekaric et al. [65], published work often refers to penetra-
tion testing and dynamic analysis techniques (e.g., fuzzing
and vulnerability scanning). These test techniques are also
proposed by ISO/SAE 21434 [11]. However, as outlined in
Section I, these methods do not support early vulnerability
testing and can only be applied late in the development cycle.
Thus, the question arises how MBST approaches benefit the
automotive security test process. For this purpose, we further
investigate which MBST methods are currently applied in
the automotive domain. The main difference from the related
work is a combined examination of MBT and MBST. To the
best of our knowledge, this has not been addressed in other
studies. The overall goal of this survey is to investigate how
widespread both approaches are, which methods and tools
are used, which system components are tested, and which
modeling and test generation methods are used. Based on
the results, current challenges and open research areas are
identified, particularly in the area of MBST.

B. SURVEY METHODOLOGY
Our review methodology is based on the guideline of
Kitchenham and Charters [67] for systematic literature
reviews in software engineering. This procedure has been
used by other automotive security-related research, such as
in [68], and also for model-based security testing research,
such as in [43]. We follow two steps: First, security-
independent automotive model-based testing approaches are
identified. In the next step, security-related approaches are
identified. We describe the identified publications and ana-
lyze both areas in comparison. The goal of this survey is to
determine the current state of the art in MBT and MBST
in the automotive domain and a comparison of both areas
to determine if the security testing process can benefit from
model-based testing. This further leads to the derivation of
current challenges and research areas in MBST. To con-
duct our research, we chose the online libraries ACM Dig-
ital Library, IEEE Xplore, Wiley Online Library, Springer-
Link, ScienceDirect, SAE Mobilus, and Google Scholar.

Felderer et al. [43] and Brereton et al. [69] also consider the
first five libraries as important sources for software and secu-
rity engineering. We chose to add SAE Mobilus, because it
specifically targets the automotive domain. Google Scholar
was chosen to find publications that are not covered by the
other libraries. Specific search strings, targeting MBT and
MBST are used. For this purpose, we use the following terms
(and related synonyms) in combination to cover a wide range
of publications:

• model-based (synonyms: formal, automated)
• testing (synonyms: test, verification, validation)
• automotive (synonyms: vehicle, vehicular, car, trans-
portation)

• security (synonyms: vulnerability, attack, attacker)

We use these search strings to gather publications from the
online libraries. In order to filter the search results, four steps
are conducted:

• Step 1: Searching for publications in online databases
and libraries with the search strings.

• Step 2: Filtering the search results by publication title.
• Step 3: Filtering resulting papers by reading their
abstract.

• Step 4: Filtering resulting papers by reading them in full
text.

First, we searched for publications by applying our search
strings to the online libraries and databases mentioned above.
Overall, 739 publications were identified. We filtered these
papers by their titles to eliminate papers that did not fit into
our survey scope. After filtering, 130 publications remained.
In the third step, we read the abstracts of these publications.
At this stage, papers below four pages were neglected because
of their limited detail of information. Only papers written in
Englishwere selected. As a result, 104 publications remained.
In the last step, we read these 104 papers in full text. At this
stage, we focused on papers that target the vehicle devel-
opment process. This left 92 publications in total, of which
63 publications are related to MBT and 29 publications are
related to MBST. The distribution of these papers according
to the publication year is illustrated in Fig. 3.
Publications targeting MBT were published continuously

between 2004 and 2020 (with the exception of 2007). Addi-
tionally, a total of 9 MBT papers were published before
2004. While there was another peak of publications in
2017 (eight papers), the number of publications decreased
from 2018 to 2021 (five papers). In contrast to MBT, MBST
has only recently become relevant. Sporadic approaches
(eight papers) were published between 2009 and 2017. Since
2018, the number of MBST publications has increased (21
papers between 2018 and 2021). This can be attributed to
the fact that the field of cybersecurity came into the focus of
researchers and the automotive industry after various research
papers (e.g., Koscher et al. [70], Checkoway et al. [71], and
Miller and Valasek [72]) uncovered several security vulnera-
bilities in vehicles.

VOLUME 11, 2023 55479



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 3. Distribution of selected approaches over the years they were published. The diagram distinguishes MBT and MBST. In total, 92 papers were
selected of which 63 publications target MBT and 29 target MBST.

In the following two sections, we present the publications
identified in detail. Section IV covers MBT publications,
whereas Section V addresses MBST. In Section VI, an anal-
ysis and comparison of the MBT and MBST aspects is pre-
sented.

IV. MODEL-BASED TESTING (MBT) IN THE AUTOMOTIVE
DOMAIN
In this section, we present MBT publications in the automo-
tive domain. In total, 63MBT-related publications were iden-
tified in this survey. To provide a better overview, we group
the approaches according to the categories shown in Fig. 4.
It should be noted that the classification in Fig. 4 is not unique
as categories may overlap. For example, it is possible that XiL
environments (Section V-B) are also addressed and described
in state-based (Section IV-F) or fault-based (Section IV-B)
approaches.

Each identified publication is assigned to one of these
categories. If an approach addresses more than one cate-
gory, the classification is assigned based on the primary
focus of the approach. To enable a comparison between the
approaches, the publications are uniformly presented in tables
(e.g., Table 1). For this purpose, we distinguish the following
table categories:

• Approach: describes the method used, for example,
the Classification-Tree Method (CTM) or search-based
algorithms.

• Goal: describes the aim or purpose of this approach.
We distinguish between the generation of Test Cases
or Test Data, Test Execution, Test Planning, and ver-
ification/validation of the system or its security (Sys-
tem/Security V/V).

• Model: specifies the model types or formalisms used
(e.g., classification trees, UML)

FIGURE 4. Classification of identified MBT publications.

• Stage: describes the development stage in which an
approach is applied. We differentiate Component Test
(CT), Integration Test (IT), System Test (ST), Accep-
tance Test (AT), Regression Test (RT), Design Level
(DL), Deployment (DP), and X-in-the-Loop in terms of
development stages.

55480 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 5. X-in-the-Loop test environments (MiL, SiL, PiL, and HiL) and related development and test stages in the V-Model (in accordance with [73]).

• Area: specifies the technological area addressed by the
method. We distinguish ECUs, Communication Sys-
tems (COM), E/E Architectures (EEA), Sensor, Actu-
ator, Vehicle, and Vehicle-to-X communication (V2X).
If a paper mentions specific technologies (e.g., CAN
communication), these will be also mentioned.

• Application: describes the specific use case or example
(e.g., Adaptive Cruise Control (ACC)) an approach was
shown or tested with.

• Tool Support: gives an overview of used tools or
toolchains.

• Automation (Aut.): indicates, whether an approach has
full (assigned with ✓), semi (assigned with (✓)), or no
automation (assigned with ✗).

These categories result from aspects that we want to
compare in this survey. The following sections describe the
approaches selected for each category.

A. XiL-BASED APPROACHES
In the automotive domain, X-in-the-loop test environ-
ments are common [74]. Here, systems are developed in
a model-based manner and verified at different stages of
the development process. The International Software Testing
Qualifications Board (ISTQB) [38] differentiates between
MiL, SiL, Processor-in-the-Loop (PiL), HiL, and Vehicle-
in-the-Loop (ViL), with MiL, SiL, and HiL being the most
important test environments. Fig. 5 illustrates an overview
of the XiL methods and their related development and test
stages.

MiL is applied in the analysis and design phase of develop-
ment [75]. The SUT and its environment are available asmod-
els configured and executed in a simulation. As an example,
simulating and testing Simulink models can be mentioned.
This often involves the use of environment models that form

a closed system with a system model. The Test cases are
executed in simulations. In SiL, the system model is replaced
by compiled software code that can be created manually or
generated automatically from the system model. Typically,
the SUT (e.g., C code) is connected to the environmentmodel,
which is still available as a model and executed within a
simulation environment. Interfaces are used to connect the
environment model with the SUT software to execute tests.
This type of testing can be applied as soon as implemented
code is available. Thus, it is typically applied in the imple-
mentation or unit test phase. In HiL testing, the SUT runs on
the target platform, since most parts of the SUT and environ-
ment are available as physical hardware systems. Typically,
HiL frameworks or test benches represent the behavior of the
environment under real conditions in real time. For example,
if the ECU of a vehicle is tested, a HiL framework can consist
of an ECU network connected to sensors and actuators by
bus systems. This type of testing can be applied in the later
stages of development, such as system and acceptance testing.
Because X-in-the-loop test environments are established in
automotive, MBT-related publications address these environ-
ments to a great extent.

1) CLASSIFICATION-TREE METHOD (CTM)
A long research history inMBT has been supported by Daim-
ler AG with the Classification-Tree Method (CTM) [76].
In this approach, the test input data are separated into cate-
gories using category-partitioning. A subsequent classifica-
tion of these categories results in a tree structure (classifi-
cation tree). An example of a classification-tree for a turn
indicator function is shown in Fig. 6.

The Turn Indicator function consists of the input signals
of Hazard Lights and a Turn Indicator Control as well as two
output signals: Turn Indicator Left and Turn Indicator Right.

VOLUME 11, 2023 55481



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 6. Classification-tree of a simplified turn indicator function.
By combining input data, test cases (TC) are modeled.

The leaf nodes of the tree represent concrete test values for
each input category (e.g., OFF). A combination of the indi-
vidual test values results in black-box test cases, for example,
to test the Turn Indicator function. In Table 1, publications
that use classification-trees and the CTM for model-based
testing are summarized.

In [77], Grochtmann et al. introduce the Classification-
Tree Editor (CTE), which supports testers conducting CTM.
The CTE tool enables testers to model classification-trees
graphically and derive test cases by combining test values
as shown in Fig. 6. Furthermore, the tool can determine test
coverage. A drawback of CTM is the need to manually model
classification trees and test cases. Singh et al. [78] extend this
process to introduce automation. For this purpose, the input
specification is described in the formal specification language
Z [84]. Z allows the specification of vehicle components,
for example, ECUs and their behavior, in a formal manner
(set theory, first-order predicate logic) and treat them as
test objects. The authors illustrate this using an ACC. The
formal character of Z allows to semi-automatically generate
the classification-tree. Based on the test values of the tree-
classes, a disjunctive normal form of the inputs is created,
which allows an automatic test case generation from the tree.

In the automotive domain, the MATLAB/Simulink frame-
work is widely used to design vehicle systems in a virtual
simulation environment. To use Simulink models in CTM,
Lamberg et al. [79] present the Mtest method. The approach
is illustrated by an example of a vehicle dynamics model,
in which the vehicle performs a lane changemaneuver.Model
input signals are used as test inputs for CTM. In the same
way as the turn indicator function in Fig. 6, these signals can
be partitioned into test value categories for a classification-
tree. The tree is automatically created using the dSPACE Tar-
getLink and AutomationDesk tools. Furthermore, the result-
ing test cases can be executed in the Simulink simulation
environment in a MiL scenario. The authors also highlight
the ability to address SiL and PiL testing depending on the
development state of the SUT.

Many vehicle functionalities and physics are time-
dependent. For example, the vehicle speed increases contin-
uously over time during acceleration. To test time-dependent
functions, Conrad [80] introduce the Classification-Tree

Method for Embedded Systems (CTM/ES), which extends
CTM to test time-specific aspects of embedded control appli-
cations. This enables the creation of test scenarios in which
test data can change between the time steps. This approach is
illustrated by a pedal position interpretation. In this example,
the pedal position is increased over a certain time range,
which results in a change of the vehicle speed. CTM/ES is
applied in a MiL test to simulate functional and structural
tests.

In a subsequent work, Conrad et al. [81] demonstrate
how this process can be applied to further test stages in
SiL and HiL testing. For this purpose, the model-based
CTM/ES approach is combined with requirement-based test-
ing. The CTM/ES is executed on an Antilock Braking Sys-
tem (ABS) example to create time-dependent test cases. For
requirement-based testing, tests are created directly from the
system specification using CTM. In this manner, tests are
traceable to their requirements and can be created at the
beginning of development. To provide consistency between
the requirement-based and model-based test cases, checking
rules are applied that compare the results of both approaches.
This enables a traceability of requirements to test cases at
different stages of development.

The ability of CTMandCTM/ES to combine input and out-
put data to derive test cases is further utilized in combination
with the Automotive Validation Functions (AVF) approach
from Zander-Nowicka et al. [82]. AVF compares actual and
intended signal values of Simulink models. For this purpose,
system requirements are used to determine intended signal
values. These are implemented into validation functions, for
example, to assertions or conditional statements, which com-
pare them to actual values. The validation functions can be
integrated into Simulink models to run simulations. Mjeda et
al. [83] apply AVF in addition to CTM/ES. Both processes are
executed in parallel to create test cases, which are combined
to evaluate each other. Thus, errors in the test design can be
reduced.

2) TIME PARTITION TESTING (TPT)
TPT was introduced by Lehmann [89]. This approach targets
the time dependent and continuous behavior of embedded
systems using an executable test language. TPT uses a graph-
ical automaton notation to model test cases. An exemplary
test case automaton is illustrated in Fig. 7.

The automaton states represent the test behavior or input
stimulation (e.g., Turn on ignition). Transitions contain a
temporal behavior (e.g., Wait for 2s). This representation is
further refined to Time Partition diagrams, which character-
ize an executable directed graph. The TPT-related approaches
identified in this survey are listed in Table 2.
Bringmann and Krämer [85] apply the TPT approach for

model-based testing of automotive software. The SUT and its
behavior are modeled using MATLAB/Simulink. Test cases
are createdmanually as statemachines using the TPT process.
However, the authors highlight the possibility of creating test
cases usingCTM. The test case states specify the input signals

55482 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 1. Survey results for model-based test approaches regarding the Classification-Tree Method (CTM).

TABLE 2. Survey results for model-based test approaches regarding Time Partition Testing (TPT).

FIGURE 7. Exemplary test case in Time Partition Testing (TPT). The states
represent test actions or behavior while the transitions specify
time-dependent (temporal) aspects.

for the Simulink model, whereas the transitions specify the
timing behavior (according to Fig. 7). The test cases are
compiled into byte code to make them executable on a virtual
machine that is connected to the SUT by interfaces. Thus, the
continuous behavior of the system can be tested in MiL, SiL,
PiL, and HiL platforms using the MATLAB/Simulink frame-
work. The authors illustrate that approach on the example of
an exterior headlight ECU, for which 72 test cases are defined
in a case study.

The TPT process contains steps that have to be performed
manually, such as defining the test data or parameters for
test cases or evaluating test results. To automate this pro-
cess, Lindlar et al. [86] extend the TPT test methodology by
combining TPT with evolutionary algorithms. In this Evo-

lutionary Time Partition Testing (EvoTPT) approach, test
data generation is viewed as an optimization problem. TPT-
based test cases are altered by searching for optimal test
parameters to reduce the search space. After executing the test
cases, the test results are provided to a fitness function that
calculates a fitness value that is fed back to further refine test
parameter optimization. The authors illustrate this approach
using a custom Java-based tool (Evolutionary Testing Frame-
work (ETF)) in which an ACC system is represented as a
MATLAB/Simulink model and tests are executed in a MiL
environment.

Modern vehicles can include 150 ECUs [1] developed
by several suppliers. AUTOSAR [66] was established to
provide a common interface and architecture structure.
AUTOSAR consists of several layers that separate ECU
specific aspects, such as communication (COM) or Soft-
ware Components (SWCs). To test these individual layers,
Michailidis et al. [87] apply TPT to execute tests at the sys-
tem level, early in development. The authors use TPT state
machines to model test cases for different AUTOSAR layers.
A main state machine covers AUTOSAR SWCs, an ECU
statemachine covers the ECU statemanager, and a COMstate
machine covers AUTOSAR COM services. The approach is
validated using a Mercedes interior lights system. Tests are
executed in a HiL environment.

The automotive domain combines several technologies.
Thus, a large number of tools exist to support the test
process (see Section VI-G). To introduce a common
test language, which can be used across several tools,
Schieferdecker et al. [88] apply the Testing and Test Con-
trol Notation Version 3 (TTCN-3) [90] to the TPT process.
TTCN-3 is a standardized test language for black-box test-
ing and is primarily used to test communication systems
(e.g., telecommunication). To use TTCN-3 for TPT, streams,

VOLUME 11, 2023 55483



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 8. Simplified graphical representation of a Timed Usage Model in
which the transition probabilities pi of a Markov Chain are
complemented by a timing parameter ti .

channels, and continuous timing aspects are introduced to
TTCN-3. The authors illustrate this extension using an exem-
plary automated light control system.

3) EXTENDED AUTOMATION METHOD (EXAM)
The EXAM is an automated functional ECU testing approach
applied at Volkswagen AG. Thiel and Zitterell [93] and Zit-
terell and Thiel [94] introduce the basic abstract process of
EXAM. Based on an informal test specification, test design-
ers create a formal specification using a description language
similar to the UML meta model. The resulting formal test
specification includes parameters that are used to derive
functional test cases. The main advantage of EXAM is that
resulting test cases are independent of any test platform.
This enables the reuse of tests on different test platforms,
particularly in HiL environments. In Table 3 two approaches
are presented that apply EXAM in amodel-based test context.

In the basic EXAM process, test case generation is per-
formed manually. Siegl et al. [91] provide an approach that
automates this process. Essentially, the requirements of an
engine start-stop function are used to create a Markov Chain
Usage Model (MCUM) [95]. Markov Chains are similar
to state machines, but include probabilities on the transi-
tions (as shown in Fig. 8). Thus, MCUMs represent possible
usage scenarios of the system under certain probabilities. The
authors apply statistical random walks and coverage-based
graph algorithms to automatically generate test cases from
the MCUM. Resulting test cases are transferred to UML
sequence diagrams. These platform independent diagrams
can be further refined for specific test platforms, for example,
by an automatic generation of executable test scripts for HiL
environments.

In [92], the authors further enhance this approach to cover
timing aspects. For this purpose, MCUMs are extended to
Timed Usage Models (TUM) (Fig. 8) by complementing
transition probabilities with timing parameters. Thus, time-
dependent test cases can be created. This process is eval-
uated using an engine start-stop function and an energy
management system for an electric/hybrid vehicle. For this
purpose, test cases are generated to verify conformance

FIGURE 9. Exemplary Simulink model of the turn indicator function from
Fig. 6.

of safety-critical system requirements demanded by ISO
26262 [96].

4) SIMULINK-BASED APPROACHES
The MATLAB/Simulink framework and its extension State-
flow are widely used in the automotive sector to model vehi-
cle systems as block diagrams. Fig. 9 illustrates an exemplary
Simulink model.

The model is based on the turn indicator functionality as
shown in Fig. 6. The input signals of the hazard lights and
turn indicator control are processed in a block that prioritizes
the signals. The output signal triggers the left and/or right
turn indicators. A large number of model-based test methods
are based on Simulink models. Test cases are derived using
suitable tools and executed in different test environments,
such as MiL. An overview of these approaches is listed in
Table 4.
Matinnejad et al. [102] present an approach for MiL test-

ing of continuous control applications. For this purpose,
a supercharger bypass flap position control unit is modeled
in MATLAB/Simulink. Based on the input space of that
model and functions specified in the system requirements,
a random search algorithm is applied. As a result, a so-called
HeatMap is obtained in which values of the system functions
are mapped to certain regions. The map is evaluated by an
expert to identify critical regions, where faults are more likely
to occur. In the next step, a single-state search algorithm is
applied to automatically generate test cases based on the most
critical regions. The authors demonstrate that their approach
provides better performance and more useful test cases than
a pure random search.

Search-based algorithms are further used in Simulink and
Stateflow models. For example, Hahn et al. [97] model an
ACC system in two different Simulink/Stateflow variants.
The first model is hybrid and combines continuous and dis-
crete system aspects, whereas the secondmodel contains only
discrete aspects. In addition, the vehicle environment (e.g.,
the vehicle ahead) is considered. The discrete model, in par-
ticular the state machine of Stateflow, is used to generate test

55484 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 3. Survey results for model-based test approaches regarding the EXtended Automation Method (EXAM).

TABLE 4. Survey results for model-based test approaches regarding Simulink.

cases. For this purpose, a search-based algorithm is applied
to the state machine, which considers coverage metrics, such
as all-state-pairs and all-transition-pairs coverage. The hybrid
model is used as a reference to compare the test results from
the discrete model.

In a similar approach, Peranandam et al. [100] present the
SmartTestGen (STGen) tool, which creates test cases based
on Simulink/Stateflow models. For this purpose, a test spec-
ification is used, which includes coverage criteria, such as
decision, condition, and Modified Condition/Decision Cov-
erage (MC/DC). Based on a selected coverage metric, the
tester can choose between test engines for model checking,
random testing, constraint solving, and heuristics-based test
case generation. To evaluate the performance of STGen, the
authors perform a case study with 20 Simulink/Stateflow
models of different automotive applications (for example,
powertrain). In comparison to other tools, such as Reactis
and Embedded Tester, STGen had a lower performance, but
is able to achieve higher coverage on the majority of the
evaluated models.

The approach of Cleaveland et al. [99] also applies cover-
age criteria (e.g., MC/DC) to Simulink/Stateflow models to
test system requirements early in development. For this pur-
pose, requirements are transferred to assertion blocks, which
evaluate Simulink signals using Boolean expressions. The
assertions are integrated into the Simulink/Stateflow models
using the Reactis Validator tool. When the model is simu-
lated, the assertions are checked for violations. The concept
of integrating specific testing blocks into the Simulink model
is further utilized in other tools, such as Arttest [104]. Arttest

uses a signal-based method in which input and internal sig-
nals of Simulink models are manipulated by specific control
blocks that have to be integrated into Simulink. These control
blocks are provided with test signals, which override the orig-
inal Simulink signals during test execution to manipulate the
system behavior. Wiechowski et al. [104] demonstrate this
process in a case study on the functionality of a start-stop
engine. Hansen et al. [105] further demonstrate the applica-
tion of Arttest in MiL and SiL testing on a window control
system.

Skruch and Buchala [103] also use test blocks that are
integrated into Simulink models and include test signals.
The system is viewed as a set of inputs, outputs, and state
variables depending on time. Tests are described as a set
that includes certain time ranges, input, output, and state
functions. In Simulink, this can be realized using the Signal
Builder blocks. The resulting model can be used to derive test
cases or as an oracle to compare test results with the intended
system behavior. For this purpose, the Simulink model can
be compiled and flashed onto a target ECU. Furthermore,
the Real-Time Interface (RTI) library of dSPACE Automa-
tionDesk is applied to connect the hardware to the Simulink
model. The availability of such interfaces to connect hard-
ware to the Simulink simulation environment enables testers
to test software applications early in development in realistic
HiL environments. This concept is also used by Belmon
and Xu [101], which specifically targets testing of auto-
matic transmissions in a HiL setup. For this purpose, the
TestWeaver tool is used to connect a Simulink transmission
control application with an environment model consisting of

VOLUME 11, 2023 55485



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

a vehicle and a gearbox. Thus, specific blocks are added to
the Simulink models, which are used to control the model
inputs and gather the outputs. The tool is able to automatically
generate test scenarios and execute them inMiL, SiL, andHiL
simulations.

Nabi et al. [98] further present a HiL test bench for pow-
ertrain and engine simulation. The HiL hardware setup con-
sists of a custom dSPACE engine simulation environment,
which is controlled by a PC. The test bench is connected
to a powertrain control unit that serves as a test object.
Additional hardware, such as diagnostic testers or actuators,
can also be integrated. Simulation models are created using
MATLAB/Simulink and Stateflow. The dSPACE ControlD-
esk employs python scripts to apply, control, and monitor
tests automatically. The authors further illustrate how failure
insertion and I/O tests can be executed in the unit, integration,
and system test stages.

5) SIMULATION-BASED APPROACHES
In addition to Simulink, further simulation frameworks and
methodologies are used in the automotive domain. Table 5
summarizes relevant publications in this area.

Bucher et al. [106], [107] evaluate E/E architectures in
vehicles. In their approach, architectures are modeled using
the Electronics Architecture and Software Technology -
Architecture Description Language (EAST-ADL) or Elec-
tric/Electronic Architecture (EEA)-ADL. The authors use the
Vector PREEvision tool to model an exemplary ACC system
in EEA-ADL. EAST-ADL and EEA-ADL are focused on
structural properties, for example, to model the structural
topology of an architecture. To address the system behavior,
the authors developed an additional behavioral architecture
layer. This layer describes the logical functions of the net-
work, for example, message exchange between the ECUs
and sensors, which realize the ACC functionality. The logical
elements of this layer are mapped to the Ptolemy II simula-
tion framework. Furthermore, a mapping to hardware-related
layers is integrated, for example, for bus communication.
In this way, links are created between the layers of the logi-
cal, behavioral, and hardware-related architecture to conduct
simulations across multiple architecture layers. In [108], this
approach is employed in a MiL environment using an E/E
architecture example, which consists of several ECUs, such
as RADAR, Camera, and Powertrain, as well as CAN bus
communication.

Neubauer et al. [109] further extend this approach to test
and verify Advanced Driver-Assistance Systems (ADASs)
in a virtual simulation environment to comply with the reg-
ulations of the United Nations Economic Commission for
Europe (UNECE). Test scenarios, specified and required
by UNECE (regulation UN R131 [112]), are applied to an
exemplary Advanced Emergency Braking System (AEBS).
Each test scenario requires a driving behavior model. For this
purpose, the E/E architecture simulation environment [106]
is extended by the 3D simulator OpenDS, which applies

the OpenDRIVE standard and OpenSCENARIO data format.
Thus, the required UNECE test scenarios can be created and
automatically verified through simulations using OpenDS.

Simulations can be further introduced into the completed
vehicle to test sensor and actuator systems, as shown by
Berger [110]. This approach focuses on validating customer
requirements by performing acceptance tests. For this pur-
pose, an autonomous vehicle is equipped with a camera and
a laser scanner. To test these sensors, a Driver-in-the-Loop
scenario is defined. Therefore, the sensor data are simulated
in a virtual 3D environment (e.g., to provide camera pictures).
For this purpose, the vehicle systems and their surroundings
are described in a Domain Specific Language (DSL) to create
use cases or driving scenarios using the tool MontiCore.
The author further applies the Hesperia framework [113] to
virtually create sensor data (e.g., for cameras). In this manner,
the physical sensor systems are provided with realistic data.

Finally, Plummer [111] introduces a MiL framework in
which a simulated numerical model is interacting with the
physical SUT. The approach is applied to an vehicle aero-
dynamics and a tire model. The focus of that paper is on
the specification of the numerical models and the setup of
the MiL framework. However, the author further highlights
how the framework can be extended by numerical or physical
sensors and actuators.

6) FURTHER XiL-BASED APPROACHES
In this section, we present remaining XiL-based publications
that did not match aforementioned categories from the previ-
ous sections. In Table 6, these publications are summarized.

Schoitsch et al. [114] present the Dependable Embedded
Components and Systems (DECOS) test bench, which targets
architectures of embedded, safety-critical systems. This test
framework is used to validate and certify DECOS-related sys-
tems. For this purpose, the system must comply with safety
cases, which proves that safety requirements are fulfilled.
The framework can process UML and MATLAB/Simulink
models and provides tools to perform safety analysis tech-
niques, such as Fault-Tree Analyses. Thus, safety require-
ments demanded from standards, such as IEC 61508 or ISO
26262, can be fulfilled. Several test techniques, such as con-
ventional functional testing, fault injection, but also theorem
proving andmodel checking, are available to validate and ver-
ify the SUT. The authors highlight, how the test framework
is applied to different domains, such as automotive (door-
control and crash warning systems), aerospace, and industrial
control systems.

Shin and Lim [115] present an approach to generate test
cases for hardware and software testing. A power window
switch module is used to create a system model as a UML
state diagram. The authors implemented a custom parser,
which analyzes the model and extracts an abstract syntax
tree. To automatically generate test cases from this tree, a
Breadth First Search (BFS) algorithm is used in combination
with transition coverage. The resulting test cases are applied

55486 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 5. Survey results for model-based test approaches regarding simulations.

TABLE 6. Survey results for model-based test approaches regarding further XiL approaches.

during the unit test stage. Moreover, the authors demonstrate
the reusability of the unit test cases in a path combination
approach with a simulated annealing algorithm to address the
integration test stage. The software test cases can be reused
for hardware testing. For this purpose, the application’s soft-
ware variables are mapped to hardware signals. Thus, tests
can also be applied in a HiL environment.

In [116], Peleska et al. present a benchmark model of
turn indicator lights of a Mercedes Benz. This model is
intended to benchmark testing methods and tools. The turn
indicator lights are controlled by an ECU communicating via
a CAN and Local Interconnect Network (LIN). To realize
communication, interfaces between the system and test envi-
ronment are presented in UML. The behavior of the system
is described using hierarchical state machines, which are
similar to Harel Statecharts [30]. In a first benchmark, the
authors apply the RT-Tester tool that uses a constraint solving
approach to derive symbolic test cases.

B. FAULT-BASED APPROACHES
Fault-based test approaches focus on test cases that result
from faults, failures, or defects that can occur in the SUT.
Different methods exist in this area, such as fault injection
into a SUT or mutation testing. Table 7 presents an overview
of the methods used in the automotive domain.

A variant of fault-based testing is fault injection. This test
technique is comparable to security testing, in which a system
is tested by executing cyber attacks. Instead of attacks, fault
injection introduces potential errors into the SUT to test its
behavior. Rana et al. [117] apply fault injection to Simulink
models. In their work, an exemplary ABS system is modeled
in Simulink. Specific blocks are integrated into the model

to inject faults. This approach is similar to the test signal
blocks of Arttest (Section IV-A4). However, instead of test
signals, faults are introduced when the model is executed in
simulations. Thus, the system behavior can be observed under
different fault conditions in a MiL environment.

Faults can be injected at different technological lev-
els, such as hardware, software, and system level.
Svenninsson et al. [118] present the MODel-Implemented
Fault Injection (MODIFI) tool, which covers fault injection
techniques for these levels. In their paper, the authors address
the software and system level based on MATLAB/Simulink
models for a pedal voter system example consisting of three
pedal sensors. MODIFI covers 30 fault models including bit-
flip faults. Additionally, safety requirements are specified in
MODIFI that must be met after test execution. Finally, timing
aspects are considered to determine the point in time at which
faults are injected and to enable system monitoring.

In [119], the authors address hardware-based fault injec-
tion. For this purpose, the authors present a toolchain, which
includes MODIFI for software/system fault injection. Fur-
thermore, the WAREFOLF tool is introduced that can inject
faults on hardware. The test results of the software/system
fault-injection with MODIFI are forwarded to WAREFOLF,
which injects the faults physically on an associated hardware
platform. The impacts of these tests can be investigated using
a debugger. The authors apply this toolchain to an automo-
tive application consisting of 300 Simulink blocks. In total,
1925 fault-injection experiments were conducted. For the
majority of the experiments, WAREFOLF and MODIFI pro-
vided similar test results on software and hardware.

In [128], Ungermann et al. present an approach for an
automated generation of fault signals to identify faulty com-
ponents during vehicle diagnosis. Thus, fault-based test

VOLUME 11, 2023 55487



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 7. Survey results for model-based test approaches regarding fault-based methods.

selection algorithms are applied to a structural graph of a
spark ignition engine. As a result, operating situations are
found that lead to faults. A custom algorithm is applied to
select input signals based on these operating situations, which
are used for testing the engine.

In [127], a fault-based approach for regression test suite
prioritization is presented. This work aims to reduce the test
effort in regression testing of MATLAB/Simulink systems.
Thus, only a limited test set must be executed on the system
after changes. This is done using a priority table, which
assigns priority values to the test cases. Two activities are
applied for this purpose. First, a fault activation analysis is
performed to estimate probabilities of stimulating faults in
the system. In the next step, an error propagation analysis
is applied in which a dual-graph is automatically generated
from the Simulink model. The resulting model is used in a
Markov-based analysis to estimate the number of errors in
the system and derive the priority table. The authors apply
the Reactis Tester to generate a test suite for a gearbox
system used for transmission in vehicles. Another variant of
fault-based testing is mutation testing as illustrated in Fig. 10.

The original model or code of a system is slightly changed
(mutated) to create a mutant model. Specific mutation oper-
ators are applied for this purpose.

The original model is tested using a set of test cases to
evaluate its correctness. When the original model passes the
tests, the mutated model is also tested with the same test
set to analyze whether there is a different outcome. If the
mutated model also passes a test, the test case cannot detect
the introduced fault (mutation). If a test fails, the mutation is
detected (the mutant is killed). Mutation testing is primarily
used to evaluate and improve the quality of tests.

Mutation approaches in an automotive MBT con-
text were investigated in the Model-based Generation of
Tests for Dependable Embedded Systems (MOGENTES)
project [129]. This project aims at model-based testing of

FIGURE 10. Overview of the basic mutation testing process in which a
model is mutated and both models are tested by the same test case set.
In this way, the quality of the test cases can be determined.

embedded systems. Herzner et al. [120] explain how this
project addresses three variants using either UML, Simulink,
or fault injection. The authors show an example of the UML
approach in which an exemplary car alarm system is modeled
as a UML state diagram and transformed to object-oriented
action systems. Mutants are created by introducing faults
into the original system model. Related fault models are
introduced by Schlick et al. [121]. Abstract test cases are gen-
erated using the original and mutated object-oriented action
systems by checking conformance between both models. The
resulting test cases are transformed to concrete test cases to
execute them on a target system.

An application of this approach to an automotive exhaust
measurement system (particle counter) is presented by
Aichernig et al. [122]. This case study suggests that a

55488 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

combination of random and mutation-based test case gen-
eration provides a low number of test cases and the best
fault detection rate. Belli et al. [123] show a mutation-based
approach that applies a graph-based method in which SUTs
are presented as graphs (e.g., directed graphs, FSMs, and Stat-
echarts). Two mutation operators for insertion and omission
are presented. These operators are integrated into the system
model to createmutants. Test cases are generated based on the
original system model and the mutated model. The approach
is evaluated in a case study that includes an ACC.

Further fault-based test methods rely on fault or defect-
models, which characterize specific failures in systems.
Holling [126] aim to generate tests based on defect-models,
which can be applied for unit, integration, and system testing.
For this purpose, the authors introduce the tool 8Cage [124],
which is able to generate test cases for MATLAB/Simulink
models at the unit test stage.

This approach focuses on faults based on computational
properties, such as run time failures. These types of faults
are modeled as Simulink blocks with 8Cage. The application
of the tool is demonstrated based on an example of two
temperature sensors that provide the measured temperature
to a control unit. First, a static check of block properties is
carried out to detect potential fault locations in the model,
for example, a block in which a division through zero could
occur. Actual test case generation is performed by dynamic
property checks of a block’s I/O values. For this purpose,
the KLEE tool is applied to symbolically execute the derived
Simulink code. In this step, test input data are generated to
execute tests on the target system in a MiL test environment.

Holling et al. [125] address the integration test stage by
introducing the OUTFIT tool. The aim of this approach is
to achieve higher coverage in integration testing and early
detection of errors. OUTFIT creates integration test cases by
reusing unit test cases from former unit tests, for example,
from the 8Cage tool. Alternatively, KLEE can be applied to
automatically generate tests using symbolic execution. The
unit tests are combined with two Simulink failure models for
superfluous or missing functionality and untested exception
or fault handling. The SUTs of an electric engine’s control
software is used by KLEE to automatically generate integra-
tion test cases, which are executed in a MiL environment.

In [126], Holling extends these approaches to perform
defect-based testing on the system test stage. The approach
again appliesMATLAB/Simulink and Stateflow systemmod-
els of an electric engine control software. As previously
described, the 8Cage and OUTFIT tools are used for unit
and integration testing. To cover the system test stage, the
Controller Tester tool is applied using several failure models
from related work. The overall approach is embedded into
a comprehensive lifecycle framework that supports the test
process by applying defect models.

C. SPECIFICATION-BASED APPROACHES
In specification-based test approaches, formal or informal
specifications of systems or tests play a primary role in the

process of generating test cases. For example, a test spec-
ification typically includes criteria used to derive or select
tests as shown in Fig. 1. Table 8 provides an overview on
specification-based MBT in the automotive domain.

Offutt et al. [130] present a state-based specification that
includes test selection criteria. The authors investigate tran-
sition coverage, full predicate coverage, transition-pair cov-
erage, and complete transition sequences. These four crite-
ria are applied to a cruise control system in a case study
to derive test inputs for the system testing stage. In [131],
Offutt et al. build up on that work and present a formal
framework for their specification-based test approach. In a
first step, the functional specification of a cruise control
system is created as a UML state diagram or Software Cost
Reduction (SCR), which is transferred into a specification
graph. The SPECTEST tool is used to automatically gener-
ate test requirements from the specification graph based on
transition-pair and full predicate coverage. For each require-
ment, test values are generated resulting in the test spec-
ifications. Finally, test scripts are generated from the test
specifications, which can be executed on the cruise control
system. The test results show that full predicate coverage
provides the highest number of test cases, identified faults,
and the highest system coverage.

Baldini et al. [133] use UML specifications to derive tests
for the system test stage. The authors aim to close the gap
between the design- and system-test-level stage. For this
purpose, design-level test cases consist of a set of messages
including timing constraints and are modeled as UML use
case, interaction, and state diagrams. Design-level messages
are translated into test-level messages based on test selection
criteria, such as coverage. The resulting test-level messages
represent test commands based on the test environment in
which system tests are executed. The approach is evaluated on
a real-world automotive application, including a CD reader,
Global System for Mobile Communications (GSM) commu-
nication, Global Positioning System (GPS) navigation, sound
amplifier, and voice control.

Zhang et al. [134] use a formal specification to derive test
cases. An exemplary speed limit control system is described
using differential dynamic logic, which combines continuous
and discrete aspects (e.g., differential equations) of a system.
Test cases are automatically derived by applying theorem
proving techniques. The resulting test cases are transferred
into the Modelica language, which enables an execution of
tests in the Modelica simulation environment.

In [21], Pretschner et al. use a test case specification for
test generation to evaluate model-based testing in compari-
son with manual tests. Furthermore, the quality of coverage
criteria for test selection and their suitability for error detec-
tion are investigated. The AutoFocus tool is employed for
this experimental evaluation. AutoFocus was introduced by
Broy et al. [138] and is used to develop and verify distributed
and embedded systems, such as automotive systems. In a
first step, the structural setup of a Media Oriented System
Transport (MOST) primary is modeled in a system structure

VOLUME 11, 2023 55489



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 8. Survey results for model-based test approaches regarding specification-based methods.

TABLE 9. Survey results for model-based test approaches regarding machine learning.

diagram. This model contains all system components and
their interconnections. In addition, the processed data and
related data types are specified. The behavior of the ECU is
modeled in a state transition diagram, which corresponds to
an EFSM. This model is converted into a Constraint Logic
Programming (CLP) language. To generate tests, a test case
specification is applied that consists of constraints. Test cases
are generated by symbolic execution of the CLP code.

In [132] and [17], BMW’s Specification Method for
Requirements, Design and Test (SMArDT) and its inte-
gration in the development and test process is introduced.
This approach relies on UML and SysML specifications
to describe models of vehicles and their components. The
system requirements are specified using SysML activity dia-
grams and converted to UML/P activity diagrams, which is
a specific language profile of UML. Test cases are automati-
cally derived from these models using path coverage criteria
for test selection. Test cases are given in Extensible Markup
Language (XML), so they can be used across several testing
tools. The entire process is based on a survey conducted to
identify benefits, the capability for test improvement, and
potential environments for model-based testing.

D. MACHINE LEARNING APPROACHES
In more recent approaches, artificial intelligence methods
(in particular machine learning) are applied to model-based
testing. Table 9 presents an overview of three automotive-
related publications.

In [135], a HiL testing approach is shown that uses timed
automata in combinationwith theUPPAAL tool Taster. In this
work, a system specification of an automotive keyless access
system is used to model timed automata. Taster performs lex-

ical and syntactical checks on the model. The tool is further
extended in [136] with an assignment of test priorities. The
timed automata models are parsed by Taster. To assign test
priorities, the model is traversed and labeled with priorities.
Priorities can be determined by experience aspects (safety
impairment and user comfort) as well as failure prediction
aspects (e.g., the number of ECUs or modifications). Fail-
ure prediction aspects are determined using Support Vector
Machine (SVM) classifiers, which are trained with corre-
sponding data sets. Experience aspects are determined using
perceptron neurons. The combination of both aspects is used
to assign test priorities to the model. In this way, prioritized
test sequences are created by a test generator. The authors
evaluate the resulting test cases on a real-world trunk door
ECU.

To investigate the usefulness of learning-based approaches
for testing safety-critical systems in vehicles, Khosrowjerdi et
al. [137] present two case studies of safety-critical real-world
automotive systems (remote engine start and dual circuit
steering). This learning-based approach does not require a
system model. Instead, previously specified test cases for
the real SUT are used to automatically reverse engineer the
system to create a reference model. This model learned its
behavior from the real system. Test case generation based
on the reference model is executed using the NuSMV model
checker. For this purpose, the requirements of the system,
which should be verified, are specified in Propositional Lin-
ear Temporal Logic (PLTL). NuSMV uses the reference
model and PLTL specification to create counterexamples,
which are used as test cases. The overall process is imple-
mented in the LBTest tool. LBTest was compared to a muta-
tion testing approach of the piTest tool. Regarding error

55490 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 11. Basic model checking process in which a model is evaluated
against a certain specification. In case of a violation, a counterexample is
produced.

detection, LBTest detected eight out of ten errors, whereas
piTest found two errors. However, the authors also highlight
disadvantages of LBTest, for example, not all requirements
can be formalized into PLTL and thus not be tested.

E. MODEL CHECKING APPROACHES
Model checking is a technique to verify a formal model
for conformance to a given specification. The formal model
is typically defined as an automaton or Labeled Transition
System (LTS) [142]. As illustrated in Fig. 11, the specifica-
tion is typically represented in temporal logic, for example,
Linear Temporal Logic (LTL) or Computation Tree Logic
(CTL) [143]).

Model checking tools, such as Symbolic Model Verifier
(SMV), verify whether the model conforms to the specifica-
tion. For this purpose, the model is analyzed for reachable
states. If the specification is violated (i.e., a violating state is
reached), a counterexample will be produced. In MBT, these
counterexamples are often used as test cases. In the automo-
tive domain, this technique is used in MBT approaches as
listed in Table 10.

Gargantini and Heitmeyer [141] follow the process illus-
trated in Fig. 11. A case study of four different systems
(e.g., an automotive cruise control system) is performed. The
system requirements are described as a SCR specification.
The specification is further translated into the input languages
used by the SPIN and SMV model checkers. The temporal
specifications are described in LTL and CTL. The model
checkers derive the expected test outputs and subsequently
test cases based on counterexamples.

A similar approach is presented by Ammann et al. [140].
In their work, a cruise control system is specified as a finite

state machine to apply the SMV model checker. The authors
use CTL to specify test coverage criteria. The focus lies
on the verification safety-property violations that provoke
dangerous system behavior in certain states. To generate tests,
amutationmodel based on amutation analysis is created from
the original system model. Test cases result from the coun-
terexamples, which are produced during model checking.

A more comprehensive model-based test methodology is
presented by Marinescu et al. [139]. In this work, several
stages of the development process are addressed in an exten-
sive toolchain. In a first step, a system designer has to specify
system models for a brake-by-wire system in EAST-ADL
using the ViTAL tool. For each EAST-ADL model a cor-
responding timed automata model is created. The timed
automata and EAST-ADL models are integrated into a single
formal model using the UPPAAL PORT tool. From this point,
development and test activities are conducted in parallel.
A developer utilizes the UPPAAL model to implement C
code, which represents the SUT. At the same time, a tester
generates test cases by performing model checking with
UPPAAL PORT. For this purpose, a coverage criterion is
applied based on the system requirements in the Timed Com-
putation Tree Logic (TCTL). The resulting TCTL require-
ments are used by UPPAAL PORT as temporal specification.
The produced counterexamples are used as abstract test cases.
Tests are further refined into Python scripts to make them
executable on the implemented C code using the Farkle tool.
The results of executed tests can be fed back to the developer
to correct implementation errors and test the SUT again.

F. STATE-BASED APPROACHES
State-based approaches are widely used in conventional test-
ing. The survey of Lee and Yannakakis [27] consists of
publications starting in the 1950’s. Thus, there is a large body
of research on MBT regarding state-based models. Table 11
lists automotive-related approaches.

Publications also use state-based models. One example
is the TPT methodology (Section IV-A2) that uses state
machines as test cases (Fig. 7). Additionally, the Stateflow
framework of Simulink can be mentioned (Section IV-A4).
In these publications, the state models are integrated into
specific approaches or tools as a part of a broader process.
In contrast, the state-based models in the following publica-
tions form the central aspect of the respective methodology.

A common approach to generate test cases from
state-based models is the use of heuristics, or coverage
criteria in combination with derivation algorithms, such
as search-algorithms. A similar approach is proposed by
Hierons et al. [144]. In this work, the µSZ specification lan-
guage is used to specify the behavior of an ACC system.µSZ
represents a Statechart in which corresponding elements,
such as guard conditions, are specified in the Z language.
The Statechart is a representation of an EFSM that is used
as a formal model. The authors discuss several test genera-
tion techniques, such as transition tours, transition trees, or

VOLUME 11, 2023 55491



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 10. Survey results for model-based test approaches regarding Model Checking.

TABLE 11. Survey results for model-based test approaches regarding state-based models.

heuristics, and how they can be applied to the EFSM model
to derive test cases.

Chimisliu et al. [145] use coverage criteria to derive test
cases. In this work, the SUT is modeled as a UML state
diagram. As an exemplary application, a vehicle diagnostics
system is used to store diagnostic faults. The UML state
diagram is transformed into a Language Of Temporal Order
Specification (LOTOS) [150]. LOTOS represents a process
algebra that uses mathematical expressions and structures
(based on specific axioms) to describe systems and processes.
This enables an application of the TGV tool from the CADP
toolbox. To derive test cases from the LOTOS specification,
the coverage of LOTOS processes and actions are used. TGV
performs a breadth first search on the model based on speci-
fied coverage criteria.

Saifan et al. [147] combine coverage with random gen-
eration algorithms to investigate the effectiveness of formal
specifications in model-based testing. For this purpose, a case
study of a cruise control system is conducted. A system
specification is formalized using the Perfect formal speci-
fication language, which serves as an input for the Perfect
Developer tool. A static analysis and theorem proving is
performed to verify the correctness of the specification syntax
and semantics. Since this specification represents a finite
state machine, an adjacency matrix of the connected states is
extracted and used to derive paths through the state machine.
For this purpose, coverage criteria, such as state coverage, all
pair-transitions, or path coverage, are used. A custom C# tool
automatically creates test cases from the derived paths using
random test generation algorithms in which all states and an
average of 77.78 % of the paths are covered.

Briand et al. [146] investigate the effectiveness of
model-based test approaches that rely on Statecharts regard-

ing their cost and ability to detect faults. For this purpose, four
coverage criteria are investigated: all transitions, all transition
pairs, all paths, and full predicate coverage. The investigation
is applied to three case studies, including an automotive
cruise control system. The system is modeled as a UML state
diagram. Test cases are derived based on the coverage criteria.
In parallel, mutants of the UML state diagram are created to
identify faults. The test cases are executed on the mutants.
As a result, a matrix is created that includes the test results.
The matrix is used in further test simulations to compare the
coverage criteria. The results suggest that the all transition
pairs criterion provides the best fault detection capabilities.
However, one drawback are the high costs (3-7 times larger
than the other criteria). Furthermore, the all paths criterion
is highlighted when it is used in state transition trees. Its
cost-effectiveness depends on the quality of the transition
tree and the test sequences. The authors point out that further
research is necessary in this area.

Petrenko et al. [149] present a test approach located
at model level. In this method, a system model is pro-
vided in Simulink/Stateflow to derive a test model. The test
model is represented as a hierarchical extended Mealy state
machine with timers. This approach applies a tester-in-the-
loop method, a knowledge- and experience-based process,
where the tester is responsible for guidance and decisions
on the test steps. Test generation is based on a reachabil-
ity problem in which an input sequence leads to a specific
configuration of the state machine. To generate tests, the
shortest executable path is searched in the state machine.
For this purpose, a flat state machine and a hierarchical state
machine are investigated by applying solving tools (for exam-
ple, a SMT solver). The approach is illustrated in a case study
of a HVAC ECU modeled as Simulink/Stateflow. In this case

55492 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 12. Classification of identified MBST publications.

study, an optimized test suite was identified from 40 suites,
including 800 tests executed in 90 minutes.

Lochau et al. [148] present an approach that targets
integration testing. For this purpose, architecture- and
regression-based testing are combined in a delta model-
ing approach to cover different system types (e.g., vehicle
variants). The vehicle architecture of a body comfort sys-
tem is modeled as a set of connected components. Interac-
tions between these components are represented as message
sequence charts, whereas the behavior of an individual com-
ponent is modeled as a state machine. Based on these ele-
ments, an architecture test model is created. This model can
be used to define different architecture variants depending on
the system configuration. Within this approach, the basic test
model and subsequently all system variant models are tested.
Furthermore, this process is enhanced by an incremental
regression approach in which test cases are reused to test all
architecture components after system changes.

V. MODEL-BASED SECURITY TESTING IN THE
AUTOMOTIVE DOMAIN
During our literature review, 29 model-based test approaches
were identified that specifically target security testing. In this
section, these approaches are introduced and analyzed to
draw conclusions about the current state of model-based
security testing in the automotive domain. The publications
are assigned according to the categories shown in Fig. 12.

A. APPROACHES BASED ON THREAT ANALYSIS AND RISK
ASSESSMENT (TARA)
In automotive security development, the identification of
potential threats to vehicles as well as their risks for exploita-
tion plays a major role. This process is performed within
a TARA, which is required by ISO/SAE 21434 [11]. The

FIGURE 13. Exemplary attack tree in which an Engine ECU is disabled by
conducting different attack steps.

resulting threats and their risks are typically expressed as
attack trees [151]. In Fig. 13, an exemplary and simplified
attack tree is illustrated.

The root node typically contains an attack target (e.g.,
Disable Engine ECU). The attack steps to compromise this
target are listed in the edges or sub nodes of a tree (e.g.,
Denial-of-Service Attack on Powertrain CAN). In leaf nodes,
which are located at the end of a branch, the initial action
of an attack is described (e.g., Access OBD Connector).
Additionally, attack trees can be labeled with risk values that
describe the probability or feasibility of an attack in relation
to its impact on a target system. Since attack trees describe
how a system can be attacked and attacks are used to perform
security tests, it makes sense to reuse attack trees for testing.
An overview of TARA-relatedMBST publications is given in
Table 12.
In [152], Cheah et al. introduce a security evaluation pro-

cess for third party components, such as ECUs. Penetration
tests are performed based on attack trees. Successful attacks
are used to specify security requirements to mitigate the iden-
tified threats. The authors suggest to reuse these requirement
specifications in the supply chain for model-based develop-
ment and testing. This process is demonstrated in a case study
of an automotive Bluetooth interface. In a first step, an attack
tree is manually created based on Bluetooth vulnerabilities
from literature and vulnerability databases (National Vulner-
ability Database (NVD)). In subsequent security testing, the
authors, for example, mount a file system on a vehicle info-
tainment ECU via Bluetooth to test this system for vulnerabil-
ities. Based on the identified vulnerabilities, requirements are
formulated to mitigate threats. The resulting requirements are
combined into a specification and formalized in the process
algebra Communicating Sequential Processes (CSP). Based
on the CSP model, formal verification and reachability anal-
ysis are performed. Thus, third party systems can be evaluated
by vehicle manufacturers. This approach is the foundation
of further publications from Cheah et al., which extend this
concept but focus on different development and test aspects.

VOLUME 11, 2023 55493



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 12. Survey results for model-based security test approaches regarding TARA.

In [153], Cheah et al. suggest to use the Microsoft Spoof-
ing, Tampering, Repudiation, Information Disclosure, Denial
of Service, Elevation of Priviledge (STRIDE) and Damage,
Reproducibility, Exploitability, Affected users, Discoverabil-
ity (DREAD) approach to identify vehicle threats and build
a threat model. This model is represented by a graphical or
textual attack tree. Based on this attack tree, penetration tests
are performed following the Penetration Testing Execution
Standard (PTES) [163]. The authors apply their approach
to automotive Bluetooth systems of five vehicles. For this
purpose, a proof-of concept tool was created based on Python
and employs the Bluez Bluetooth stack. The tool implements
an algorithm that iterates through the attack tree and exe-
cutes the attack steps on the system. Thus, several weak-
nesses were found in the five tested vehicles, for example,
a weakness allowing malicious applications to be mounted
on ECUs.

In [154], Cheah et al. build up on this approach and present
a formalization of their TARA-based attack tree method. For
this purpose, a case study of an On-Board Diagnostics (OBD)
device with Bluetooth capabilities is conducted. The device
works as a gateway, which receives incoming Bluetooth mes-
sages and sends CAN bus messages to the internal vehicle
network to send or read diagnostic messages. Furthermore,
an overview on the attack tree specification for that SUT
is provided. A tool was implemented to translate the attack
tree to CSP processes, which are used as an environment
model of the SUT. The SUT is also formalized in CSP.
Both, the system and environment model are given to the
Failures Divergences Refinement (FDR) tool. This refine-
ment checker is used to formally compare the attack tree
and system specification for automated test case generation.
A test case represents a path in the tree. Fifteen test cases
were automatically generated from which three tests were
successfully executed on a vehicle. Thus, the authors were
able, for example, to flood the CAN channel, which resulted

in a denial of service in the vehicle electronics and engine
function.

In a further approach [155], Cheah et al. further extend the
previous methodology and semi-automatically assign sever-
ity rating values, which are based on the E-safety Vehi-
cle Intrusion Protected Applications (EVITA) severity rating
scheme. Depending on the specific values, a security assur-
ance case is created as specified in SAE J3061 [10]. The
overall process is illustrated by an example of an automotive
Bluetooth interface used in infotainment systems and OBD
aftermarket devices. The investigations consider denial of
service attacks as well as data extraction attacks.

Mahmood et al. [156] present an approach to model-based
security testing of Over-The-Air (OTA) updates. This
methodology builds up on the work of Cheah et al. [154] and
considers PTES [163]. The first step involves intelligence
gathering to identify known vulnerabilities and entry points
into the system. For this purpose, the authors use a SUT
consisting of two ECUs, a switch, and a PC server. In the
subsequent threat modeling phase, vulnerability information
is used to generate attack trees by applying the ADTool. The
attack trees are transformed into CSP processes as in [153].
This enables the FDR refinement checker to generate test
cases. Subsequently, tests are automatically executed on the
target system. This is demonstrated by an example of modi-
fying or adding an ECU update image.

A similar approach based on CSP is presented by
Santos et al. [157]. This method specifies vehicle bus sys-
tems (e.g., CAN or FlexRay) within a network architecture
as a CSP model. A threat model is used to describe attacks
on this system. For this purpose, four attacker types (e.g.,
thief) are characterized, which assume that an attacker has
full access to the network. The attacker is modeled as a CSP
process, in which attack techniques (e.g., spoofing or eaves-
dropping) are integrated. The systemmodel is combined with
the threat model to generate executable test cases. The FDR

55494 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

refinement checker is used to generate test cases, which are
available as XML or CAN Access Programming Language
(CAPL) code.

In addition to conventional TARA approaches, potential
threats and their risk can be assessed by simulating attacks
on a system. For this purpose, tool support is necessary. In the
automotive domain, the securiCAD [164] tool is used to sup-
port TARA. Overall, the tool rather focuses on risk analysis
during the development process. However, simulating attacks
and their ability to generate attack paths create a use case for
security testing.

Xiong et al. [158] present a threat modeling approach for
performing attack simulations using the securiCAD tool that
is used to create attack graphs based on a vehicle system
specification. The authors demonstrate this using the E/E
architecture of a Jeep Cherokee and Cadillac Escalade, which
were attacked by Miller and Valasek [165]. First, threat mod-
els are created for both vehicles. The network topology is
modeled graphically based on the E/E architecture. In addi-
tion, a graphical model of the data flow between the network
components is created. Assets and security properties are
assigned to each component. Assets are also assigned to
risk values based on the attack probability and impact. This
enables simulations of different attacks on the network mod-
els. The authors demonstrate this by deactivating and acti-
vating the firewall of a radio system. The attack simulation
results in a risk matrix in which risk changes depending on
the firewall state and executed attack. In addition, exploited
attack paths are illustrated graphically. A further factor is
the estimated time required by an attacker to perform an
attack. It is assumed that an attacker always chooses a path
that takes the least time. This allows the security design of
a vehicle network to be evaluated and compared. For both
vehicle models and associated security settings, the authors
provide examples of attacks that are considered (e.g., replay
attack on the CAN bus).

Another work that uses securiCAD is presented by
Ekelund [159]. In this work, a damper system is evalu-
ated for security problems. The system architecture includes
a CAN bus connected to three ECUs (one controls the
damper actuators), a Bluetooth-enabled gateway ECU, and
an OBD interface. In a first step, a threat model is cre-
ated using vehicleLang, a specification language introduced
in [166]. This language is based on the Meta Attack Lan-
guage (MAL) [167]. By specifying a vehicle architecture
in vehicleLang, the network can be analyzed for potential
vulnerabilities. Therefore, the language provides elements,
such as ECU, software, network, bus systems, and dataflow.
Based on vehicleLang, a threat model is created for the
damper system. Assets are created for individual network
elements (for example, an asset for the Bluetooth network)
in vehicleLang. In addition, the attack steps (for example,
man-in-the-middle), their impact on the respective compo-
nents, and suitable security mechanisms are specified. In a
further step, a model of the system (E/E architecture) is
created using securiCAD that imports the vehicleLang assets.

This allows attack simulations to be performed based on
the asset configuration. The previously specified attack steps
are executed, with security mechanisms switched on or off.
The attack simulation results in attack paths, for example,
to manipulate the damper system via the OBD or Bluetooth
interface. As in [158], this is more likely to be used in TARA
than in security testing. An additional limitation is the manual
modeling of attack steps that must be specified for each
asset. This results in a higher threat modeling effort because
further attack techniques have to be added manually. Instead,
simulations can be used to evaluate and compare the use
of different security mechanisms and their effectiveness in
protecting against specific threats.

In the work of van der Schoot [160], vehicleLang is exam-
ined to determine its suitability for threat modeling in the
automotive field in conjunction with the securiCAD tool. For
this purpose, four vehicles are examined that had been suc-
cessfully attacked in the past. For each vehicle, an E/E archi-
tecture model including data flows is created in securiCAD
and vehicleLang. Both internal vehicle connections and wire-
less communication systems, such as Bluetooth or cellular
communication, are considered. ECUs, such as infotainment
and telematic components, as well as physical interfaces (e.g.,
OBD), are investigated. For the vehicleLang and securiCAD
models, attack graphs are created based on previous attacks
on the four vehicles. The aim is to compare themodels created
in threat modeling with those that are based on executed real-
world attacks. It was found that some attacks could not be
modeled in vehicleLang or only with high difficulty (e.g.,
obtaining the firmware of a component or software-specific
attacks on applications). The reason for this is a lack of detail
regarding assets, attacks, and security mechanisms in vehi-
cleLang and securiCAD. In addition, some hardware details
cannot be modeled (e.g., debug ports on ECUs, USB and
CD ports). As a result, several real-world attacks cannot be
represented. The author proposes a number of improvements
to the specification of vehicle systems and attacks. These
include a combination of penetration testing and modeling
with vehicleLang and securiCAD to identify areas where
improvement is necessary. In addition, an integration of vul-
nerability databases is proposed tomap attacks on themodels.

Suo et al. [161] present an approach to apply security
testing to automated vehicles at an early stage during devel-
opment before security requirements and mitigations are
determined. In this work, a test-driven method is introduced,
considering security and safety in a combined manner. Thus,
safety engineers identify potential safety hazards for the auto-
mated vehicle. Security engineers start with threat modeling
according to Microsoft STRIDE. Possible threats are iden-
tified and modeled as attack trees. These attack trees and
their attack risks are mapped to the safety hazards to identify
safety-critical security threats. Based on these threats, test
scenarios are created to test the system. For this purpose,
simulation platforms, such as MATLAB and its integrated
Driving Scenario Designer, are used. Based on the test results
mitigation strategies are derived. The authors demonstrate

VOLUME 11, 2023 55495



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

their approach in a case study of a connected and auto-
mated vehicle. Especially an automated driving system is
investigated, which depends on several sensors and external
inputs. In particular, the threat of manipulating a sensor’s
perception capabilities is evaluated in MATLAB. Based on
the simulation of related test scenarios, mitigation strategies,
such as sensor plausibility checks, are derived. In this way,
early model-based security testing supports the threat mod-
eling process and helps to derive mitigations and security
requirements.

Shaaban et al. [162] present an approach to assess vehicle
threats and validate/verify related security requirements in
vehicle networks. Security requirements are represented as
protection profiles following Common Criteria (CC) [168]
for a Target of Evaluation (ToE) in a vehicle. An ontology-
based model of vehicle components is created that is used
to identify threats in relation to security requirements. The
authors conduct a case study in which a telematics ECU is
connected to a V2X communication gateway, a sensor ECU,
and ADAS via communication systems, such as CAN and
Ethernet. These systems are assigned to four security protec-
tion levels and seven security requirements defined in the IEC
62443 standard. By applying the ThreatGet tool, 56 threats
classified by STRIDE are identified for vehicle components.
Each threat is assigned to a specific security requirement.
In addition, a numerical security target value is specified for
each threat. To determine if a security requirement mitigates
a related threat, the authors introduce the Ontology Security
Testing Algorithm (OnSecta). OnSecta checks the model for
compliance with security requirements and performs a gap
analysis. For each threat, the current security status is cal-
culated as a numerical value and compared to the security
target value. OnSecta includes functions that make it possible
to specify additional requirements that are applied until the
current security value corresponds to the target value. These
additional security requirements can then be considered for
the real vehicle. According to the automotive security devel-
opment process specified in ISO/SAE 21434, requirements
are derived based on a previously performed TARA. This
process is not described in this publication. However, threats
are identified automatically using the ThreatGet tool and
related security requirements are automatically verified and
validated.

B. APPROACHES BASED ON XiL TEST ENVIRONMENTS
AND TEST BENCHES
XiL-based approaches have already been presented for MBT
(see Section IV-A and Fig. 5). MBST publications also apply
XiL test environments and test benches. Table 13 provides an
overview of automotive-related publications.

Heneghan et al. [169] present an approach to automatically
verify the security of ECU applications. This method applies
several tools to an exemplary OTA ECU software update
process. The ECU and OTA application are specified within
the Vector CANoe tool. Each relevant ECU application is

specified in a simulated vehicle networkmodel. This includes
an update server, a vehicle gateway to communicate with
the server, and a target ECU to receive updates. The OTA
application is implemented in CANoe using the CAPL pro-
gramming language. The simulated CANoemodels are trans-
lated into CSP using ANother Tool for Language Recognition
(ANTLR). This enables an application of the FDR refine-
ment checker. For this purpose, an attack or threat model as
well as a model of required security properties is necessary.
Regarding security properties, no exact specifications are
provided by the authors. Instead, assurance of integrity of
the update transmission to the target ECU is discussed as use
case. The attack models are based on the Dolev-Yao model,
which describes interactive cryptographic protocols. FDR
uses model checking techniques to verify whether security
properties of the system model are violated by the attack
model. This approach is located at design stage of develop-
ment because the SUT is executed in the CANoe simulation
environment. However, further publications can target HiL
environments, and thus physical systems can be tested.

A corresponding approach is presented by Wittenberg et
al. [170], in which an automatic identification of vulner-
abilities in vehicular HiL environments is targeted. This
work is based on the vulnerability detection system pro-
posed by Smith et al. [175]. An attacker’s point of view is
taken and three steps are differentiated: First, information
on attacks, vulnerabilities, and threats is obtained from pub-
licly available databases, such as NVD [176]. Acquired data
are converted into a uniform format using the Mediation,
Alignment and Information Systems for Semantic Interop-
erability (MAISSI) tool. In the next step, an attack plan
generator applies attack-specific data to the SUT. The authors
demonstrate this process in a HiL platform. The vehicle is
modeled in MATLAB/Simulink and operates in a virtual
environment. Individual vehicle systems, such as sensors, can
also be replaced by physical hardware. System descriptions
and associated attack targets are passed to a network plan-
ning tool, which generates attack scenarios for the system
components. These scenarios are utilized by the SAT Planner
Alloy, which generates an attack graph and applies heuristic
search algorithms to identify critical attacks in the system.
This involves searching for attack step sequences that lead
to previously specified attack targets. Successfully identified
attacks are prioritized according to their probability. The pre-
sented framework includes a variety of tools that enable the
automated testing of vehicle systems based on known attacks
and vulnerabilities. However, the authors highlight that high
memory capacities and extensive parallel computations and
simulations are necessary to perform HiL simulations in par-
ticular.

Kurachi et al. [171] present a security testing framework
based on HiL simulation. This framework especially targets
vulnerabilities regarding transmission timing of CAN mes-
sages. A system model is created as a Labeled Transition
System (LTS) based on a system behavior specification.
Additionally, a threat model is created, which includes attack

55496 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 13. Survey results for model-based test approaches regarding XiL methods.

patterns, such as spoofing attacks. It is assumed that an
attacker has access to the vehicle’s internal CAN (e.g., via the
OBD interface). In this approach, a direction indicator system
that communicates via CAN bus, is used as a SUT. The
SUT is simulated using the SystemDesk tool that can model
AUTOSAR platforms in a virtual environment. LTS paths of
the system model represent a correct system behavior. Using
a test driver, system behavior is tested by applying different
inputs to the model. To violate this behavior, an attack driver
is used to create individual sequences of attack scenarios.
The feasibility of an attack is investigated using the NuSMV
model checker, which performs a timing analysis of attack
scenarios. Feasible attacks are used in security testing to
overwrite CAN messages on the bus. The authors employ
the ControlDesk tool to execute Denial of Service (DoS)
and spoofing attacks on CAN. These attacks were successful
in the virtual environment. However, the authors highlight
that most attacks do not work in a real-world CAN system.
Furthermore, the approach is presented as a HiL framework,
but so far no hardware connections have been introduced.
Since the approach focuses exclusively on timing attacks on
CAN, other attack scenarios are not considered. The authors
outline that this limitation can be circumvented by simulating
CAN hardware to enable bus-off and spoofing attacks.

Oruganti et al. [172] introduce a HiL test framework
for security tests in a virtual environment. This framework
focuses on vehicles and the environment in which they oper-
ate. The surrounding vehicle traffic is realized using the
SUMO traffic simulation tool. Connectivity simulations (e.g.,
V2X) and network simulations have not yet been integrated.
However, the authors plan to add these features using simu-
lators, such as NS-3 and OMNET++. In addition, a telem-
atics functionality will be considered for future work. The
in-vehicle network is simulated using Vector CANoe [33].
Controllers, such as ECUs, and their functionality are mod-
eled with MATLAB/Simulink. These models can directly be
integrated in CANoe or on real hardware by automatic code
generation. Because CANoe provides interfaces for hardware
devices, physical components (ECUs, sensors, etc.) can be
connected to virtual simulation tools. In this manner, a HiL
framework for security testing is realized. To demonstrate
the capability of this HiL framework, the authors perform

simulations in which a vehicle is navigated virtually on a
specific route. An attacker accesses the vehicle network and
attacks the virtual RADAR sensor to manipulate sensor data
that influences a simulated driver assistance system.

This approach is further extended to enable MiL and SiL
testing for safety and security in [173]. In this work, the
framework uses CARLA [177] to simulate the environment
of an autonomous vehicle. The HiL part of that framework
is used to represent an internal vehicle network based on
the Robot Operating System (ROS) [178]. Currently, this
network contains only a CAN bus. The vehicle behavior is
represented by Simulink models, which are connected to the
CARLA simulator by ROS. Since this framework is still in
a development state, a focus of this work is on the frame-
work setup rather than on procedures for security and safety
assurance. It is demonstrated how the framework can be used
for testing. However, no further details regarding security test
creation or how attacks occur in the virtual environment are
provided.

Huang et al. [174] present the Attack Traffic Generation
(ATG) tool, which generates datasets for security testing of
physical and simulated CAN bus systems. The datasets are
based on four types of attack models: Denial-of-Service,
fuzzing, target spoofing, and error handling attacks. The latter
exploits CAN error handling mechanisms to influence bus
communication. The tool is based on a graphical Python
application and offers dataset generation, reading and replay
of CANmessages, and execution of attacks. For this purpose,
hardware devices, such as the USB2CAN device (including
the SocketCAN driver library), are used to communicate with
the real system via an interface. The authors compare their
ATG tool with other well-known CAN tools, such as CANoe
or CarShark. In addition, the functionality of ATG is tested on
a real vehicle. For this purpose, CAN messages are captured
via the OBD interface. By analyzing messages, it was possi-
ble to identify and manipulate data fields to display incorrect
engine speed values in the instrument cluster.

C. APPROACHES BASED ON ATTACKS AND ATTACKER
MODELS
Another possibility for deriving security test cases is the
use of attack or attacker models. Attack models typically

VOLUME 11, 2023 55497



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

describe attacks and their capability to exploit vulnerabilities.
Attacker models represent the skills, motivation, equipment,
or knowledge of an attacker. This concept is similar to threat
modeling as in a TARA (Section V-A). However, in con-
trast to typical TARA-based or attack-tree-based approaches,
the publications in this section focus on attacks and their
execution. Thus, individual attack techniques, attack paths,
and vulnerabilities are particularly relevant. In the automotive
domain, several publications use such models for MBST,
as listed in Table 14.

Volkersdorfer et al. [179] present a conceptual process to
automate security tests and reviews. This method is based on
a previous thesis [184] and consists of an adversary, attack,
and target model. The three models are combined to specify
an adversary that affects the target system for each attack.
Since this approach is still in a conceptual phase, details of the
automation have not yet been described. However, in [180],
the authors extend this method with the Adversary-Driven
Attack Modeling (ADAM) framework in which models are
refined asUML class diagrams. The adversarymodel consists
of a toolSet, expertiseSet, motiveSet, and riskAversionSet.
Each of these sets contains Boolean parameters by which
different adversary types can be configured. The target model
contains the SUT and its environment. In addition, entry
points are defined to represent access to the SUT. The attack
model is concretized by an extension of the attack base. This
includes known and successfully executed security attacks,
for example, from [9]. The ADAM framework utilizes an
attack, adversary, and target model to describe attacks on
the target system. The adversary model reflects an attacker’s
perspective, whereas the attackmodel reflects a technical per-
spective. This allows different attacks with different attacker
types to be combined to test the target system in a MiL
environment. The authors demonstrate the application of their
method in two attack scenarios. First, a web application is
attacked considering a user input field as an entry point. In the
second attack scenario, a vehicle ECU is attacked using an
OBD interface as an entry point to extract data.

Sommer et al. [181] present an approach for model-based
security testing of vehicle networks early in development.
In particular, the creation of a security model that is used to
automatically derive attack paths is addressed. The security
model is based on three elements: a vehicle’s E/E archi-
tecture, external entities that communicate with a vehicle,
implemented security mechanisms, and attack characteris-
tics. Based on the E/E architecture and security mecha-
nisms, a system model is created that describes the in-vehicle
components (e.g., ECUs, sensors, and actuators) and their
interactions. This can be complemented by an environment
model that describes external entities (e.g., smartphones and
backend servers). The attack characteristics result from the
Automotive Attack Database (AAD) [185] and a correspond-
ing attacker privilege model [186]. This model describes five
abstract privilege states (e.g., reading or writing data on a
communication channel) an attacker can reach in case of a

successful attack. The system model is extended by these
privileges resulting in a security model consisting of states
an attacker can acquire within a vehicular network by suc-
cessfully executing attacks. Corresponding cyber attacks are
represented by state transitions. In the presented approach,
only the process of creating the security model is shown. The
authors claim to work on a formalization of this model as an
EFSM. However, as a proof of concept, the security model
of a vehicle that has been successfully attacked in the past
is provided as an example. The authors were able to show
that the model contains attack paths that were successfully
exploited in reality. This allows the model to be used to derive
attack paths for security testing. However, the path derivation
process is not described in the publication.

In [182], Mundhenk et al. introduce an approach for ana-
lyzing the security of a vehicle’s internal network architecture
at system level. An E/E architecture is used as SUT including
ECUs, communication systems, messages, and interfaces.
For this purpose, three exemplary architectures are investi-
gated in which a gateway is connected to three ECUs by
CAN or FlexRay. Additionally, security mechanisms, such
as the Advanced Encryption Standard (AES) (128 bit) and
Cipher-based Message Authentication Code (CMAC) (128
bit), are considered for communication systems. A Markov
model is created for each architecture element. For ECUs and
interfaces, this process is based on existing exploits. Com-
munication systems and network aspects are seen as passive
parts of connected ECUs. The Markov models for communi-
cation messages are based on Confidentiality, Integrity, and
Availability (CIA). The individual Markov models for all
architecture elements are combined into one single system
model. Since transitions between states inMarkovmodels are
assigned with probabilities, a security and safety assessment
of the architecture components is executed. For this pur-
pose, the authors use the exploitability sub score of Common
Vulnerability Scoring System (CVSS) [187] and normalize
that value to a time frame to consider time aspects in their
model. Furthermore, the Automotive Safety Integrity Level
(ASIL) [96] metric is applied as a safety value in which patch-
ing times are also considered. The CVSS exploitability and
ASIL metric are used in combination for the state transition
probability in the Markov model. Overall, this model repre-
sents the exploitability of architecture components through
messages at certain points in time. In this way, the security of
communication between components of an E/E architecture
can be analyzed. Therefore, the probabilistic model checker
PRISM is used, which performs a steady state analysis to
investigate, if a certain state can be reached (i.e., ECU can
be exploited). The authors are able to show how different
combinations of security mechanisms and other architecture
designs influence the exploitability and patching rates of
architecture components. This enables amore specific assess-
ment of security designs in architectures. However, this work
is limited to exploits through communication messages. For
example, application vulnerabilities of the components are

55498 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 14. Survey results for model-based test approaches regarding attack and attacker models.

currently not considered. Furthermore, exact applied exploits
are not mentioned. Still, the approach is able to find security
property violations considering timing aspects.

Asplund [183] investigates the security of connected
and autonomous vehicles while driving in group forma-
tions. Therefore, three different autonomous driving sce-
narios (managed intersections, managed roundabouts, and
platooning) are presented. For each scenario, faults/attacks
of a hidden vehicle, selfish behavior of a vehicle, and a
platooning attack are considered. Additionally, four faults
and attacks leading to such scenarios are included: com-
munication failure, detection omission, location falsification,
and sybil attack. The goal of this approach is to verify the
correctness and secure operation of vehicles in group forma-
tions. Thus, vehicles and their positions inside of the group
formation as well as sensors are modeled in a graph-based
formal framework. The vehicles and sensors follow a group
membership protocol that describes how the vehicle operates
in a group. All graphs are checked for inconsistencies using
a Satisfiable Modulo Theories (SMT) solver. The approach
is evaluated using synthetic and realistic data of vehicles in
operation. The results suggest, that even though verification
works for some scenarios, this is not possible for every sce-
nario. In addition, performance is a limiting factor when the
systems and scenarios increase.

D. APPROACHES BASED ON TESTING/VERIFYING
SECURITY MECHANISMS, PROPERTIES, AND
REQUIREMENTS
In this section, approaches are presented that aim to verify
security properties and requirements and the correct function
of security mechanisms. Thus, these publications are similar
to the MBT approaches described in Section II-A, because
the conformance of the SUT to its functional requirements is
of particular interest. The identified approaches are presented
in Table 15.

Moutappa et al. [188] follow a passive test approach. The
message communication of an automotive Bluetooth sys-
tem is monitored to obtain execution traces. Both control-
and data-specific messages are considered. In parallel, the
Bluetooth system is modeled as an Input-Output Symbolic
Transition System (IOSTS) based on its protocol and security
requirements. An IOSTS is based on LTS and integrates addi-

tional input and output aspects. In addition, security attacks
can be modeled (e.g., the Bluetooth attack bluestabbing).
Through symbolic execution of the IOSTS, traces can be
generated that correspond to protocol and security properties
of the requirements. These traces are compared to monitored
traces of the real system. To test whether the real system
conforms to its requirements, a parametric trace slicing algo-
rithm is applied. The traces are split and checked to determine
whether formally specified protocol and security properties
are satisfied in the real traces. The authors present their
evaluation algorithms and their prototype tool TestSym-P. In a
case study, they detected both incorrect execution traces and
security attack traces using their tool.

Huang et al. [189] present a method to verify timing con-
straints regarding safety and security in Vehicular Ad Hoc
Networks (VANET). For this purpose, the authors use an
example of a cooperative automotive system in which three
vehicles are driving behind each other at a safe distance. The
vehicles communicate with each other and with a roadside
unit. Thus, the vehicle speeds and positions are broadcasted.
For communication, the roadside unit aided (RAISE) com-
munication protocol is used, which authenticates messages
using a Message Authentication Code (MAC). The authors
specify 11 requirements that have to be fulfilled. These
involve security-related requirements, such as integrity and
freshness of the messages, but also functional requirements,
such as the maximum safety distance between the vehicles,
and timing requirements. The behavior model of the system is
expressed as Stochastic Timed Automata (STA) in UPPAAL-
SMC. This system model is extended by the RAISE authen-
tication protocol [194] and a model for security attacks that
are modeled as STA. Security attacks involve message fal-
sification, spoofing, and replaying. To verify the system,
timing constraints for safety and security are specified in the
Probabilistic extension of the Clock Constraint Specification
Language (PrCCSL) [195]. These constraints are transformed
into a timed automaton and probabilistic queries in UPPAAL-
SMC. This tool performs stochastic model checking for each
attack. The results show that only falsification and spoofing
attacks violate requirements, whereas replay attacks are pre-
vented by security mechanisms. While the approach provides
a strong formal background for the individual models, the
modeling process can involve a large amount of time and

VOLUME 11, 2023 55499



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

TABLE 15. Survey results for model-based test approaches regarding verification.

effort. This makes it difficult to adapt the models when
requirements change. Furthermore, the approach focuses on
timing aspects. As a result, other security-related aspects are
not verified by this approach.

Pedroza et al. [190] introduce a method to verify vehicle
applications. A local danger warning system that includes a
secure exchange of warning messages between vehicles is
used as an example. The Timed UML Real-Time Language
Environment (TURTLE) profile is utilized to specify a sys-
tem model of the danger warning application as class and
activity diagrams. In a next step, a Formal Security Model
(FSecM) is created, which consists of security requirements,
properties, dependencies, and attacks. Security requirements
are expressed as SysML requirement diagrams and describe
how the system should be protected. The security dependen-
cies specify the context and assumptions under which the
security model is realized (for example, knowledge of an
attacker/verifier). Security properties that a system should
fulfill, such as integrity of freshness, are expressed in the
temporal logic CTL. The system attacks are based on the
Dolev-Yao threat model and described using TURTLE class
diagrams. The authors apply the TTool and integrate their
FSecM by translating TURTLE diagrams into the formal lan-
guages LOTOS, RT-LOTOS, and UPPAAL. This enables an
execution ofmodel checking to verify compliance to the spec-
ified security properties. The authors state that they applied
this process for the freshness property. However, results of
the verification process are not described. Only an overview
of the general process and its individual modeling steps is
given.

Kastebo and Nordh [191] present an MBST approach that
aims for automated verification of security requirements at an
early stage in development. For this purpose, the Awesome
Firewall Tool (AFT) is introduced, which tests firewalls for
compliance with security requirements. Positive and negative
testing (Section II-B) is considered. Security requirements
are used to create a textual input model that contains gen-
eral information, such as a security policy or, for example,
whether stateful packet inspection should take place. In addi-

tion, the incoming and outgoing data traffic and internal
interfaces are recorded.Whitelists and blacklists are also con-
sidered. The resulting input model is read into AFT. The tool
itself is implemented in Python and uses requirement-based
coverage as a test selection criterion. Based on the require-
ments, a port scan of the firewall is performed using Nmap.
The cve-search tool is then used to perform an automated
vulnerability search using the Common Vulnerabilities and
Exposures Enumeration (CVE) database. The results of the
port scan and vulnerability search are presented in a test
report. The authors tested AFT using a test bench that con-
tains a Wi-Fi ECU with a firewall. Eleven requirements were
tested, of which ten were covered. The firewall itself only
fulfilled six of the ten tested requirements.

In [192], Lee et al. employ the ProVerif tool to formally
verify security properties of network security protocols (par-
ticularly cryptographic protocols) in vehicles. ProVerif uses
the Dolev-Yao attacker model and automatically verifies pro-
tocols that are given as Horn Clauses (formulas of predicate
logic). The authors demonstrate this on an attestation scheme
for vehicle architectures proposed by Oguma et al. [196].
Here, one or more in-vehicle ECUs serve as a primary, which
represents a verification server responsible for verifying other
ECUs. A Key Distribution System (KPS) is used to ensure
the authenticity and authorization of the ECUs. The message
communication is encrypted. Four requirements are formally
verified using this protocol: only ECU recognized as valid can
participate in communication, unauthorizedmessages are dis-
carded or processed separately, communication is encrypted
and authenticated, and an attack should not affect the entire
vehicle.

Verification of security properties is also demonstrated by
Jakobs et al. [14], in which an approach for integrity verifi-
cation of vehicle architectures is presented. The authors view
integrity as an information flow problem and discuss existing
security measures, such as secure and authenticated boot,
Hardware Security Modules (HSMs), or message authenti-
cation, to ensure this property. To verify integrity, a model
of the architecture is created. In a first step, the logical

55500 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

communication of system functions is represented as a graph,
including integrity levels for each function. Furthermore,
a technical vehicle architecture is modeled as a connected
graph including ECUs and communication technologies,
such as CAN. The technical architecture graph also includes a
distribution of logical vehicle functions to individual ECUs.
Thus, a relationship exists with the logical communication
graph. Considering the logical and technical graph as well as
security measures, a graph transformation takes place based
on a custom algorithm, which verifies integrity properties
for all communication paths. As a result, an evaluation of
information flow between paths of the architecture compo-
nents is performed to provide a statement about information
flow integrity. This approach is in a conceptual state, so only
the modeling and general verification process is shown for
command messages in an exemplary architecture.

Jakobs et al. present an extension in [193]. The authors use
the same architecture as in [14] to illustrate their approach.
The architecture includes two ECUs and a gateway connected
by Ethernet via a router. The gateway is also attached to
a CAN bus, which includes two additional ECUs. A first
extension is an integration of a risk analysis. For this pur-
pose, the Modular Risk Assessment process (MoRA) [197]
is used, which complies with the TARA process required in
ISO/SAE 21434. This approach considers assessed compo-
nents as well as their functions and assigns security goals
according to the CIA Triad and potential damage scenar-
ios. Furthermore, threats to these items are identified, which
could violate security goals. For each threat, possible attack
paths are derived and assigned to risk values. The authors
use attack paths and their risk and take the most critical risk
value as the integrity level that must be secured. Security
controls (e.g., encryption) are considered to reduce the risk
and fulfill the required integrity level. The E/E architecture
is represented by a logical communication and a technical
architecture graph as described above. To automatically ana-
lyze the graphs, the Temporal Logic of Actions (TLA+) and
PlusCal notation are used to formalize the model. This also
enables an application of the TLC model checker to automat-
ically derive counterexamples that violate the architecture’s
integrity. To evaluate their approach, the authors apply that
process to different architectures settings of required integrity
levels and security control consideration. The results suggest
that realistic architectures with 100 ECUs can be analyzed
in less than 10 seconds. A drawback of this approach is the
focus on integrity, because other security properties, such as
authentication or confidentiality, are not considered.

VI. ANALYSIS
This section presents an analysis of the approaches identified
in this survey. For this purpose, the tabular overview of pub-
lications in Section IV and V is used to compare individual
categories for MBT and MBST (a definition of the categories
is given in Section IV). The percentages in following sections
describe the relative share of the total number of publica-
tions (either 63 MBT or 29 MBST publications). The aim

FIGURE 14. Distribution of the test approaches in relation to the
frequency they are used in identified publications.

of this comparison is to identify common features of both
domains to determine the state-of-the-art and transferability
of model-based approaches to security testing. In addition,
current challenges of model-based security testing are deter-
mined. In this way, further research topics on MBST are
identified.

A. ANALYSIS AND COMPARISON OF TEST APPROACHES
Fig. 14 compares the number of MBT and MBST publica-
tions in terms of the applied test approaches.

For the MBT domain, simulations are most common with
14 of 63 publications (22.2 %). This suggests early testing in
development, which is one of the key advantages of model-
based testing. Fault-based approaches are used exclusively
forMBT in 12 (19%) publications. Search-basedmethods are
often used in approaches based on trees or state-based mod-
els [115]. This typically involves search algorithms guided
by heuristics or coverage criteria [131], [133]. In the field
of MBT, 9 publications (14.3 %) use search-based methods.
Specific methods, such as CTM, SMArDT, EXAM, TPT,
and AVL are exclusively applied in MBT. With a total of
18 approaches (28,6 %), they account for almost one third
of all MBT publications. Symbolic execution, random gener-
ation, theorem proving, and constraint solving are compara-
tively less represented with 12 approaches and do not differ
significantly in their frequency from MBST (5 approaches).
Interestingly, model checking is equally divided between
MBT and MBST with 8 publications each. Simulation-
based approaches are also used in 8 publications (27.6 %
of all MBST publications). Threat- or attack-based meth-
ods represent the security-specific counterpart to fault-based

VOLUME 11, 2023 55501



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 15. Distribution of the test goals in relation to the frequency they
are addressed in identified publications. The Test Execution also includes
Attack simulation.

approaches in MBT and are addressed in 7 publications
(24.1 %).

Simulation-, threat/attack-based, and model checking
approaches are the three most commonly employed MBST
methods. In total, 23 publications are included. In 14 of these
23 papers, the design level stage (DL) or MiL is addressed,
whereas 9 publications cover penetration testing (PT) or HiL.
Thus, future research could investigate how these approaches
can be applied in further test stages, such as component,
or integration tests. Apart from these three test approaches,
hardly any other methods are used in MBST. Interestingly,
only two security-related publications use search-basedmeth-
ods, although models are often represented by attack trees
or attack graphs (Fig. 16). Thus, future work could aim to
investigate search-based methods forMBSTmore frequently.
For example, in attack trees, critical attack paths can be
searched for. For this purpose, model checking approaches
are also conceivable. This is has already been applied in the
area of TARA [198]. In addition, simulation approaches for
MBST can be further investigated, because early testing is
rarely used in automotive security. However, an early detec-
tion of vulnerabilities serves to increase protection against
cyber attacks on vehicles. Here, a coupling or transfer ofMBT
simulation approaches to MBST is also conceivable. With
regard to functional security testing, it would be interesting
to investigate whether approaches, such as CTM, EXAM, and
SMArDT, can be applied to MBST, for example, to test the
function of security mechanisms based on security require-
ments. This could complement other methods, such as those
of Lee et al. [192] and Kastebo et al. [191].

B. ANALYSIS AND COMPARISON OF TEST GOALS
This section discusses the goals pursued by the individual test
approaches. Fig. 15 provides an overview of goals addressed.

With a total of 38 approaches, the generation of test cases
for MBT is represented the most, in sum even more than all
the other categories (25 approaches). Test case generation
thus accounts for 60.3 %, whereas MBST only consists of
8 approaches (27.6 %). With regard to the execution or simu-
lation of tests and attacks on a SUT, MBT is represented with
9 approaches (14.3 %) and MBST in 7 (24.1 %). Methods
that are specifically used to verify or validate a system (e.g.,
ECUs) are described forMBT in 8 publications (12.7%). One
example is the validation of whether an E/E architecture or
its ECUs satisfy safety-critical requirements [114]. Security-
related approaches for verification and validation (V/V) are
represented in 13 publications. For MBST, this is the pri-
mary test goal and accounts for the majority of publications
(44.8 %). Eleven of these 13 approaches address early test
stages (DL or MiL). Thus, verification and validation of
security is primarily performed through early testing. Test
planning is addressed in only three MBT publications. This
includes the prioritization of tests [127] or determination and
reduction of test effort [148]. Theoretically, this category can
also include the generation of test cases and test data. Due
to the large number of approaches (particularly for test case
generation), these categories were considered separately.

The generation of test data is addressed in five publications
for MBT and in only one approach for MBST. One reason
is the difficulty of generating security test data in advance
that directly relates to a successful attack that exploits a
vulnerability. This is not the case with MBT (particularly in
functional testing), since the behavior of SUTs is functionally
specified. Thus, input and output data of a system is known.
Here, for example, test input data can be generated based
on system requirements, which result in correct functional-
ity or an error in the system. This could also explain why
the number of MBST approaches generating test cases is
significantly smaller than the number of MBT publications.
Thus, test case generation for security testing in the field
of MBST has potential for future work. The challenge here,
similar to generation of test data, is that it is difficult to
determine whether a test case (cyber attack) can successfully
exploit or expose a vulnerability. For this reason, it would be
valuable to analyze which cyber attacks target which types of
vulnerabilities. This can be particularly relevant for test case
generation and execution in penetration tests or HiL because
the result or impact of an attack is not always observable at
the SUT. Thus, sufficient test cases that include knowledge
of the impact an attack has can be generated using MBST
approaches to support penetration tests.

Finally, another aspect can be discussed in this context.
One advantage of model-based testing is the uniform descrip-
tion by using formal models to specify the systems under
test, which potentially leads to fewer human errors. In addi-
tion, the processes for generating and executing tests can be
automated. In general, this is also true for MBST, although
some limitations have to be considered in this respect. In con-
ventional testing of a software-based system, the system
behavior, input values, and output values are usually known

55502 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

in advance. This allows tests to be described precisely and
expected test results to be specified in advance. Thus, meth-
ods of model-based testing can be examined for their effi-
ciency (for example, by measuring the coverage of a test
method on a specific SUT). For a (model-based) security test,
this is only possible to a limited extent, since a successfully
executed test (executed attack) depends on the existence of a
vulnerability.

In addition, it may not be possible to determine which
influence the exploitation of a vulnerability will have on
the system in advance. Thus, the system behavior cannot be
predicted or observed. This aspect complicates the evaluation
of a model-based security testing method. A detailed inves-
tigation of relationships between exploits and vulnerabilities
exploited as well as the resulting impact could help in this
regard.

C. ANALYSIS AND COMPARISON OF MODELS
Fig. 16 compares the formalisms or types of models used
in the identified approaches. A variety of model types is
used in both MBT and MBST. In MBT, state-based models
with 31 of 63 publications (49,2 %) and Simulink models
with 24 publications (38.1 %) account for largest share of
the models. For state-based models, this is a result of the
large amount of research that exists for testing based on
state machines and automata, dating back to the 1950s [27].
In addition, many automotive applications are based on state
machines (e.g., Unified Diagnostic Services (UDS) diagnos-
tic sessions [199]). State models are particularly used for
test case generation (17 approaches). Furthermore, they are
used in several test stages (Fig. 17). In total, 14 state-based
approaches are applied in DL or MiL stage, 11 publications
address CT, and 13 state-based approaches cover ST or HiL.
The large number of Simulink-based models results from
the widespread use of MATLAB/Simulink in automotive
development. From 24 Simulink approaches, 20 publications
address the DL or MiL stage. Aside from these two model
types, the MBT publications are distributed across remaining
model types, without significant differences being observed.

Since STRIDE is a security-specific classification
scheme, only MBST approaches are addressed. Interest-
ingly, CSP models occur exclusively in the MBST domain.
Although CSP-based approaches are used in MBT in other
domains [200], it does not occur in identified automotive
MBT approaches. However, with five publications (17.2 %)
it is the most common model type in the MBST approaches
after tree models and graphs. Cyber threats are often rep-
resented as attack trees in the context of TARA. Thus, this
model can also be reused in MBST. In total, 8 of 11 TARA-
based approaches apply attack trees. The tree models are
particularly used to derive test cases (5 of 8 approaches)
for the penetration test stage. They further address testing of
ECUs (7 publications) and communication systems (8 publi-
cations). This suggests that TARA-based MBST methods are
suitable for combining threat analysis and security testing.

This is confirmed by the number of TARA-based publications
(11 of 29). Instead of tree models, graphs are alternatively
used to represent attacks (e.g., attack graphs in [158]). With
6 publications (20.7 %), this model type is the second most
frequent. The remaining MBST approaches are distributed in
a similar manner to MBT.

Because of the many Simulink and state-based models
in the MBT domain, it would be interesting to investi-
gate whether these two model types are suitable for MBST
as well. Only four approaches use one of these models.
Since both models are used in development and in testing,
there is high potential to reuse the models for MBST. The
state-based models can be applied to several test stages,
whereas Simulink could cover DL and MiL stages as shown
in the MBT approaches.

D. ANALYSIS AND COMPARISON OF TEST STAGES
The Stage category describes the level at which an approach
can be applied to the vehicle life cycle. Additionally,
X-in-The-Loop test environments were included, as they also
indicate the time of application. Fig. 17 provides an overview
of the distribution of publications.

In MBT, MiL testing is most frequently represented with
24 approaches (38.1%). Fourteen of these 24 approaches also
address further test stages, such as SiL or HiL. This suggests
that models on MiL are reused in further test activities and
that later test stages can build up on MiL. The high number
of MiL publications can be attributed to the widespread use
of MATLAB/Simulink and comparable tools in development
that enable early simulations. Simulink is used in 17 of 24
MiL publications. In this context, the early use of models
in development further enables testing at design level (DL),
which is addressed in 10 MBT approaches (15.9 %). Fig. 18
and 21 show that MBT primarily focuses on testing ECUs
and their software applications. As a result, the Component
Test (CT) level is the second most common test stage (18
approaches, 28.6 %). In 16 of 18 approaches, the goal is to
generate test cases, and in 17 of these 18 approaches ECUs
and their software applications are tested. This also includes
SiL approaches, which are represented in 6 publications
(9.5 %). With 16 approaches (25.4 %), HiL is addressed by
MBT. 10 these 16 approaches are particularly used for test
case generation. The System Test (ST) level is addressed in
9 publications (14.3 %). Other stages, such as Integration
(IT), Acceptance (AT), and Regression Test (RT) as well as
Deployment (DP) and PiL (10 approaches in total), play a
subordinate role in MBT.

In MBST, DL is addressed most frequently with 16 publi-
cations (55.2 %). Ten of 16 approaches aim to verify or vali-
date security (Section VI-B). In this context, it is worth noting
that the number of MiL approaches is comparatively low (3
publications, 10.3 %). One possible reason is that although
attacks on systems or the security-specific systems them-
selves can be simulated in principle (e.g., as in [158], [159],
and [160]), the attack impact cannot always be estimated.
However, in approaches, such as [173], vehicle systems and

VOLUME 11, 2023 55503



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 16. Distribution of the model types in relation to the frequency they are used in identified publications.

FIGURE 17. Distribution of the test stages in relation to the frequency they are target in identified publications.

surrounding traffic are simulated in Simulink and CARLA,
and hardware connections are possible through ROS. This
enables observing attacks on hardware and software. For
this purpose, HiL frameworks are interesting for executing
model-based cyber attacks on real systems to observe their
reactions. HiL is addressed in five approaches, accounting for
17.2 % of MBST publications. Future work could research
in the direction of MiL and HiL. Eight approaches (27.6 %)
address penetration testing (PT) or use it as a supporting tool
in their MBST process. Since penetration testing is typically
exploratory and experience-based in black or grey box tests,
this process can be supported by model-based approaches.
In particular, because of the high complexity of modern
vehicles, which are based on a large number of compo-
nents (150 ECUs per vehicle [1]), communication systems
(Fig. 20), and concepts related to autonomous driving, there
is potential to support the tester with suitable models and
methods.

E. ANALYSIS AND COMPARISON OF ADDRESSED
TECHNOLOGICAL AREAS
The Area category describes the respective technical sys-
tem areas of a vehicle identified within the publications.
An overview of the technological areas addressed by the
MBT and MBST approaches is illustrated in Fig. 18.

MBT approaches focus on testing ECUs and their software
applications or functions. A total of 60 out of 63 MBT
approaches (95.2 %) use ECUs applications as SUTs or
as part of them. Communication systems are addressed in
14 approaches (22.2 %), whereas sensors (e.g., RADAR)
are included in 10 approaches (15.9 %). Testing actua-
tors, the vehicle as a whole, E/E architectures, and V2X
communication plays only a minor role in MBT with a
total of 9 approaches (14.3 %). With regard to MBST,
the distribution is more balanced. With 24 approaches
(82.8 %), ECUs and their software applications are almost
equally addressed as communication systems (23 approaches,

55504 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 18. Distribution of the technological vehicle areas in relation to the frequency they are covered by identified publications.

79.3%). Interestingly, communication systems and ECUs are
almost exclusively addressed in either the early or late test
stages. In 13 of 23 COM-related publications, DL or MiL
is covered, 12 publications address HiL or PT. For ECUs
the ratio is similar, as 15 out of 24 approaches cover DL or
MiL and 11 approaches address HiL or PT. E/E architec-
tures are addressed in 7 approaches (24.1 %), and sensors
in 6 (20.7 %). In MBST, the testing of actuators and the
entire vehicle also plays a subordinate role with only two
approaches. However, V2X communication is addressed in
6 approaches (20.7 %). Overall, communication between
vehicle systems is far more relevant in MBST than in MBT.
In particular, the interaction between ECUs in a vehicle is
relevant, as a manipulation of the communication systems
can influence the behavior of an ECU. This is consistent with
attacks on vehicles, where attack paths propagate through the
vehicle’s E/E architecture. Therefore, generating attack paths
for testing should be investigated in future work. A more
detailed look at individual technologies is provided in Fig. 19
and 20 and in the category Application in Fig. 21.
The distribution of individual approaches among the Cam-

era, LiDAR, and RADAR sensors is uniform for MBT and
MBST. In twoMBT approaches, cameras are part of the SUT.
One approach contains LiDAR sensors and three approaches
contain RADAR sensors.

In MBST, four approaches include cameras and RADAR,
whereas LiDAR sensors are part of the SUT in three
approaches. With 11 approaches, these three types of sensors
are represented almost twice as often in MBST as in MBT
(relative to the number of respective approaches almost four
times higher). A reason for this is the focus of vehicle man-
ufacturers and suppliers on protecting sensors of (partially)

FIGURE 19. Distribution of the sensor systems in relation to the
frequency they are addressed in identified publications.

autonomous vehicles against cyber attacks. Since camera,
LiDAR, and RADAR sensors are used in such vehicles for
environment recognition, protecting them is a high priority.
This is particularly important because many sensor attacks
do not require access to the vehicle. For example, for attacks
on an ECU, an attacker must first gain access to the vehicle
(e.g., via a wireless interface). When attacking sensors, it is
sufficient tomanipulate the environment sensed by the sensor.
For example, Petit et al. [201] were able to blind camera and
LiDAR sensors using lasers. Thus, extensive security testing
and MBST is of sensors is highly relevant.

Communication systems (COM) are part of the SUT in 14
MBT publications. In contrast, in MBST they are represented
23 times. The difference between MBT and MBST can be

VOLUME 11, 2023 55505



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 20. Distribution of the communication systems in relation to the frequency they are addressed in identified publications.

explained in two ways. As shown in Fig. 18, 60 out of 63
MBT approaches consider ECUs as SUTs. In these cases,
the communication systems are mostly used to provide input
data to an ECU (e.g., sending CAN messages to an ECU).
Thus, the focus of these test approaches is primarily on
testing the software application and not on communication
system. Only Pretschner et al. [21] focus on testing a com-
munication system (MOST). The second aspect concerns the
cyber security of communication systems. A large number
of cyber attacks on vehicles [9] have aimed at manipulat-
ing communication systems. CAN was particularly affected
(e.g., in [202]) because it is most widely used in vehicles
and lacks cybersecurity mechanisms (e.g., authentication). In
10 of 16 approaches in which CAN was a part of the SUT,
MiL or the DL test stage is addressed. HiL or PT is cov-
ered in 7 publications. In addition, wireless communication
interfaces, such as WLAN, Bluetooth, and cellular, are used
to gain access to the vehicle in published attacks [9]. This is
consistent with the observations in Fig. 20, as these communi-
cation systems are predominantly addressed in the published
MBST approaches. Cheah et al. [152], [153], [154], [155],
for example, test Bluetooth systems. CAN bus systems are
addressed in 16 of 29 MBST approaches (55.2 %). Commu-
nication or signal transmission via Radio Frequency Identifi-
cation (RFID) is not addressed in MBST publications. This
is surprising, because RFID is commonly used in keyless
access systems. In the attack database of Sommer et al. [185],
attacks on keyless access systems are the most frequent tar-
get of attackers with a total of 117 attacks. In 65 of these
attacks, a relay attack is conducted to open and steal vehicles.
Therefore, future work could include testing keyless access
systems.

F. ANALYSIS AND COMPARISON OF TEST SYSTEMS AND
APPLICATIONS
This section presents the Application of test systems used
within the identified publications as SUTs, case studies,
or examples to evaluate the respective test methods. Fig. 21

lists the applications and their occurrences in the MBT and
MBST publications. A variety of different vehicle functions
are addressed. The vehicle as a whole is considered by MBT
and MBST in two approaches each. The powertrain area is
used by MBT in three approaches. In particular, the engine
applications (10 approaches) show a high degree of diver-
sity. For example, start-stop functions [91], [92], an exhaust
measurement system (particle counter) [122], or a spark
ignition engine [128] are used as SUT. Vehicle dynamics
systems, such as ABS or brakes, are addressed in 3 MBT
publications. Steering systems are used once each in MBT
and MBST. A total of 18 of 63 approaches (28.6 %), cruise
control and ACC systems are most frequently used as SUT
in MBT. In particular, cruise control is a classic example
in MBT [130], [141]. Other applications addressed by MBT
are occasionally distributed over several system areas, such
as ADAS, window control systems, lighting systems, and
vehicle diagnostics.

MBST approaches focus on individual areas. Most fre-
quently (7 approaches, 24.1 %), applications that imple-
ment security mechanisms (controls) are addressed. Six
approaches (20.7 %) refer to infotainment or telematic appli-
cations. As these systems are typically responsible for com-
munication with systems outside the vehicle (e.g., naviga-
tion, smartphone connection, or internet applications), they
have been frequently chosen as entry points to the vehicle
and attacked in the past [9]. Therefore, it makes sense to
use these systems as SUT in MBST. The same applies to
approaches that address communication systems or commu-
nicating units (gateways, OTA updates, and OBD devices).
While these information and communication technology sys-
tems are applied in theMBST literature, driving physical sys-
tems, such as steering, driving, braking systems, and vehicle
assistance systems, are comparatively little considered with
a total of 7 approaches (24.1 %). Cyber attacks on these
systems are particularly safety-critical, as the manipulation
of vehicle physics can endanger vehicle occupants and road
users. Such attacks have been demonstrated in the past by
Miller and Valasek [72]. Although many MBT approaches

55506 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

FIGURE 21. Distribution of the automotive applications in relation to the
frequency they are addressed in identified publications.

concerning ACC systems suggest that complex driving assis-
tance systems can be covered bymodel-based testing, we sug-
gest further research on the applicability for security-based
methods.

G. ANALYSIS AND COMPARISON OF TOOL SUPPORT
In Fig. 22, an overview of the Tool Support in MBT and
MBST is shown.

With respect to tool support for model-based test methods,
high diversity exists. The only exception is MATLAB for the
MBT area, which is used in 22 approaches (34.9 %), since
MATLAB provides the Simulink framework, which is one
of the most frequently used models (Fig. 16). The remaining
MBT and MBST approaches are distributed among 89 tools.
Fig. 22 explicitly shows tools that were used more than
once (e.g., FDR). The category Other includes tools used
only once in a publication. Eight MBT approaches (12.7 %)
and 5 MBST approaches (17.2 %) did not receive any tool
support. Apart fromMATLAB/Simulink, no conclusions can
be drawn regarding preferred tools.

H. ANALYSIS AND COMPARISON OF TEST AUTOMATION
The category Automation indicates whether an approach can
be automated, semi-automated, or has no automation. Fig. 23
illustrates the distribution of the publications.

FIGURE 22. Distribution of the tools in relation to the frequency they are
used in identified publications.

FIGURE 23. Distribution of the amount of approaches that include
(partial) automation, or no automation at all.

For MBT, 33 of 63 approaches (52.4 %) are fully auto-
mated. In addition, 26 approaches (41.3 %) are semi-
automated. Only 4 approaches do not use automation. Thus,
93.7 % of MBT approaches are at least partially auto-
mated. The distribution for MBST is almost the same.
Of the 29 approaches, 15 (51.7 %) are fully automated,

VOLUME 11, 2023 55507



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

and 11 (37.9 %) are semi-automated. Three approaches do
not include any automation. Thus, 89.7 % of the MBST
approaches are at least partially automated. Given that
automation is a fundamental aspect of model-based testing,
this high proportion is not surprising.

I. DISCUSSION
In the previous sections, 63 MBT and 29 MBST identified
publications were analyzed and compared. In this section,
we concludewith a discussion of the current state ofMBT and
MBST in the automotive sector. In addition, the challenges
of current security testing activities in vehicle development
outlined in Section I are addressed and whether model-based
methods can provide a remedy is discussed.

The publication years in Fig. 3 (Section III-B) sug-
gest that MBT approaches declined in the years after
2017. Recently published approaches, such as those of
Bucher et al. [107], [108] or Neubauer et al. [109], primarily
deal with topics, such as the simulative verification/validation
of driving assistance systems. This is typically done using
suitable simulation tools to simulate vehicles, their function-
alities, and the surrounding traffic. This is already used in the
development of vehicles, autonomous driving functions, and
driving assistance systems, such as in [73], [203], and [204].
However, since such approaches have only been published
in recent years, there are still open problems, such as the
validity of the simulation results and their transferability to
real driving situations. Thus, it can be expected that future
model-based testing approaches will increasingly address
these aspects.

In contrast to MBT, the number of published MBST
approaches has increased since 2018. 21 of 29 MBST
approaches have been published between 2018 and 2021.
This accounts for 72.4 % of the total publications. Thus,
it can be concluded that MBST is employed to address the
current challenges of the automotive security testing process.
This confirms the publications mentioned in Section I, such
as Marksteiner et al. [13] or Khan et al. [16]. Based on these
developments, it can be assumed that further model-based
security test methods will be published in coming years.

In Sections VI-A - VI-H, data were compared between
MBT and MBST for the individual categories (e.g., Test
Stage). For MBST in particular, concrete areas were derived
that can be addressed in future work. An example is the
investigation of state-based models (Section VI-C) for the
derivation of security test cases and the use of search-based
approaches (Section VI-A), for example, for attack trees of a
TARA.

In particular in MBT (Section VI-D), it can be observed
that MiL testing is often addressed with further test stages
(SiL, HiL, PiL, CT, ST, IT). This suggests that the models on
whichMiL testing is executed are reused for further test activ-
ities. Thus, MiL serves as a basis for further testing stages.
For MBST, MiL has the potential to address security testing
stages throughout the entire development cycle. However,

only three MBST approaches address MiL. Thus, a primary
field of research for future work could be to combine MiL
testing with security testing, as this is already the case for the
DL test stage (Section VI-D).

Additional observations can be made across individual cat-
egories. The testing of safety and security in combination has
hardly been addressed. Only 4 of 29MBST approaches [161],
[173], [182], [189] cover this topic. This is surprising as these
two aspects are often considered in parallel or in combination
in TARA (e.g., [205], [206]). Therefore, future work could
investigate a combination of model-based safety and security
testing methods.

Furthermore, a comparison can be made between which
vehicle systems are addressed by MBST and which sys-
tems are attacked and compromised in real-world attacks.
As described in Section VI-F and VI-E, the MBST publi-
cations focus on testing ECUs and communication systems.
In comparison, further areas, such as sensors, E/E architec-
tures, and V2X, play a subordinate role. The current report
of Upstream Security Ltd. [207] provides an overview of
automotive-related attacks in the year 2022. According to
this report, 35 % of all attacks were conducted on telem-
atic units and application servers. In addition, 8 % of the
attacks affected infotainment systems. In comparison, info-
tainment and telematic systems were addressed in only 6 of
29 (20.7 %) MBST publications. While MBST addresses
ECUs in 24 of 29 (82.8 %) approaches, attacks on these
components accounted for only 14 % in real-world attacks.
Additionally, 18 % of all attacks concerned keyless entry
systems, 12 % smart mobility, 4 % electric vehicle charging
infrastructure, and 6%mobile phone applications. These four
areas are hardly addressed by the identified MBST publica-
tions. Only smart mobility approaches have been mentioned
that deal with use cases, such as traffic management [183],
OTA updates [169], or ADAS [162]. In particular, charging
infrastructures and keyless access systems have not been
addressed by any of the MBST approaches. In addition,
according to Upstream, 97 % of all attacks in 2022 were
carried out via remote access to the vehicle. This suggests that
there is currently a discrepancy between the systems tested by
MBST and those attacked in reality. Therefore, it would make
sense to develop methods for early model-based security
testing of attacked systems in future work. In conclusion, the
identified topics for future research are as follows:

1) Simulative verification/validation of driving assistance
systems (MBT).

2) Simulation-, threat/attack-based, and model check-
ing approaches for component and integration tests
(MBST).

3) Application of simulation- and search-based test meth-
ods (MBST).

4) Application of MBT approaches, such as CTM,
EXAM, or SMArDT, for functional security testing
(MBST).

55508 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

5) Application of Simulink and state-based models
(MBST).

6) Test case and attack path generation for security testing
(MBST).

7) MiL and HiL testing (MBST).
8) Combination of model-based safety and security test

methods (MBST).
9) Coherence between cyber attacks and the vulnerabili-

ties they exploit (MBST).
10) Test approaches targeting automotive systems that are

mainly attacked in reality, for example, keyless access
systems (MBST).

As outlined in Section I, a main drawbacks of the cur-
rent security testing process is the complexity of modern
vehicles, late and manual testing techniques, such as pen-
etration testing, and the challenge of identifying vulnera-
bilities as early as possible through testing. Existing sur-
veys on (model-based) security testing, such as the work of
Mahmood et al. [63], Luo et al. [64], and Pekaric et al. [65]
often refer to penetration testing and dynamic analysis tech-
niques (e.g., fuzzing and vulnerability scanning) that do
not support early vulnerability testing and can only be
applied late in the development cycle. Surveys, such as the
work of Altinger et al. [15] and Kriebel et al. [17], suggest
that model-based testing addresses these challenges. How-
ever, the presented approaches are independent from secu-
rity testing. Our survey conducted in this study closes the
gap between MBT and (model-based) security testing, since
MBT approaches were analyzed and compared to MBST
approaches. The results of this study suggest that security
testing challenges can be addressed using model-based test-
ing techniques. The early use of models in development
allows a reuse for testing. The high number ofMiL testing and
DL publications (Fig. 17) demonstrates this. Since automa-
tion is one of the fundamental aspects of model-based testing,
manual testing methods, such as penetration testing, can be
supported by MBST. This is confirmed by the large number
of different test tools (Fig. 22) and partially or fully automated
approaches (Fig. 23). In addition, simulation-related MBT
publications in particular have shown that complex vehicle
systems, such as ADAS or autonomous driving functions,
are covered by model-based testing and can be transferred
to security testing. However, we were also able to identify
topics that should be investigated in future work (mentioned
above) to extend the current body of knowledge of automotive
model-based security testing.

Finally, it should be noted that the validity of this survey is
restricted by several limitations. Kitchenham et al. [67] cite
several threats to validity of a systematic review process. One
example is selection bias, which in our case describes the fact
that the selection of publications may have been biased by
various factors. For example, this includes selected literature
libraries used for this survey and the filtering process accord-
ing towhich publicationswere selected (Section III-B).When
conducting literature reviews, the risk occurs that specific

types of papers or research results are published rather than
others. For example, Kitchenham et al. [67] state that there
is a tendency to publish positive research results rather than
negative results. In order to cover this problem, we tried to
consider as many publications as possible. Since we searched
in the seven online libraries and databases mentioned in Sec-
tion III-B, related publications of other sources could not be
considered. In comparison to other surveys or reviews, such
as [20], [43], and [68], we used additional sources to cover
more papers.

Another limitation considers the formulation of the search
strings and how this affects search results. In order to find as
many relevant publications as possible, we used the search
strings described in Section III-B. For each search term (e.g.,
automotive) we additionally used synonyms (e.g., vehicle or
vehicular) to cover a wide range of publications. A limita-
tion regarding the filtering process is the threat that relevant
publications were sorted out, for example, while filtering
publications according to their title.

Further limitations relate to the analysis and evaluation
of the publications. The process of data extraction could
be problematic regarding to unclear or misinterpreted data.
We tried to avoid these problems by defining criteria which
do not leave much room for interpretation (table categories
in Sections IV and V). For example, the publications year
as well as used modeling formalisms, evaluation and test
methods, tool support, and application level are criteria which
can be determined with a low possibility of misinterpretation,
since they are rather distinct. However, some approaches
addressed several categories. This led to overlaps between
categories, since these papers made no clear distinction.
However, we had to rely on the information given by the
specific publication, e.g., the technique for test case or attack
generation.

Overall, we covered a broad spectrum of approaches in this
study with 92 publications (63 MBT and 29 MBST). Since
we analyzed the approaches in detail, we consider risks of
the described threats and limitations as moderate to low.

VII. CONCLUSION
In this work, a literature review on model-based testing and
model-based security testing was conducted. We focused on
the automotive domain, but examples from other domains,
such as aerospace, medicine, and IT, were also mentioned.
Model-based testing is common in most domains, particu-
larly in the automotive industry, where we identified 63 rel-
evant papers. Model-based security testing is used in many
domains, such as IT. However, in comparison to MBT there
are fewer approaches, particularly in the automotive sector.
After the search and filtering process, 29 publications on
model-based security testing in the automotive domain were
identified and presented. Most of the publications were pub-
lished between 2018 and 2021. Thus,MBST is comparatively
new for automotive security. However, the results of this
literature review suggest that MBST approaches are able
to address challenges in current security testing practices.

VOLUME 11, 2023 55509



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

Thus, MBST enables early testing in development and an
automation of the security test process. We further identified
potential research areas for future work, such as combined
safety and security testing or testing according to current
attack targets. Based on the results of this literature survey,
we expect more model-based security testing approaches in
the near future.

REFERENCES
[1] A. Winning. Number of Automotive ECUS Continues to Rise. Accessed:

Jul. 7, 2020. [Online]. Available: https://www.eenewsautomotive.com/
news/number-automotive-ecus-continues-rise

[2] Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link
Layer and Physical Signalling, Standard ISO 11898-1:2015, 1993.

[3] Road Vehicles—Flexray Communications System—Part 1: General Infor-
mation and Use Case Definition, Standard ISO 17458-1: 2013, 2013.

[4] Road Vehicles—In-Vehicle Ethernet—Part 1: General Information and
Definitions, Standard ISO 21111-1, 2020.

[5] IEEE Approved Draft Standard for Information Technology—
Telecommunications and Information Exchange Between Systems
Local and Metropolitan Area Networks—Specific Requirements: Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications, Standard IEEE 802.11-2020, 2020.

[6] Bluetooth Special Interest Group. (2016). Bluetooth Core Specifica-
tion V5.0. Accessed: Jul. 12, 2022. [Online]. Available: https://www.
bluetooth.com/specifications/bluetooth-core-specification

[7] M. Maurer, J. Christian Gerdes, B. Lenz, and H. Winner, Autonomous
Driving: Technical, Legal and Social Aspects. Cham, Switzerland:
Springer, 2015.

[8] J. G. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
2nd ed. Hoboken, NJ, USA: Wiley, 2004.

[9] F. Sommer, J. Dürrwang, and R. Kriesten, ‘‘Survey and classification
of automotive security attacks,’’ Information, vol. 10, no. 4, p. 148,
Apr. 2019.

[10] Cybersecurity Guidebook for Cyber-Physical Automotive Systems,
Standard SAE j3061, SAE Vehicle Electrical System Security Commit-
tee, 2016.

[11] Road Vehicles—Cybersecurity Engineering, ISO/SAE 21434:2021, 2021.
[12] H. Assal and S. Chiasson, ‘‘Security in the software development lifecy-

cle,’’ in Proc. 14th Symp. Usable Privacy Secur., 2018, pp. 281–296.
[13] S.Marksteiner and Z.Ma, ‘‘Approaching the automation of cyber security

testing of connected vehicles,’’ in Proc. 3rd Central Eur. Cybersecur.
Conf., Nov. 2019, pp. 1–3.

[14] C. Jakobs, B. Naumann, M. Werner, and K. Schmidt, ‘‘Verification of
integrity in vehicle architectures,’’ in Proc. 3rd Int. Conf. Netw., Inf. Syst.
Secur., Mar. 2020, pp. 1–7.

[15] H. Altinger, F. Wotawa, and M. Schurius, ‘‘Testing methods used in
the automotive industry: Results from a survey,’’ in Proc. Workshop
Joining Academia Ind. Contrib. Test Autom.Model-Based Test., Jul. 2014,
pp. 1–6.

[16] M. A. Khan, A. Jadoon, K. M. S. Haq, S. Mumtaz, and J. Rodrigues,
‘‘An overview of resilient and automatic model-based testing approaches
for automotive industry,’’ in Proc. IEEE Int. Conf. Commun. Workshops,
May 2019, pp. 1–6.

[17] M. Markthaler, S. Kriebel, K. S. Salman, T. Greifenberg, S. Hillemacher,
B. Rumpe, C. Schulze, A. Wortmann, P. Orth, and J. Richenhagen,
‘‘Improving model-based testing in automotive software engineering,’’ in
Proc. IEEE/ACM 40th Int. Conf. Softw. Eng., Softw. Eng. Pract. Track,
May 2018, pp. 172–180.

[18] UNECE. (2021). Un Regulation no. 155—Uniform Provisions Concern-
ing the Approval of Vehicles With Regards to Cyber Security and Cyber
Security Management System. Accessed: Jul. 12, 2022. [Online]. Avail-
able: https://unece.org/sites/default/files/2021-03/R155e.pdf

[19] C. B. M. Tester, ‘‘ISTQB foundation level certified model-based tester:
Syllabus,’’ Int. Softw. Test. Qualifications Board, vol. 2015, pp. 1–41,
Jan. 2015.

[20] C. A. D. Neto, R. Subramanyan, M. Vieira, and H. G. Travassos,
‘‘A survey on model-based testing approaches,’’ in Proc. 22nd IEEE
ACM Int. Conf. Automated Softw. Eng., New York, NY, USA, Oct. 2007,
pp. 31–36.

[21] A. Pretschner, W. Prenninger, S. Wagner, C. Kuhnel, B. Sostawa,
R. ZoIch, and T. Stauner, ‘‘One evaluation of model-based testing and
its automation,’’ in Proc. 27th Int. Conf. Softw. Eng., 2005, pp. 392–401.

[22] M. Utting, A. Pretschner, and B. Legeard, ‘‘A taxonomy of model-
based testing approaches,’’ Softw. Test., Verification Rel., vol. 22, no. 5,
pp. 297–312, Aug. 2012.

[23] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton, and B. M. Horowitz, ‘‘Model-based testing in practice,’’ in
Proc. Int. Conf. Softw. Eng., May 1999, pp. 285–294.

[24] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual. London, U.K.: Pearson, 2004.

[25] M. Shirole and R. Kumar, ‘‘UML behavioral model based test case
generation: A survey,’’ ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 4,
pp. 1–13, Jul. 2013.

[26] M. Hause, ‘‘The SysML modelling language,’’ in Proc. 15th Eur. Syst.
Eng. Conf., vol. 9, 2006, pp. 1–12.

[27] D. Lee and M. Yannakakis, ‘‘Principles and methods of testing finite
state machines—A survey,’’ Proc. IEEE, vol. 84, no. 8, pp. 1090–1123,
Aug. 1996.

[28] A. S. Kalaji, R. M. Hierons, and S. Swift, ‘‘Generating feasible transition
paths for testing from an extended finite state machine (EFSM),’’ in Proc.
Int. Conf. Softw. Test. Verification Validation, Apr. 2009, pp. 230–239.

[29] J. J. Li and W. E. Wong, ‘‘Automatic test generation from communi-
cating extended finite state machine (CEFSM)-based models,’’ in Proc.
5th IEEE Int. Symp. Object-Oriented Real-Time Distrib. Comput., 2002,
pp. 181–185.

[30] D. Harel, ‘‘StateCharts: A visual formalism for complex systems,’’ Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[31] TheMathWorks. (2020). SimuLink: Simulation undModel-BasedDesign.
Accessed: Jul. 22, 2020. [Online]. Available: https://de.mathworks.com/
products/simulink.html

[32] The MathWorks. (2020). StateFlow: Model and Simulate Decision Logic
Using State Machines and Flow Charts. Accessed: Jul. 22, 2020.
[Online]. Available: https://nl.mathworks.com/products/stateflow.html

[33] Vector Informatik GmbH. Testing ECUS and Networks With Canoe.
Accessed: Sep. 28, 2022. [Online]. Available: https://www.vector.com/
de/de/produkte/produkte-a-z/software/canoe/

[34] The MathWorks. (2020). MATLAB. Accessed: Jul. 9, 2020. [Online].
Available: https://de.mathworks.com/products/MATLAB.html

[35] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan, ‘‘Using formal
specifications to support testing,’’ ACM Comput. Surv., vol. 41, no. 2,
pp. 1–76, 2009.

[36] M. Felderer and I. Schieferdecker, A Taxonomy of Risk-Based Testing,
Volume International Journal on Software Tools for Technology Transfer.
Berlin, Germany: Springer, 2014.

[37] J. Zander, I. Schieferdecker, and J. P. Mosterman, ‘‘A taxonomy of model-
based testing for embedded systems from multiple industry domains,’’ in
Model-Based Testing for Embedded Systems. Boca Raton, FL, USA: CRC
Press, 2011, pp. 3–22.

[38] ISTQB, ‘‘Certified automotive software tester: Certified tester foundation
level specialist,’’ German Test. Board, vol. 2, pp. 1–55, Mar. 2017.

[39] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. Burlington, MA, USA: Morgan Kaufmann, 2014.

[40] M. Shafique and Y. Labiche. (2010). A Systematic Review of Model
Based Testing Tool Support. Accessed: Jul. 13, 2020. [Online]. Available:
https://ir.library.carleton.ca/pub/10271

[41] I. Schieferdecker, ‘‘Model-based testing,’’ IEEE Softw., vol. 29, no. 1,
pp. 14–18, Jan. 2012.

[42] L. Wang, E. Wong, and D. Xu, ‘‘A threat model driven approach for
security testing,’’ in Proc. 3rd Int. Workshop Softw. Eng. Secure Syst.,
May 2007, p. 10.

[43] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, ‘‘Model-
based security testing: A taxonomy and systematic classification,’’ Softw.
Test., Verification Rel., vol. 26, no. 2, pp. 119–148, Mar. 2016.

[44] M. Felderer, B. Agreiter, P. Zech, and R. Breu, ‘‘A classification for
model-based security testing,’’ in Proc. Adv. Syst. Testing Validation
Lifecycle, 2011, pp. 109–114.

[45] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, ‘‘A survey
on data-flow testing,’’ ACM Comput. Surv., vol. 50, no. 1, pp. 1–35,
Jan. 2018.

55510 VOLUME 11, 2023



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

[46] G. Fraser, F. Wotawa, and P. E. Ammann, ‘‘Testing with model checkers:
A survey,’’ Softw. Test., Verification Rel., vol. 19, no. 3, pp. 215–261,
Sep. 2009.

[47] A. Hartman, M. Katara, and S. Olvovsky, ‘‘Choosing a test modeling lan-
guage: A survey,’’ in Proc. Haifa Verification Conf., 2006, pp. 204–218.

[48] Y. Jia and M. Harman, ‘‘An analysis and survey of the development of
mutation testing,’’ IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Oct. 2011.

[49] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. Mcminn, A. Bertolino, J. J. Li, and H. Zhu,
‘‘An orchestrated survey of methodologies for automated software test
case generation,’’ J. Syst. Softw., vol. 86, no. 8, pp. 1978–2001, Aug. 2013.

[50] F. Abbors, V.-M. Aho, J. Koivulainen, R. Teittinen, and D. Truscan,
Applying Model-Based Testing in the Telecommunication Domain.
Boca Raton, FL, USA: CRC Press, 2012.

[51] A. Andrews, M. Abdelgawad, and A. Gario, ‘‘World model for testing
autonomous systems using Petri nets,’’ inProc. IEEE 17th Int. Symp. High
Assurance Syst. Eng. (HASE), Jan. 2016, pp. 65–69.

[52] B. Hasling, H. Goetz, and K. Beetz, ‘‘Model based testing of system
requirements using UML use case models,’’ in Proc. Int. Conf. Softw.
Test., Verification, Validation, Apr. 2008, pp. 367–376.

[53] A. Gario, A. Andrews, and S. Hagerman, ‘‘Testing of safety-critical
systems: An aerospace launch application,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2014, pp. 1–17.

[54] M. Felderer, ‘‘Security testing: A survey,’’ in Advances in Computers.
Amsterdam, The Netherlands: Elsevier, 2016, pp. 1–51.

[55] T. Mouelhi, F. Fleurey, B. Baudry, and Y. Traon, ‘‘A model-based frame-
work for security policy specification, deployment and testing,’’ in Proc.
Int. Conf. Model Driven Eng. Lang. Syst., 2008, pp. 537–552.

[56] E. Martin and T. Xie, ‘‘Automated test generation for access control
policies via change-impact analysis,’’ in Proc. 3rd Int. Workshop Softw.
Eng. Secure Syst., May 2007, p. 5.

[57] A. P. P. Salas, P. Krishnan, and J. K. Ross, ‘‘Model-based security vulner-
ability testing,’’ in Proc. Austral. Softw. Eng. Conf., 2007, pp. 284–296.

[58] A. Armando, R. Carbone, L. Compagna, K. Li, and G. Pellegrino,
‘‘Model-checking driven security testing of web-based applications,’’
in Proc. 3rd Int. Conf. Softw. Test., Verification, Validation Workshops,
Apr. 2010, pp. 361–370.

[59] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, ‘‘A threat model-
based approach to security testing,’’ Softw., Pract. Exper., vol. 43, no. 2,
pp. 241–258, Feb. 2013.

[60] A. D. Brucker, L. Brügger, P. Kearney, and B. Wolff, ‘‘An approach to
modular and testable security models of real-world health-care appli-
cations,’’ in Proc. 16th ACM Symp. Access Control Models Technol.,
Jun. 2011, pp. 133–142.

[61] S. Hagerman, A. Andrews, S. Elakeili, and A. Gario, ‘‘Security testing of
an aerospace launch system,’’ in Proc. IEEE Aerosp. Conf., Mar. 2015,
pp. 1–11.

[62] S. Hagerman, A. Andrews, and S. Oakes, ‘‘Security testing of an
unmanned aerial vehicle (UAV),’’ in Proc. Cybersecur. Symp., Apr. 2016,
pp. 26–31.

[63] S. Mahmood, H. N. Nguyen, and A. S. Shaikh, ‘‘Automotive cybersecu-
rity testing: Survey of testbeds and methods,’’ in Digital Transformation,
Cyber Security and Resilience of Modern Societies. Cham, Switzerland:
Springer, 2021, pp. 219–243.

[64] F. Luo, X. Zhang, Z. Yang, Y. Jiang, J. Wang, M. Wu, and W. Feng,
‘‘Cybersecurity testing for automotive domain: A survey,’’ Sensors,
vol. 22, no. 23, p. 9211, Nov. 2022.

[65] I. Pekaric, C. Sauerwein, and M. Felderer, ‘‘Applying security testing
techniques to automotive engineering,’’ in Proc. 14th Int. Conf. Avail-
ability, Rel. Secur., Aug. 2019, p. 61.

[66] AUTOSAR. AutoSAR: Automotive Open System Architecture. Accessed:
Dec. 16, 2020. [Online]. Available: https://www.autosar.org/

[67] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Keele, U.K.,
Tech. Rep. EBSE-2007-01, 2007.

[68] E. Lisova, I. Šljivo, and A. Cauševic, ‘‘Safety and security co-analyses:
A systematic literature review,’’ IEEE Syst. J., vol. 13, no. 3,
pp. 2189–2200, Sep. 2019.

[69] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
‘‘Lessons from applying the systematic literature review process within
the software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4,
pp. 571–583, Apr. 2007.

[70] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, ‘‘Exper-
imental security analysis of a modern automobile,’’ in Proc. IEEE Symp.
Secur. Privacy, 2010, pp. 447–462.

[71] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, ‘‘Compre-
hensive experimental analyses of automotive attack surfaces,’’ in Proc.
USENIX Secur. Symp., 2011, pp. 1–13.

[72] C. Miller and C. Valasek, ‘‘Remote exploitation of an unaltered passenger
vehicle,’’ Tech. Rep., 2015.

[73] F. Sommer, M. Gierl, and P. Rebling. (2023). Vehicle Network Platforms
for Automotive Security Testing. Accessed: Apr. 28, 2023. [Online]. Avail-
able: https://zenodo.org/record/7573669

[74] H. Shokry and M. Hinchey, ‘‘Model-based verification of embedded
software,’’ Computer, vol. 42, no. 4, pp. 53–59, 2009.

[75] C. Gühmann, ‘‘Model-based testing of automotive electronic control
units,’’ in Proc. 3rd Int. Conf. Mater. Test., Test, 2005, pp. 1–6.

[76] M. Grochtmann and K. Grimm, ‘‘Classification trees for partition test-
ing,’’ Softw. Test., Verification Rel., vol. 3, no. 2, pp. 63–82, Jun. 1993.

[77] M. Grochtmann, K. Grimm, and J. Wegener, ‘‘Tool-supported test case
design for black-box testing by means of the classification-tree editor,’’
in Proc. EuroSTAR, vol. 93, 1993, pp. 169–176.

[78] H. Singh, M. Conrad, and S. Sadeghipour, ‘‘Test case design based on Z
and the classification-tree method,’’ in Proc. 1st IEEE Int. Conf. Formal
Eng. Methods, Apr. 1997, pp. 81–90.

[79] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach, M. Conrad, and
A. I. Fey, ‘‘Model-based testing of embedded automotive software using
MTest,’’ SAE Trans., vol. 10, pp. 132–140, Jan. 2004.

[80] M. Conrad. (2004). A Systematic Approach to Testing Automotive Control
Software. Accessed: Jul. 13, 2020. [Online]. Available: https://www.win.
tue.nl/~mvdbrand/courses/sse/0809/papers/con04_a_systematic_app
roach.pdf

[81] M. Conrad, I. Fey, and S. Sadeghipour, ‘‘Systematic model-based testing
of embedded automotive software,’’ Electron. Notes Theor. Comput. Sci.,
vol. 111, pp. 13–26, Jan. 2005.

[82] J. Zander-Nowicka, I. Schieferdecker, and A. Marrero Perez, ‘‘Automo-
tive validation functions for on-line test evaluation of hybrid real-time
systems,’’ in Proc. IEEE Autotestcon, Sep. 2006, pp. 799–805.

[83] A. Mjeda, P. McElligott, K. Ryan, and S. Thiel, ‘‘Model-based testing
design for embedded automotive software,’’ in Proc. SAE World Congr.,
2009, pp. 1–12.

[84] Information Technology—Z Formal Specification Notation—Syntax, Type
System and Semantics, Standard ISO/IEC 13568:2002, 2002.

[85] E. Bringmann and A. Kr, ‘‘Model-based testing of automotive systems,’’
in Proc. Int. Conf. Softw. Test., Verification, Validation, Apr. 2008,
pp. 485–493.

[86] F. Lindlar, A.Windisch, and J.Wegener, ‘‘Integratingmodel-based testing
with evolutionary functional testing,’’ in Proc. 3rd Int. Conf. Softw. Test.,
Verification, Validation Workshops, Apr. 2010, pp. 163–172.

[87] A. Michailidis, U. Spieth, T. Ringler, B. Hedenetz, and S. Kowalewski,
‘‘Test front loading in early stages of automotive software development
based on AUTOSAR,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2010, pp. 435–440.

[88] I. Schieferdecker, E. Bringmann, and J. Großmann, ‘‘Continuous
TTCN-3: Testing of embedded control systems,’’ in Proc. Int. workshop
Softw. Eng. Automot. Syst., May 2006, pp. 29–36.

[89] E. Lehmann, ‘‘Time partition testing: Systematischer test des kontinuier-
lichen Verhaltens von eingebetteten systemen,’’ Ph.D. thesis, Fac. IV
Elect. Eng. Comput. Sci., Berlin Techn. Univ., Berlin, Germany, 2004.

[90] Methods for Testing and Specification (MTS); The Testing and
Test Control Notation Version 3; Part 1: TTCN-3 Core Language,
Standard ETSI ES 201 873-1, 2017.

[91] S. Siegl, W. Dulz, R. German, and G. Kiffe, ‘‘Model-driven testing based
on Markov chain usage models in the automotive domain,’’ in Proc. 12th
Eur. Workshop Dependable Comput., 2009, pp. 1–6.

[92] S. Siegl, K.-S. Hielscher, and R. German, ‘‘Model based requirements
analysis and testing of automotive systems with timed usage mod-
els,’’ in Proc. 18th IEEE Int. Requirements Eng. Conf., Sep. 2010,
pp. 345–350.

[93] S. Thiel and D. Zitterell, ‘‘Extended automation method (EXAM) zur
automatisierten funktionserprobung von Steuergeräten in der automo-
bilindustrie,’’ in INFORMATIK 2008. Beherrschbare Systeme—Dank
Informatik. Band 2, H.-G. Hegering, A. Lehmann, H. J. Ohlbach, and
C. Scheideler, Eds. Bonn, Germany: Gesellschaft für Informatik e.V.,
2008, pp. 625–630.

VOLUME 11, 2023 55511



F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

[94] D. Zitterell and S. Thiel, ‘‘Automatisierter funktionaler steuergerätetest
mit der extended automation method (EXAM),’’ in INFORMATIK 2010.
Service Science—Neue Perspektiven für die Informatik. Band 2, K.-P.
Fähnrich and B. Franczyk, Eds. Bonn, Germany: Gesellschaft für Infor-
matik e.V., 2010, pp. 351–356.

[95] P. S. Meyn and L. R. Tweedie, Markov Chains and Stochastic Stability.
Cham, Switzerland: Springer, 2012.

[96] Road Vehicles—Functional Safety: Part 1: Vocabulary,
ISO 26262-1:2018, Dec. 2018.

[97] G.Hahn, J. Philipps, A. Pretschner, and T. Stauner, ‘‘Prototype-based tests
for hybrid reactive systems,’’ in Proc. 14th IEEE Int. Workshop Rapid
Syst. Prototyping, 2003, pp. 78–84.

[98] S. Nabi, M. Balike, J. Allen, and K. Rzemien, ‘‘An overview of hardware-
in-the-loop testing systems at Visteon: SAE technical paper series,’’ in
Proc. SAE World Congr., Mar. 2004, pp. 1–6.

[99] R. Cleaveland, A. S. Smolka, and T. S. Sims, ‘‘An instrumentation-based
approach to controller model validation,’’ in Proc. Automotive Softw.
Workshop, 2008, pp. 84–97.

[100] P. Peranandam, S. Raviram, M. Satpathy, A. Yeolekar, A. Gadkari, and
S. Ramesh, ‘‘An integrated test generation tool for enhanced coverage
of simulink/stateflow models,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2012, pp. 308–311.

[101] L. Belmon and Y. Xu, ‘‘Intelligent test-case generation for automated val-
idation of TCUS,’’ in Proc. Int. CTI Symp. Innov. Automotive Transmiss.,
2012, pp. 1–12.

[102] R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, and C. Poull, ‘‘Auto-
mated model-in-the-loop testing of continuous controllers using search,’’
in Proc. Int. Symp. Search Based Softw. Eng., 2013, pp. 141–157.

[103] P. Skruch and G. Buchala, ‘‘Model-based real-time testing of embedded
automotive systems,’’ SAE Int. J. Passenger Cars-Electron. Electr. Syst.,
vol. 7, no. 2, pp. 337–344, Apr. 2014.

[104] N. Wiechowski, T. Rambow, R. Busch, A. Kugler, N. Hansen, and
S. Kowalewski, ‘‘Arttest—A new test environment for model-based soft-
ware development,’’ SAE Tech. Paper 2017-01-0004, 2017.

[105] N. Hansen, N. Wiechowski, A. Kugler, S. Kowalewski, T. Rambow,
and R. Busch, ‘‘Model-in-the-loop and software-in-the-loop testing of
closed-loop automotive software with arttest,’’ in Informatik, M. Eibl
and M. Gaedke, Eds. Bonn, Germany: Gesellschaft für Informatik, 2017,
pp. 1537–1549, doi: 10.18420/in2017_154.

[106] H. Bucher, C. Reichmann, and J. Becker, ‘‘An integrated approach
enabling cross-domain simulation of model-based E/E-architectures,’’
SAE Tech. Paper 2017-01, Jun. 2017.

[107] H. Bucher, S. Kamm, and J. Becker, ‘‘Cross-layer behavioral modeling
and simulation of E/E-architectures using preevision and Ptolemy II,’’
SNE Simul. Notes Eur., vol. 29, no. 2, pp. 73–78, Jun. 2019.

[108] H. Bucher, K. Neubauer, and J. Becker, ‘‘Automated assessment of E/E-
architecture variants using an integrated model-and simulation-based
approach,’’ SAE Tech. Paper 2019-01-0111, 2019.

[109] K. Neubauer, H. Bucher, B. Haas, and J. Becker, ‘‘Model-based devel-
opment and simulative verification of logical vehicle functions using
executable un/ece regulations,’’ in Proc. Summer Simulation Conf., 2020,
pp. 1–12.

[110] C. Berger, Automating Acceptance Tests for Sensor- and Actuator based
Systems on the Example of Autonomous Vehicles. Maastricht, The Nether-
lands: Shaker, 2010.

[111] R. A. Plummer, ‘‘Model-in-the-loop testing,’’ Proc. Inst. Mech. Eng., I,
J. Syst. Control Eng., vol. 220, no. 3, pp. 183–199, 2006.

[112] UNECE. (2013). Un Regulation no. 131—Uniform Provisions
Concerning the Approval of Motor Vehicles With Regard to the
Advanced Emergency Braking Systems (AEBS). Accessed: Apr. 7, 2023.
[Online]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/
wp29regs/2013/R131e.pdf

[113] C. Berger and B. Rumpe, ‘‘Hesperia: Framework zur szenario-gestützten
modellierung und entwicklung sensor-basierter systeme,’’ in Informatik
2009—Im Focus das Leben, S. Fischer, E. Maehle, and R. Reischuk, Eds.
Bonn, Germany: Gesellschaft für Informatik e.V., 2009, pp. 328–328.

[114] E. Schoitsch, E. Althammer, H. Eriksson, J. Vinter, L. Gönczy,
A. Pataricza, and G. Csertan, ‘‘Validation and certification of safety-
critical embedded systems—The decos test bench,’’ in Proc. Int. Conf.
Comput. Saf., Rel., Secur., 2006, pp. 372–385.

[115] K.-W. Shin and D.-J. Lim, ‘‘Model-based automatic test case generation
for automotive embedded software testing,’’ Int. J. Automot. Technol.,
vol. 19, no. 1, pp. 107–119, Feb. 2018.

[116] J. Peleska, A. Honisch, F. Lapschies, H. Löding, H. Schmid, P. Smuda,
E. Vorobev, and C. Zahlten, ‘‘A real-world benchmark model for testing
concurrent real-time systems in the automotive domain,’’ in Proc. IFIP
Int. Conf. Test. Softw. Syst., 2011, pp. 146–161.

[117] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, and F. Törner,
‘‘Improving fault injection in automotive model based development using
fault bypass modeling,’’ in INFORMATIK 2013—Informatik Angepasst
an Mensch, Organisation und Umwelt, M. Horbach, Ed. Bonn, Germany:
Gesellschaft für Informatik e.V., 2013, pp. 2577–2591.

[118] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, ‘‘MODIFI:
A model-implemented fault injection tool,’’ in Proc. Int. Conf. Comput.
Saf., Rel., Secur., 2010, pp. 210–222.

[119] R. Svenningsson, H. Eriksson, J. Vinter, and M. Törngren, ‘‘Model-
implemented fault injection for hardware fault simulation,’’ in Proc.
Workshop Model-Driven Eng., Verification, Validation, Oct. 2010,
pp. 31–36.

[120] W. Herzner, R. Schlick, H. Brandl, and J. Wiessalla, ‘‘Towards fault-
based generation of test cases for dependable embedded software,’’ in
Softwaretechnik-Trends Band 31, Heft 3. Bonn, Germany: Geselllschaft
für Informatik e.V., 2011.

[121] R. Schlick, W. Herzner, and E. Jöbstl, ‘‘Fault-based generation of test
cases from UML-models—Approach and some experiences,’’ in Proc.
Int. Conf. Comput. Saf., Rel., Secur., 2011, pp. 270–283.

[122] K. B. Aichernig, J. Auer, E. Jöbstl, R. Korošec, W. Krenn, R. Schlick, and
B. V. Schmidt, ‘‘Model-based mutation testing of an industrial measure-
ment device,’’ in Proc. Int. Conf. Tests Proofs, 2014 pp. 1–19.

[123] F. Belli, C. J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong,
‘‘Model-based mutation testing—Approach and case studies,’’ Sci. Com-
put. Program., vol. 120, pp. 25–48, May 2016.

[124] D. Holling, A. Pretschner, and M. Gemmar, ‘‘8Cage: Lightweight fault-
based test generation for Simulink,’’ in Proc. 29th ACM/IEEE Int. Conf.
Automated Softw. Eng., Sep. 2014, pp. 859–862.

[125] D. Holling, A. Hofbauer, A. Pretschner, andM. Gemmar, ‘‘Profiting from
unit tests for integration testing,’’ in Proc. IEEE Int. Conf. Softw. Test.,
Verification Validation (ICST), Apr. 2016, pp. 353–363.

[126] D. Holling, ‘‘Defect-based quality assurance with defect models,’’
Ph.D. thesis, School Comput., Inf. Technol., Technische Universität
München, Munich, Germany, 2016.

[127] A. Morozov, K. Ding, T. Chen, and K. Janschek, ‘‘Test suite prioritization
for efficient regression testing of model-based automotive software,’’ in
Proc. Int. Conf. Softw. Anal., Test. Evol. (SATE), Nov. 2017, pp. 20–29.

[128] M. Ungermann, J. Lunze, and D. Scharzmann, ‘‘Model-based test signal
generation for service diagnosis of automotive systems,’’ IFAC Proc.
Volumes, vol. 43, no. 7, pp. 117–122, Jul. 2010.

[129] E. Zurich and C. P. D. Kroening. (2010). Mogentes—Model-Based
Generation of Test-Cases for Embedded Systems: Modelling Languages:
Final Version. Accessed: May 21, 2019 [Online]. Available: http://
www.mogentes.eu/public/deliverables/MOGENTES_3-
13_1.0r_D3.2b_ModellingLanguages.pdf

[130] A. J. Offutt, Y. Xiong, and S. Liu, ‘‘Criteria for generating specification-
based tests,’’ in Proc. 5th IEEE Int. Conf. Eng. Complex Comput. Syst.,
Oct. 1999, pp. 119–129.

[131] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, ‘‘Generating test data
from state-based specifications,’’ Softw. Test., Verification Rel., vol. 13,
no. 1, pp. 25–53, 2003.

[132] I. Drave, S. Hillemacher, T. Greifenberg, S. Kriebel, E. Kusmenko,
M. Markthaler, P. Orth, K. S. Salman, J. Richenhagen, B. Rumpe,
C. Schulze, M. von Wenckstern, and A. Wortmann, ‘‘SMArDT modeling
for automotive software testing,’’ Softw., Pract. Exper., vol. 49, no. 2,
pp. 301–328, Feb. 2019.

[133] A. Baldini, A. Benso, and P. Prinetto, ‘‘System-level functional testing
from UML specifications in end-of-production industrial environments,’’
Int. J. Softw. Tools Technol. Transf., vol. 7, no. 4, pp. 326–340, Aug. 2005.

[134] L. Zhang, J. He, and W. Yu, ‘‘Test case generation from formal models
of cyber physical system,’’ Int. J. Hybrid Inf. Technol., vol. 6, no. 3,
pp. 15–24, 2013.

[135] J. Sobotka and J. Novák, ‘‘Testing automotive reactive systems using
timed automata,’’ in Proc. 9th IEEE Int. Conf. Intell. Data Acquisi-
tion Adv. Comput. Syst., Technol. Appl. (IDAACS), vol. 1, Sep. 2017,
pp. 510–513.

[136] L. Krejcí and J. Novák, ‘‘Model-based testing of automotive distributed
systems with automated prioritization,’’ in Proc. 9th IEEE Int. Conf.
Intell. Data Acquisition Adv. Comput. Syst., Technol. Appl. (IDAACS),
vol. 2, Sep. 2017, pp. 668–673.

55512 VOLUME 11, 2023

http://dx.doi.org/10.18420/in2017_154


F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

[137] H. Khosrowjerdi, K. Meinke, and A. Rasmusson, ‘‘Learning-based test-
ing for safety critical automotive applications,’’ inProc. Int. Symp.Model-
Based Saf. Assessment, 2017, pp. 197–211.

[138] M. Broy, F. Huber, and B. Schätz, ‘‘AutoF ocus–Ein werkzeugproto-
typ zur entwicklung eingebetteter systeme,’’ Informatik-Forschung und
Entwicklung, vol. 14, no. 3, pp. 121–134, Sep. 1999.

[139] R. Marinescu, M. Saadatmand, A. Bucaioni, C. Seceleanu, and
P. Pettersson, ‘‘A model-based testing framework for automotive embed-
ded systems,’’ in Proc. 40th EUROMICRO Conf. Softw. Eng. Adv. Appl.,
Aug. 2014, pp. 38–47.

[140] P. Ammann, W. Ding, and D. Xu, ‘‘Using a model checker to test safety
properties,’’ in Proc. 7th IEEE Int. Conf. Eng. Complex Comput. Syst.,
May 2001, pp. 212–221.

[141] A. Gargantini and C. Heitmeyer, ‘‘Using model checking to generate tests
from requirements specifications,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 24, no. 6, pp. 146–162, 1999.

[142] S. V. Alagar andK. Periyasamy, Specification of Software Systems. Cham,
Switzerland: Springer, 2011.

[143] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press, 2008.

[144] R.M. Hierons, S. Sadeghipour, and H. Singh, ‘‘Testing a system specified
using statecharts and Z,’’ Inf. Softw. Technol., vol. 43, no. 2, pp. 137–149,
Feb. 2001.

[145] V. Chimisliu, C. Schwarzl, and B. Peischl, ‘‘Test case generation for
embedded automotive systems: A semantics preserving model transfor-
mation,’’Model-Based Test. Pract., vol. 10, p. 43, Jan. 2009.

[146] L. C. Briand, Y. Labiche, and Y. Wang, ‘‘Using simulation to empirically
investigate test coverage criteria based on statechart,’’ in Proc. 26th Int.
Conf. Softw. Eng., 2004, pp. 86–95.

[147] A. Saifan andW.Mustafa, ‘‘Using formalmethods for test case generation
according to transition-based coverage criteria,’’ Jordanian J. Comput.
Inf. Technol., vol. 1, no. 1, p. 15, 2015.

[148] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, and U. Goltz, ‘‘Delta-
oriented model-based integration testing of large-scale systems,’’ J. Syst.
Softw., vol. 91, pp. 63–84, May 2014.

[149] A. Petrenko, O. N. Timo, and S. Ramesh, ‘‘Model-based testing of
automotive software: Some challenges and solutions,’’ in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[150] Information Processing Systems—Open Systems Interconnection—
Lotos—A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour, Standard ISO 8807:1989,
Dec. 1989.

[151] B. Schneier, ‘‘Attack trees,’’ Dr. Dobb’s J., vol. 24, no. 12, pp. 21–29,
1999.

[152] M. Cheah, A. S. Shaikh, J. Bryans, and H. N. Nguyen, ‘‘Combining third
party components securely in automotive systems,’’ in Proc. IFIP Int.
Conf. Inf. Secur. Theory Pract., 2016, pp. 262–269.

[153] M. Cheah, H. N. Nguyen, J. Bryans, and A. S. Shaikh, ‘‘Formalis-
ing systematic security evaluations using attack trees for automotive
applications,’’ in Proc. IFIP Int. Conf. Inf. Secur. Theory Pract., 2017,
pp. 113–129.

[154] M. Cheah, S. A. Shaikh, O. Haas, and A. Ruddle, ‘‘Towards a systematic
security evaluation of the automotive Bluetooth interface,’’ Veh. Com-
mun., vol. 9, pp. 8–18, Jul. 2017.

[155] M. Cheah, S. A. Shaikh, J. Bryans, and P. Wooderson, ‘‘Building an auto-
motive security assurance case using systematic security evaluations,’’
Comput. Secur., vol. 77, pp. 360–379, Aug. 2018.

[156] S. Mahmood, A. Fouillade, H. N. Nguyen, and A. S. Shaikh, ‘‘A model-
based security testing approach for automotive over-the-air updates,’’ in
Proc. IEEE Int. Conf. Softw. Test., Verification Validation Workshops
(ICSTW), 2020, pp. 6–13.

[157] E. dos Santos, A. Simpson, and D. Schoop, ‘‘A formal model
to facilitate security testing in modern automotive systems,’’ 2018,
arXiv:1805.05520.

[158] W. Xiong, F. Krantz, and R. Lagerström, ‘‘Threat modeling and attack
simulations of connected vehicles: A research outlook,’’ in Proc. 5th Int.
Conf. Inf. Syst. Secur. Privacy, 2019, pp. 272–287.

[159] J. Ekelund, ‘‘Security evaluation of damper system’s communication and
update process: Threat modeling using vehicleLang and securiCAD,’’
School of Electrical Engineering and Computer Science, Stockholm,
Sweden, Tech. Rep. TRITA-EECS-EX; 2021:720, 2021.

[160] W. D. Schoot, ‘‘Validating vehicleLang, a domain-specific threat
modelling language, from an attacker and industry perspective,’’
Ph.D. thesis, KTH Roy. Inst. Technol., School Elect. Eng.
Comput. Sci., Stockholm, Sweden, 2020.

[161] D. Suo and S. E. Sarma, ‘‘A test-driven approach for security designs of
automated vehicles,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2019,
pp. 26–32.

[162] A. M. Shaaban, C. Schmittner, T. Gruber, A. B. Mohamed, G. Quirch-
mayr, and E. Schikuta, ‘‘Ontology-based model for automotive security
verification and validation,’’ inProc. 21st Int. Conf. Inf. Integr.Web-Based
Appl. Services, Dec. 2019, pp. 73–82.

[163] PTES. (2014). The Penetration Testing Execution Standard. Accessed:
Jan. 2, 2023. [Online]. Available: http://www.pentest-standard.org/
index.php/Main_Page

[164] Foreseeti. (2021). Securicad Enterprise. Accessed: Mar. 17, 2023.
[Online]. Available: https://foreseeti.com/securicad-enterprise/

[165] C. Miller and C. Valasek, ‘‘A survey of remote automotive attack sur-
faces,’’ IOActive, Tech. Rep., 2014.

[166] S. Katsikeas, P. Johnson, S. Hacks, and R. Lagerström, ‘‘Probabilistic
modeling and simulation of vehicular cyber attacks: An application of
the meta attack language,’’ in Proc. 5th Int. Conf. Inf. Syst. Secur. Privacy,
2019, pp. 1–13.

[167] P. Johnson, R. Lagerström, and M. Ekstedt, ‘‘A meta language for threat
modeling and attack simulations,’’ in Proc. 13th Int. Conf. Availability,
Rel. Secur., Aug. 2018, pp. 1–8.

[168] Information Security, Cybersecurity and Privacy Protection—
Evaluation Criteria for it Security—Part 1: Introduction and General
Model, Standard ISO/IEC 15408-1:2022, 2022. [Online]. Available:
https://www.iso.org/standard/72891.html

[169] J. Heneghan, S. A. Shaikh, J. Bryans, M. Cheah, and P. Wooderson,
‘‘Enabling security checking of automotive ECUs with formal CSP mod-
els,’’ in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
Workshops (DSN-W), Jun. 2019, pp. 90–97.

[170] K. D. Wittenberg, J. Smith, R. Gray, and G. Eakman. (2016). Automotive
Vulnerability Detection System. Accessed: Jul. 13, 2020. [Online]. Avail-
able: https://www.cs.brandeis.edu/ dkw/papers/ESCARVDS4.pdf

[171] R. Kurachi and T. Fujikura, ‘‘Proposal of HILS-based in-vehicle net-
work security verification environment,’’ SAE Tech. Paper 2018-01-
0013, 2018, doi: 10.4271/2018-01-0013.

[172] P. S. Oruganti, M. Appel, and Q. Ahmed, ‘‘Hardware-in-loop based
automotive embedded systems cybersecurity evaluation testbed,’’ inProc.
ACM Workshop Automot. Cybersecur., Mar. 2019, pp. 41–44.

[173] M. Appel, P. S. Oruganti, Q. Ahmed, J. Wilkerson, and A. Sekar,
‘‘A safety and security testbed for assured autonomy in vehicles,’’ SAE
Int., vol. 10, p. 8, Apr. 2020.

[174] T. Huang, J. Zhou, and A. Bytes, ‘‘ATG: An attack traffic generation
tool for security testing of in-vehicle CAN bus,’’ in Proc. 13th Int. Conf.
Availability, Rel. Secur., Aug. 2018, p. 32.

[175] J. Smith andM. Figueroa, ‘‘Reduced realistic attack plan surface for iden-
tification of prioritized attack goals,’’ in Proc. IEEE Int. Conf. Technol.
Homeland Secur. (HST), Nov. 2013, pp. 716–721.

[176] National Vulnerability Database. (2019). CVE-2019-14951. Accessed:
Jul. 30, 2022. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-
2019-14951

[177] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, ‘‘CARLA:
An open urban driving simulator,’’ 2017, arXiv:1711.03938.

[178] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., vol. 3, 2009, p. 5.

[179] T. Volkersdorfer and H.-J. Hof, ‘‘A concept of an attack model for a
model-based security testing framework: Introducing a holistic perspec-
tive of cyberattacks in software engineering,’’ in Proc. 14th Int. Conf.
Emerg. Secur. Inf., Syst. Technol., 2020, pp. 96–101.

[180] T. Volkersdorfer and H.-J. Hof, ‘‘Adam: An adversary-driven attack mod-
elling framework for model-based security testing,’’ Int. J. Adv. Secur.,
vol. 14, no. 2, pp. 12–25, 2021.

[181] F. Sommer, R. Kriesten, and F. Kargl, ‘‘Model-based security testing
of vehicle networks,’’ in Proc. Int. Conf. Comput. Sci. Comput. Intell.
(CSCI), Dec. 2021, pp. 685–691.

[182] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and
S. Chakraborty, ‘‘Security analysis of automotive architectures using
probabilistic model checking,’’ in Proc. 52nd ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2015, pp. 1–6.

[183] M. Asplund, ‘‘Combining detection and verification for secure vehicu-
lar cooperation groups,’’ ACM Trans. Cyber-Phys. Syst., vol. 4, no. 1,
pp. 1–31, Jan. 2020.

[184] T. Volkersdorfer, ‘‘Methodik zur angriffsmodellierung für security-tests,’’
Ph.D. thesis, Fac. Comput. Sci., Technische Hochschule Ingolstadt,
Ingolstadt, Germany, 2020.

VOLUME 11, 2023 55513

http://dx.doi.org/10.4271/2018-01-0013


F. Sommer et al.: Survey of Model-Based Security Testing Approaches in the Automotive Domain

[185] F. Sommer and J. Dürrwang. (2019). IEEM-HSKA/AAD: Automotive
Attack Database (AAD). Accessed: Jul. 12, 2022. [Online]. Available:
https://github.com/IEEM-HsKA/AAD

[186] J. Dürrwang, F. Sommer, and R. Kriesten, ‘‘Automation in automotive
security by using attacker privileges,’’ in Proc. 19th ESCAR, 2021,
pp. 137–152.

[187] CVSS Special Interest Group. (2019). Common Vulnerability Scoring
System V3.0: Specification Document. Accessed: Apr. 28, 2023. [Online].
Available: https://www.first.org/cvss/specification-document

[188] P. Mouttappa, S. Maag, and A. Cavalli, ‘‘Monitoring based on IOSTS for
testing functional and security properties: Application to an automotive
case study,’’ in Proc. IEEE 37th Annu. Comput. Softw. Appl. Conf.,
Jul. 2013, pp. 1–10.

[189] L. Huang and E.-Y. Kang, ‘‘Formal verification of safety & security
related timing constraints for a cooperative automotive system,’’ in Proc.
Int. Conf. Fundam. Approaches Softw. Eng., 2019, pp. 210–227.

[190] G. Pedroza, L. Apvrille, and R. Pacalet, ‘‘A formal security model for
verification of automotive embedded applications,’’ in Proc. SAFA Annu.
Workshop Formal Techn. (SAFA), Sophia-Antipolis, France, Oct. 2010.

[191] M. Kastebo and V. Nordh, ‘‘Model-based security testing in automotive
industry,’’ M.S. thesis, CHALMERS Univ. Technol., Univ. Gothenburg,
Gothenburg, Sweden, 2017.

[192] G. Lee, H. Oguma, A. Yoshioka, R. Shigetomi, A. Otsuka, and H. Imai,
‘‘Formally verifiable features in embedded vehicular security systems,’’
in Proc. IEEE Veh. Netw. Conf. (VNC), Oct. 2009, pp. 1–7.

[193] C. Jakobs, M. Werner, K. Schmidt, and G. Hansch, ‘‘Following the white
rabbit: Integrity verification based on risk analysis results,’’ in Proc.
Comput. Sci. Cars Symp., Nov. 2021, pp. 1–9.

[194] Y. Zhang, Y. Liu, L. Zhang, Z. Ma, and H. Mei, ‘‘Modeling and check-
ing for non-functional attributes in extended UML class diagram,’’ in
Proc. 32nd Annu. IEEE Int. Comput. Softw. Appl. Conf., Oct. 2008,
pp. 100–107.

[195] E.-Y. Kang, D. Mu, and L. Huang, ‘‘Probabilistic verification of timing
constraints in automotive systems using UPPAAL-SMC,’’ in Proc. Int.
Conf. Integr. Formal Methods, 2018, pp. 236–254.

[196] H. Oguma, A. Yoshioka, M. Nishikawa, R. Shigetomi, A. Otsuka, and
H. Imai, ‘‘New attestation based security architecture for in-vehicle com-
munication,’’ in Proc. IEEE Global Telecommun. Conf., Apr. 2008,
pp. 1–6.

[197] J. Eichler and D. Angermeier, ‘‘Modular risk assessment for the develop-
ment of secure automotive systems,’’ in Proc. 31st VDI/VW joint Conf.
Automot. Secur., Wolfsburg, Germany, 2015, pp. 21–22.

[198] J. Dürrwang, ‘‘Steigerung der betriebssicherheit von personenkraft-
wagen durch bedrohungsanalysen für die informationssicherheit,’’
Ph.D. dissertation, School Comput., Inf. Technol., Technische Universität
München, München, Germany, 2022.

[199] Road Vehicles—Unified Diagnostic Services (UDS)—Specification and
Requirements, Standard ISO 14229:2006, 2006.

[200] J. Hartmann, C. Imoberdorf, and M. Meisinger, ‘‘UML-based integration
testing,’’ inProc. ACM SIGSOFT Int. Symp. Softw. Test. Anal., Aug. 2000,
pp. 60–70.

[201] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, ‘‘Remote attacks on auto-
mated vehicles sensors: Experiments on camera and LiDAR,’’ in Proc.
Black Hat Eur., vol. 11, 2015, p. 2015.

[202] C. Miller and C. Valasek, ‘‘Adventures in automotive networks and
control units,’’ Def Con, vol. 21, pp. 260–264, Aug. 2013.

[203] D. R. Niranjan and B. C. VinayKarthik, ‘‘Deep learning based object
detection model for autonomous driving research using CARLA sim-
ulator,’’ in Proc. 2nd Int. Conf. Smart Electron. Commun. (ICOSEC),
Oct. 2021, pp. 1251–1258.

[204] C. Gómez-Huélamo, J. D. Egido, L. M. Bergasa, R. Barea, F. Arango,
J. Araluce, and J. López, ‘‘Train here, drive there: Simulating real-world
use cases with fully-autonomous driving architecture in Carla simulator,’’
in Proc. 21st Int. Workshop Phys. Agents, 2021, pp. 44–59.

[205] J. Dürrwang, K. Beckers, and R. Kriesten, ‘‘A lightweight threat analysis
approach intertwining safety and security for the automotive domain,’’ in
Proc. 36th Int. Conf. Comput. Saf., Rel., Secur., Trento, Italy, Sep. 2017,
pp. 305–319.

[206] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner,
‘‘SAHARA: A security-aware hazard and risk analysis method,’’ in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2015, pp. 621–624.

[207] Upstream Security Ltd. (2023).Global Automotive Cybersecurity Report.
Accessed: Apr. 28, 2023. [Online]. Available: https://upstream.auto/
reports/global-automotive-cybersecurity-report/

FLORIAN SOMMER received the B.Eng. and
M.Sc. degrees in automotive systems engineering
and vehicular technology. He is currently pursuing
the Ph.D. degree with the Institute of Distributed
Systems, Ulm University. He has been an Aca-
demic Researcher with the Institute of Energy Effi-
cient Mobility, Karlsruhe University of Applied
Sciences, since 2018.

REINER KRIESTEN received the Dr.-Ing. degree.
Since 2003, he has beenwith Robert BoschGmbH,
where his applied research is based on a strong
connection to the automotive industry, such as due
to SW/system engineering and project manage-
ment activities for automotive gateways and body
computers. He is currently the Head and a Speaker
with the Institute of Energy Efficient Mobility,
Karlsruhe University of Applied Sciences. His
research interests include software (SW) and sys-

tems engineering of cyber-physical and embedded systems and research in
automotive security.

FRANK KARGL (Member, IEEE) is currently a
Professor of distributed systems with Ulm Univer-
sity, Germany. Earlier, he held a tenured position
with the University of Twente, The Netherlands.
He was a PI in several research projects on Euro-
pean and national levels. Hismain research interest
includes the security and privacy of automotive
systems. Recently, his focus extended toward the
question of how a combination of communication
and automated driving in vehicles creates new

challenges for their security.

55514 VOLUME 11, 2023


