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ABSTRACT Prior weights are necessary for the application of orderedweighted averaging (OWA) operators,
but obtaining them is expensive and contentious, which restricts the application of operators. To address the
weighting issue, the weight space is used to ‘‘replace’’ the conventional weight vector, and the operator
comparison is then extended to a partial order comparison on the weight space. The results show that the
partial order OWA operator can be used as long as the weight order is clear, that is, there is no need to take
accurate values. The evaluation result is represented by a Hasse diagram. The partial order OWA operator
retains the properties of the conventional operator, and the running cost is low. It can be seen from the example
that the partial order OWA operator solves the time weight problem. It can compare, sort, and optimize data
using the Hasse graph, and it can also implement hierarchical clustering. The comparison results have strong
robustness.

INDEX TERMS OWA operator, partially ordered set, weight, robustness.

I. INTRODUCTION
In 1988, the American scholar Yager proposed the ordered
weighted averaging operator (OWA) operator [1]. This oper-
ator is gradually gaining worldwide attention and has been
widely used in neural networks [2], [3], Fuzzy control and
fuzzy modeling [4], [5], information fusion [6], expert sys-
tem [7], decision-making [8], [9], [10], communication net-
work [11], and many other fields. Inspired by the OWA
operator, scholars have continuously proposed HOWA [12],
IOWA [13], and LOWA [14] operators, among others. There
are nearly 100 kinds of derivative operators. Although the
OWA operator can flexibly gather information according to
the change of the situation, both the OWA and its deriva-
tive inevitably encounter the difficult problem of weighting,
which restricts the application of this method.

At present, weighting methods are mainly classified in
two categories: subjective and objective weighting methods.
The main achievements of subjective weighting method so
far include expert survey [15], analytic hierarchy process
[16], preference ratio [17], chain scale scoring [18], binomial
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coefficient [19], comparison matrix [24], and importance
ordering [20] methods. Objective weighting methods include
principal component analysis [21], ‘‘open grade’’ [22],
entropy technique [17], deviation maximization [23], mean
square error [24], and multi-objective programming [25]
methods. Despite the wide variety of subjective and objective
weighting techniques, none of them is fully recognized.

Although objective weighting methods make use of the
perfect mathematical theoretical knowledge, they ignore the
decision maker’s subjective preferences. On the other hand,
subjective weighting methods are easily affected by human
factors due to the influence of the decisionmakers’ or expert’s
knowledge, experience, and preferences. There is currently a
more accurate and effective way to deal with multi-criteria
decision making: the Stochastic Multi-criteria Acceptability
Analysis (SMAA) [26]. SMAA can effectively solve the
challenging weighting problem, and has a similar effect to
the partially ordered set method. Both use a weight space to
replace the conventional single weight, but the latter has more
obvious robustness advantages.

In the SMAA model, it is necessary to clarify the
weight variation boundary. The boundary obtained by various
decision makers may be different, so the simulation
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results are not entirely consistent. The partially ordered
set decision-making method [27] resolves the issue that
the boundary of the SMAA weight space is unknown by
obtaining the weight order and producing the weight space
through preference information or expert judgment. Partially
ordered sets can be widely combined with multi-criteria
decision models, including the partially ordered TOPSIS
model [28], the partially ordered PROMETHEE model [29],
and partial order comprehensive evaluation model [30]. The
multi-criterion model expressed by partial order not only
overcomes the weighting problem, but also significantly
enhances the robustness of the model. The partial order deci-
sion method is used to embed the weight space into the OWA
operator because the weight space determination method is
simple and the boundary is clear. The result is a robust partial
order-OWA operator that can express the decision makers’
preferences.

II. PARTIAL ORDER-OWA OPERATOR
A. OWA OPERATORS ON WEIGHT SPAC
The OWA operator is assembled through specific weight
rules, which have a wide range of applications and are more
adaptable. Compared to the conventional assembly rules,
some unreasonable situations can be avoided.
Definition 1 [3]: Setup f :Rn → R, if f (a1, a2, · · · , an) =∑n
j=1 ωjaj, where ω = (ω1, ω2, · · · , ωn)T is the weighted

vector (ωj ∈ [0, 1],
∑n

j=1 ωj = 1) associated with f , and aj
is the largest element in a set of data (a1, a2, · · · , an), the
function f is said to be an n-dimensional ordered weighted
average (OWA) operator.

It is clear from the above definition that weights are needed
to run an ordered weighting operator. The weighting problem
is always a realistic constraint that limits how the model can
be applied. To this end, SMAA suggests an effective process-
ing method to replace the conventional weight vector with
a weight space. With this approach, the weights’ uncertainty
is fully reflected and the difficulty of ‘‘representativeness’’ of
weight vectors is addressed properly. According to the idea of
SMAA dealing with weights, an OWA operator with weight
space is given. Let ω ∈ 3, where 3 is the set of weights
satisfying certain constraints. Thus, we have:

f3(a1, a2, · · · an) = {

∑n

j=1
ωjaj |ω ∈ 3 } (1)

For an arbitrary sum b = (b1, b2, · · · , bn), the comparison
of the two in the weight space 3 can be organized as:

1(a, b) = {f (a1, a2, · · · , an) − f (b1, b2, · · · , bn) |ω ∈ 3 }

(2)

According to (2), if min1(a, b) ≥ 0, then it holds for
∀ω ∈ 3, f (a1, a2, · · · , an) − f (b1, b2, · · · , bn) ≥ 0. The
OWA operator extended according to (1) has the following
properties:
Property 1: For any a = (a1, a2, · · · , an), b = (b1,

b2, · · · , bn), formula (1) has the following properties:

1) Boundedness. The range of values of the f3(a1, a2, · · · ,

an) belongs to the interval consisting of the minimum and
maximum values of the vector, that is, f3(a1, a2, · · · , an) ⊆

[min{a1, a2, · · · an},max{a1, a2, · · · , an}].
2) Consistency. At that time aj = θ , j = 1, . . . , n, then for

∀ω ∈ 3, there is f (a1, a2, · · · , an) = θ .
3) Exchangeability. Let (aπ (1), aπ (2), · · · , aπ (n)) be any

permutation of (a1, a2, · · · , an), then there is always:
f3(a1, a2, · · · , an) = f3(aπ (1), aπ (2), · · · , aπ (n)).
4) Monotonicity. When aj ≥ bj, j = 1, . . . , n, then we have

min1(a, b) ≥ 0.
Proof: The procedure for proving the above property is

similar. (Thus only equation 4 is proved).
For any ω ∈ 3, at that time aj ≥ bj, j = 1, . . . , n, it is

known that f (a1, a2, · · · , an) ≥ f (b1, b2, · · · , bn) according
to the monotonicity property of OWA, so any element of the
set 1(a, b) = {f (a1, a2, · · · , an) − f (b1, b2, · · · , bn) |ω ∈

3} is greater than or equal to zero, and therefore,
min1(a, b) ≥ 0.

B. PARTIAL ORDER RELATIONS FOR CONSTRUCTING OWA
ON WEIGHT SPACE
The OWA operator on weight space3 has good robustness in
addition to retaining the beneficial properties of conventional
OWA. When the OWA operator is compared on the weight
space, it actually expands the comparison of two real-valued
functions to the comparison of two sets. It is not difficult to
verify that the comparison relation satisfies the partial order
relation.
Definition 2: Let R be a binary relation on a non-empty

set A, R is said to be a partial order relation on A if it satisfies
self-reflexivity, anti-symmetry, and transiti-vity [27].

(1) Self-reflexivity: for any x ∈ A, with xRx.
(2) Anti-symmetry: for any x, y ∈ A, when xRy and yRx,

with x = y.
(3) Transitivity: for any x, y, z ∈ A, when xRy and yRz,

there is xRz, then R is said to be a partial order relation on A
(denoted as ⪰).
Property 2: When min1(a, b) ≥ 0, there is a ⪰ b, then

the binary relation ⪰ is a partial order relation.
Proof: If the binary relation (⪰) satisfies the three prop-

erties in Definition 2, then it is a partial order relation. For
any a, it is obvious that min1(a, a) ≥ 0, and it follows that⪰
satisfies self-reflexivity, that is, a ⪰ a.
If a ⪰ b, there is min1(a, b) ≥ 0; if b ⪰ a,

there is min1(b, a) ≥ 0. Both hold simultaneously, there
must be 1(b, a) = {0}. That is f (a1, a2, · · · , an) −

f (b1, b2, · · · , bn) = 0, for any ω ∈ 3. Then, using the
converse method, it can be proved that for any component
there must be bj = aj. If bj ̸= aj, then let ωj = 1, so that
there are non-zero elements in 1(b, a), which contradicts
the premise. It follows that the relation a = b, ⪰ satisfies
anti-symmetry.
Let a ⪰ b, b ⪰ c, correspond to that min1(a, b) ≥ 0,

min1(b, c) ≥ 0 and according to (2), it is known that for any
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ω ∈ 3, we have:

f (a1, a2, · · · , an) − f (b1, b2, · · · , bn) ≥ 0

f (b1, b2, · · · , bn) − f (c1, c2, · · · , cn) ≥ 0

Therefore, it follows that there is min1(a, c) ≥ 0 and thus
the relation satisfies transitivity.

It follows that f (a1, a2, · · · , an) − f (c1, c2, · · · , cn) ≥

0 and therefore, min1(a, c) ≥ 0, so that we have a ⪰ c
and hence, the relation ⪰ satisfies transitivity.

C. PRINCIPLE OF PARTIAL ORDER REPRESENTATION OF
OWA OPERATOR
The partial order relation can be constructed according to
Property 2, but it is not actually possible to traverse the
weights and complete the comparison of the OWA operator
with a = (a1, a2, · · · , an), b = (b1, b2, · · · , bn). The theo-
rem that follows provides a method for comparing under the
weight space.
Theorem 1 [28]: Given the evaluation set M = (A, IC,D),

where A = {a1 · · · an} is the set of evaluation options, IC =

{c1, c2, · · · cn} is the set of criteria, and D = (d1, d2, · · · ,

dn)T is the initial evaluationmatrix, di = (di1, di2, · · · , din) ∈

Rn, where dij denotes the evaluation value of option aj under
criterion cj. Assumption the criterion weights ω1 ≥ ω2 ≥

· · · ωn ≥ 0; if
∑t

j=1 aj ≥
∑t

j=1 bj (t = 1, 2, · · · , n), then
g(a) ≥ g(b), relevant proofs can be found in the literature.

In this theorem, the function g is a simple linear func-
tion, i.e., g(a) = ω1a1 + ω2a2 + · · · + ωnan. The theo-
rem characterizes a weight space 3 =

{
(ω1, ω2, · · · , ωn)

|ω1 ≥ ω2 ≥ · · · ωn ≥ 0
}
. In this space, if the relationship

between the two vectors satisfies
∑t

j=1 aj ≥
∑t

j=1 bj (t =

1, 2, · · · , n), namely,


a1 ≤ b1
a1 + a2 ≤ b1 + b2
· · ·

a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn

(3)

then there is g(a) ≤ g(b). This theorem demonstrates that
only the ordering information of the weights must be known
to compare two simple linear weighting functions, knowledge
of the exact weights is not necessary. Further research shows
that the comparison of (3) can be converted into a matrix
problem [28], that is, given the upper triangular matrix E,

E =


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

 (4)

when ω1 ≥ ω2 ≥ · · ·ωn ≥ 0, the upper triangu-
lar matrices E and D perform the following operations to

obtain the matrix Y :

Y = D · E =


a1 a2 · · · an
b1 b2 · · · bn
...

...
. . .

...

z1 zn · · · zn

 ·


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...

0 0 · · · 1



=


a1 a1 + a2 · · · a1 + a2 + · · · + an
b1 b1 + b2 · · · b1 + b2 + · · · + bn
...

...
. . .

...

z1 z1 + zn · · · z1 + z2 + · · · + zn

 (5)

By adding the right end of (5) to (3), it can be determined
that the first row is less than or equal to the second row.
Then, it can be known that f (a) ≤ f (b), and we obtain
min1(a, b) ≥ 0 ⇔ a ⪰ b. Thus, the partial order relation
can be established based on the comparison between rows in
matrix Y .
According to Theorem 1, the indicator determines the

weight size, which is fixed based on the indicator, and dif-
ferent indicators correspond to different weights. However,
the OWA operator’s weight assignment has diverse char-
acteristics. The weight can depend on the indicator, on its
assignment size, or even on the design of a given situation.
For instance, if the indicator is monthly data, the longer the
month, the greater the indicator weight.
Any scheme’s values can be fully arranged in accordance

with the exchange invariance of the OWA operator. For the
convenience of research and application, the first component
corresponds to the first important index, the second compo-
nent corresponds to the second important index, and so on,
until the n-th component and index. Let the adjusted decision
matrix be T (D), and then apply Theorem 1 on this basis, that
is, according to (5), it is obtained that: T (D) · E.
The schemes are compared in pairs according to the partial

order relationship. The following partial order relationship
matrix R = (rab)m×n is established, that is ∀a, b ∈ A, where:

rab =

{
1, ai ⪰ aj;
0, otherwise.

(6)

However, the partial order relation matrix must be simpli-
fied to the Hasse matrix HR because it contains redundant
information. Fan [31] gives the transformation formula:

HR = (R− I)-(R− I) ∗ (R− I) (7)

where I is the identity matrix and the operator ∗ represents
Boolean multiplication, operation by element when applied.
The Hasse graph can be drawn according to HR.
Under the condition that preprocessing of the data has been

completed, the operation steps represented by the partially
ordered set are as follows:
Step 1: Sort the evaluation data from left to right in decreas-

ing weight order to obtain T (D).
Step 2: Obtain the matrix Y = T (D) · E from (5).
Step 3: Perform a row-by-row comparison of matrix Y , that

is, obtain the partial order relationship matrix R from (6) and
the Hasse matrix HR according to (7).
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Step 4: Draw a Hasse diagram according to the matrixHR.
On this basis, analyze the schemes by sorting, comparing, etc.

III. EXAMPLE ANALYSIS
In Liaoning, Baijiu products sold by large-scale supermarket
channels include national brands like Moutai andWuliangye,
but provincial regional brands like FX, Daoguang 25, Lingta,
Peking University Cang, Lao Village Chief, and Yushu Qian
are more prevalent. As a well-known brand of Liaoning
Baijiu, FX Baijiu first entered the large-scale supermarket
channel ten years ago. According to sales data for Baijiu
in Liaoning, the sales performance of RT-Mart supermarket
chain FX Baijiu (41 varieties in total) is relatively high. Com-
pared with other provincial regional brands, FX Baijiu has a
certain representativeness. Therefore, taking the 2020 annual
sales of FX Baijiu’s 18 stores in RT-Mart Liaoning as an
example, the sales status of FX Baijiu and the sales target for
the next year are analyzed, and decision-making reference is
provided for store marketing strategy adjustment and sales
performance improvement.
Step 1: The closer the month is to the forecast time,

the larger the impact factor and the greater the weight
given to the month with the closer time distance, given
the recessionary effect of its time series. The ranking size
between the adjusted original data source evaluation criteria
is December > November > . . . > January, i.e., ω12 ≥

ω11 ≥ · · · ≥ ω1 ≥ 0, as shown in Table 1.
Step 2: Carry out the cumulative transformation through (5)

(c.f. Table 2) and obtain the comparison relationship matrix
according to (6) (c.f. Table 3).
Step 3: The matrix transformation method of the Hasse

matrix can be determined from the comparison relation-
ship matrix R, and (6) can be used to determine the Hasse
matrix (omitted) of the sales performance level of 18 stores.
Step 4: Draw the Hasse diagram according to the matrix

HR as shown in Figure.
To demonstrate the advantages of the methods in this

paper, a comparative analysis is carried out using a simple
linear weighting model (SAW), which is the most commonly
used of the multi-attribute decision models. Although other
decision methods are emerging, the SAW model has been
the preferred choice for practical applications [32]. The SAW
model, based on the actual decision context, first needs to
specify the weights of each evaluation attribute, in this case
there is a comparative relationship between the weights of
ω12 ≥ ω11 ≥ · · · ≥ ω1 ≥ 0, so it is assumed that
‘‘ω12 = 0.18, ω11 = 0.15, ω10 = 0.13, ω9 = 0.12, ω8 =

0.1, ω7 = 0.08, ω6 = 0.07, ω5 = 0.06, ω4 = 0.05, ω3 =

0.03, ω2 = 0.02, ω1 = 0.01,’’ the initial evaluation matrix is
shown in the data in Table 1, and then according to the simple
linear function g(a) = ω1a1+ω2a2+· · ·+ωnan in Theorem 1
to find out the weighting value of each scheme, as a basis for
the ranking and comparison of schemes. The final composite
score for each shop was obtained as follows:

Comparing the ranking positions of the shops in
Table 4 with the Hasse diagram in Figure 1, the

FIGURE 1. Hasse chart of FX Baijiu sales by store in 2020.

advantages of the methodology in this paper can be clearly
identified:

(1) Hasse chart stratified to show the sales performance
level of the 18 shops

Through the Hasse diagram, one can intuitively under-
stand the comparison of the annual sales revenue of the
18 stores. The higher the income level is, the higher it is.
The 18 stores are divided into 9 layers; the first layer is
set {Shenyang Shenhe Store, Fuxin Xihe Store}, the sec-
ond layer is set {Shenyang Heping Store, Jinzhou Ancient
Pagoda Store}, and so on. The ninth layer includes {Haicheng
Store, Chaoyang Store}. The more layers are set, the greater
the difference between the schemes is. The first layer set
which includes Shenyang Shenhe Store and FuxinXihe Store,
is the best. The more stores at the top are comparatively
better, whereas the stores at the bottom, Haicheng Store and
Chaoyang Store, are the worst. In the SAW method, on the
other hand, the supplier ranking of each shop is fixed, and
if the same graphical representation is used, the graph is in
the form of a single chain, which does not show a multi-level
comparison of the sales performance of the 18 shops.

(2) Both deterministic and non-deterministic relation-ships
can be reflected in the Hasse diagram

Direct and indirect connection schemes are comparable
schemes, reflecting the comparative relationship of high
robustness, such as Shenyang Shenhe Store and Shenyang
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TABLE 1. Adjusted original data source (10,000 yuan).

TABLE 2. Accumulate the transformed data.

TABLE 3. Comparison matrix after adjusting the weight order.

Heping Store, as well as Fuxin Xihe Store and Yingkou Store.
The former’s annual sales must be better than the latter’s
under the assumption that the time weight sequence doesn’t
change. A scheme without path connectivity is an incompara-
ble scheme, which reflects an uncertain comparison relation-
ship. For example, Fuxin Xihe Store and Shenyang Heping
Store are incomparable, indicating that the former may be

better or worse than the latter, and the ranking relationship
between the two may be ‘‘flipped.’’

Only the order of the weights is necessary for the improved
OWA operator decision-making method based on partial
order set. It does not require specific weight values, it is rather
assembled according to the weight space generated by the
weight order. This method not only makes assignment easier,

VOLUME 11, 2023 55439



M. Li et al.: Partial Order OWA Operator for Solving the OWA Weighing Dilemma

TABLE 4. Calculation results using the SAW method.

but also gives full play to expert experience and resolves
weight disputes, making this application strongly convenient
and robust.

IV. CONCLUSION
(1) The OWA operator is expanded and upgraded based on
the relevant theorems of partially ordered sets. While the
original OWA operator requires exact weights, the partially
ordered OWA operator only needs the weight order to carry
out operations, which can make the operations easier for the
original operator and reduce the operation cost. At the same
time, the evaluation results can be more robust. The original
comparable relationship remains unchanged as long as the
weight order structure remains the same no matter how the
weights change, so the result will not change much.

(2) The Hasse diagram intuitively illustrates the structural
relationship between the schemes. The vertical relationship
of the schemes reflects the hierarchical information between
them, whereas the horizontal relationship, that is, the scheme
within the same layer, reflects the clustering information.
From the example analysis, it is clear that the structured
information of each store in large commercial supermarkets,
which identifies the uncertainty of store comparison, lays
the foundation for the subsequent quantitative analysis and
identification of key influencing factors. There are numerous
types of OWA derivative operators, whether weighted or mul-
tiplied, and they can all be combined with partially ordered
sets, demonstrating good universality and generalization.
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