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ABSTRACT The volatile and intermittent nature of renewable energy sources (RES) has a critical impact on
electric power grid operations. However, there still lacks a model to price the uncertainty of renewable energy
in electricity markets. This paper aims to propose a model to quantify the impact of the uncertainty of RES on
the power system operating costs in an electricitymarket environment considering the use of flexible ramping
(FR) products, compensation for wind power curtailment, and the cost for flexible load curtailment, and thus
offer a method to price the uncertainty of RES. The model is based on a stochastic optimization model for
power system operations considering FR products, and the uncertainty cost is calculated by comparing the
dispatch cost as well as the compensation for wind power curtailment and load curtailment with and without
uncertainties. The method was implemented on a modified RTS-96 test system with a high penetration of
wind energy, and the uncertainty of wind power output was represented using three different distributions,
namely, Gamma, Weibull, and Rayleigh. Results show that the uncertainty of wind power increases power
system operating costs, and different uncertainty modeling can affect the pricing of wind power uncertainty
by up to 5%. This shows that there is a need for system operators to choose the appropriate distribution to
model wind power uncertainty when pricing wind power uncertainty.

INDEX TERMS Electricity market, gamma distribution, stochastic optimization, rayleigh distribution,
renewable energy sources, uncertainty price, weibull distribution, wind power.

NOMENCLATURE
Indices
b Bus.
g Generator.
l Transmission Line.
s Scenario.
seg Segments for the piece-wise linear cost function.
t Time.
w Wind farms.
φ Distribution Type.
Sets
NL+

b Transmission lines with their ‘‘to’’
bus connected to node n.

NL−

b Transmission lines with their ‘‘from’’
bus connected to node n.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Raza .

NGb Generators connected to node n.
NWb Wind Farms connected to node n.

Variables
Cd
t Dispatch cost of the base case at time t .

Cd
t,φ Dispatch cost of distribution φ at time t .

Pgt Real power generation of generator g at time t .
Pseggt Real power generation of generator g at time t

in segment seg.
PWwt,s Wind generation of wind farm w in scenario s

at time t .
PWCt Total wind curtailment of the base case at

time t .
PWCwt,s Wind curtailment of wind farm w in scenario s

at time t .
PWCt,φ Total wind curtailment of distribution φ

at time t .

58624 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0006-9109-4728
https://orcid.org/0000-0003-0461-4512
https://orcid.org/0000-0003-0947-3616


L. Ramirez-Burgueno et al.: Pricing Wind Power Uncertainty in the Electricity Market

PFLCt Total flexible load curtailment of the base case
at time t .

PFLCbt,s Flexible load curtailment of bus b in scenario s
at time t .

PFLCt,φ Total flexible load curtailment of distribution
φ at time t .

PL lt,s Real power flow through transmission line
l at time t in scenario s.

SRDgt FR down available through generator g at
time t .

SRUgt FR up available through generator g at time t .
srDgt,s FR down deployment by generator g at time

t in scenario s.
srUgt,s FR up deployment by generator g at time t in

scenario s.
θ1t,s Voltage angle at the slack bus at time t in

scenario s.
µUNC
t,φ Uncertainty price of distribution φ at time t .

Parameters
G Total number of generators.
PDbt Load at bus b at time t .
Prate Rated output of the wind farm.
PLmaxl Upper real power flow limit of

transmission line l.
N Number of piece-wise linear segments for

the generators.
Pmaxg Upper generation limit of generator g.
Pming Lower generation limit of generator g.
RDg Per minute ramp-down rate for generator g.
RUg Per minute ramp-up rate for generator g.
S Total number of scenarios.
T Length of investigated time period.
Pseg,maxg Upper generation limit of generator g in

segment seg.
µ
seg
g Linear cost of generator g in segment seg.

µsr
g FR deployment cost of generator g.

µSR
g FR capacity cost of generator g.

µWC
w Wind curtailment compensation rate for

wind farm w.
µFLC
b Flexible load curtailment compensation

rate for bus b.
ν Wind speed.
f (ν) The frequency rate of wind speed.
νci The cut-in speed of the wind turbine.
νco The cut-out speed of the wind turbine.
νrated The rated speed of the wind turbine.
µ Mean value.
σ Standard deviation.
k Shape parameter of Weibull/Rayleigh

distribution.
c Scale parameter of Weibull/Rayleigh

distribution.
α Shape parameter of Gamma distribution.

β Scale parameter of Gamma distribution.
0 The Gamma function.
γt,s Probability of scenario s at time t .

I. INTRODUCTION
Currently, electric power generation contributes more
than 30% of greenhouse emissions in the U.S. It is
expected that the electricity demand will grow by 56%
from 2010 to 2040 [1], raising an extended concern about the
environmental impact caused by power systems. To reduce
greenhouse gas emissions, the usage of renewable energy
systems (RES) plays a critical role. Among different types of
RES, wind energy has been leading in both growth and total
consumption. In 2017, 52% of global renewable energy con-
sumption is from wind energy, while only 21% is from solar
energy. The massive increase in wind energy usage compared
to other RES is mainly due to its wide availability and low
cost. Wind farms can be deployed not only on land but also
onshore and offshore with large capacities, thus alleviating
the need for large areas of land. However, the wide usage
of RES, such as wind energy, causes a challenge to power
system operations due to its risks, which can compromise
their economic benefits and negatively affect the reliability of
the system if not addressed properly. The risks of renewable
energy mainly include two aspects: variability and uncer-
tainty. The variability of renewable energy is relatively easy
to accommodate because dispatchable energy resources could
be properly scheduled to accommodate the fluctuation of
renewable energy supply if the fluctuations can be accurately
forecasted. To accommodate the uncertainty of renewable
energy, however, is a true challenge.
Tomitigate the impact of the uncertainty, renewable energy

output forecasting is the first step. Forecasting methods have
evolved during the past years, intending to reduce error and
improve accuracy. The first type of methods are physical
method, which utilize mainly physical data to produce a
weather and wind forecast over a period of time [2]. A more
sophisticated version of physical methods includes the usage
of spatial correlation models, which uses the spatial relation-
ship of different wind speed data and physical properties. The
data obtained from specific sites are used to predict the wind
speed at such sites by analyzing the patterns and important
parameters of such data [3], [4]. To analyze the data, statisti-
cal methods are commonly used. These methods are based
on probability density functions (PDF), which can portray
the patterns of future wind speed and wind power output.
Wind power output scenarios can be created through Monte
Carlo simulations based on the PDFs, allowing power sys-
tem operators to take the uncertainty into consideration [5].
The advantage of the statistical methods is their easiness to
implement, however, they have relatively large prediction
errors as the forecasted time increases [6]. Facilitated by
the recent development in artificial intelligence (AI), modern
techniques take full advantage of the computational power
to perform forecasting tasks. AI algorithms such as artificial
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neural networks (ANN) can detect complex nonlinear rela-
tions utilizing historical data to determine the dependence
between different variables affecting the wind speed forecast
with a high accuracy level [7].

Despite the improvement of renewable energy output fore-
casting methods, forecasting errors are unavoidable. Fore-
casting error is a major source of uncertainty for renewable
energy. One of the most prevailing methods to address such
uncertainty is to use fast-response flexible ramp (FR) [8].
FR, or ‘‘flexiramp’’, allows the generators to rapidly reduce
their generation when the wind power supply increases
and increase their generation when the wind power supply
decreases. It provides the flexibility needed by power sys-
tems to accommodate the uncertainties of renewable energy
resources [9], [10], [11]. California Independent System
Operator (CAISO) and Midcontinent Independent System
Operator (MISO) have both adopted FR to manage the
variability and uncertainty caused by renewable energy in
their systems [12]. The scheduling of FR can be performed
using stochastic programming [9], which considers different
realizations of the uncertainty, or robust programming [13],
which considers the worst-case scenario of the uncertainty.
Including FR in the operating schedule can induce an increase
in the power system operating cost, which is an opportunity
cost that could have been avoided had the FR not been
scheduled. In the electricity market, this opportunity cost is
often used to determine the price of ancillary services such
as FR [13], [14], [15]. With the procurement of FR due to
the integration of renewable energy, the operating costs of the
power system will increase inevitably.

The impact of wind power uncertainty on the electric-
ity market has been discussed in multiple studies. The
impact of wind power on operating reserves is analyzed
from a unit commitment and market point of view in [16]
and [17]. In the case of [18], the impact of wind power
uncertainty on electricity prices was examined. FR products
are used to mitigate the impact of wind power uncertainty
in [9], [10], [11], [12], [13], [14], [15], [19], [20], [21],
and [22], using either robust optimization [13], [19], which
considers the worst-case scenario, or stochastic optimiza-
tion [9], [10], [19], [20], [21], which considers a number
of uncertainty scenarios. Despite existing studies on the
scheduling of ancillary services considering the uncertainty
of wind power, there is still a gap in studying the impact
of wind power uncertainty on the increase of power system
operating costs, and there lacks a comprehensive approach
that evaluates the prices of wind power uncertainty with a
high time resolution and a large number of representative
scenarios.

With the increasing penetration of wind energy, there is
a growing need to quantify the impact of its uncertainty in
monetary terms. This study aims to fill the above-mentioned
gaps and tackle this challenging problem by proposing an
approach to evaluate the impact of wind power uncertainty
on the electricity market in monetary terms. Since FR
products are the most commonly used ancillary service to

accommodate wind power uncertainty, the proposed model
is based on a power system optimization model with FR
products in a stochastic optimization framework. The contri-
butions of this paper are listed as follows:

1) Amethod to quantify and price wind power uncertainty
is proposed based on the increases in dispatch cost as
well as the compensation for wind power curtailment
and load caused by the uncertainty of wind power.
The wind power uncertainty prices generated from this
method can provide references for electricity market
operators to design newmarket mechanisms and incen-
tivize wind energy builders to mitigate the impact of
such uncertainties.

2) A stochastic optimization model is proposed to eval-
uate the impact of wind power uncertainty on FR
scheduling. This model avoids producing overly con-
servative results for scheduling FR products while
ensuring that the FR scheduling is representative to
show the impact of wind power uncertainty.

3) The uncertainty of wind power generation is simulated
with differentmodels, and the impact of thewind power
uncertainty modeling method on FR scheduling, and
thus, the wind power uncertainty price, is analyzed.

4) The method was implemented on a modified RTS-96
test system with high penetration of wind energy and
a large number of wind power scenarios from different
uncertainty models. The uncertainty of wind power is
priced under different uncertainty models, and results
show that the proposedmethod can effectively price the
uncertainty of wind power.

The rest of the paper is organized as follows. Section II
presents the wind power uncertainty pricing model, and Sec-
tion III specifies the parameters used for the case studies.
Simulation results and discussion is presented in section IV,
followed by the conclusions in section V.

II. THE UNCERTAINTY PRICE MODEL
The proposed uncertainty pricing model includes two steps.
The first step is to optimally schedule FR in the system
using a scenario-based stochastic optimization model. Using
this model, the generation dispatch costs for two cases are
obtained: (1) the case considering wind power uncertainty,
and (2) the case that assumes wind power is accurately fore-
casted without uncertainty. In the second step, the difference
between the generation dispatch costs obtained in the two
cases is calculated, and an average cost increase induced by
the uncertainty of wind power over the studied period of time
is calculated, and this average cost increase is considered as
the uncertainty price for wind power. The evaluation process
is shown in FIGURE 1.

A. THE OPTIMAL FR SCHEDULING MODEL
The optimal FR scheduling model is based on a multi-period
stochastic generation dispatch model with 5-minute intervals.
Thismodel considers a large number of renewable power gen-
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FIGURE 1. Uncertainty price model flowchart.

eration scenarios and tries to accommodate different scenar-
ios using FR. The curtailment of renewable energy and flex-
ible load is allowed but penalized in the objective function.

The formulation of the model is presented with Equations
(1)-(16). The model objective function shown in (1) min-
imizes power system operating costs, including piecewise
linear generation costs, FR capacity cost, FR deployment
cost, as well as the penalties for wind energy curtailment
and flexible load curtailment. Equations (2) and (3) are the
generation constraints, (4) describes the power balance con-
straint at each node of the system, (5) sets the transmission
line thermal limit constraints, (6) and (7) are the FR avail-
ability constraints from each generator, (8) sets the limit for
flexible load curtailment, (9) sets the limit for wind power
curtailment from each wind farm, (10) and (11) are the 5-
minute ramping constraints for each generator, (12) is the
flexible ramp up constraint for each generator, while (13)
corresponds to the flexible ramp down constraint for each
generator, (14) and (15) are the flexible ramp up and down
deployment constraints, and (16) sets Bus 1 as the reference
bus.

min


T∑
t=1

G∑
g=1

µSR
g SRUgt+µSR

g SRDgt+
N∑

seg=1

µseg
g Pseg

gt


+

T∑
t=1

G∑
g=1

S∑
s=1

γt,s

(
µsr
g sr

U
gt,s+µsr

g sr
D
gt,s

)

+

T∑
t=1

B∑
b=1

S∑
s=1

γt,s

(
µFLC
b PFLCbt,s

)
+

T∑
t=1

W∑
w=1

S∑
s=1

γt,sµ
WC
w PWCwt,s

}
(1)

Pgt =

N∑
seg=1

Pseggt ∀g, t (2)

0 ≤ Pseggt ≤ Pseg,maxgt ∀g, t, seg (3)∑
i∈NGb

(Pseggt + srUgt,s − srDgt,s)

+

∑
w∈NWb

(PWwt,s − PWCwt,s) +

∑
l∈NL+

b

PLlt,s

−

∑
l∈NL−

b

PLlt,s = PDbt − PFLCbt,s ∀b, t, s (4)

−PLmaxl ≤ Plt,s ≤ PLmaxl ∀l, t, s (5)

SRUgt + Pgt≤Pmaxg Igt ∀g, t ≥ 2 (6)

Pming Igt ≤ −SRDgt + Pgt ∀g, t ≥ 2 (7)

0 ≤ PFLCbt,s ≤PDbt ∀g, t (8)

0 ≤ PWCwt,s≤P
W
wt,s ∀w, t, s (9)

Pgt − Pg(t−1)≤5RUg ∀g, t, s ≥ 2 (10)

Pg(t−1) − Pgt ≤ 5RDg ∀g, t, s ≥ 2 (11)

0 ≤ SRUgt ≤ 5RUg ∀g, t (12)

0 ≤ SRDgt ≤ 5RDg ∀g, t (13)

0 ≤ srUgt,s≤SR
U
gt ∀g, t, s (14)

0 ≤ srDgt,s≤SR
D
gt ∀g, t, s (15)

θ1,t,s = 0 ∀g, t, s (16)

B. WIND POWER GENERATION UNCERTAINTY MODELING
In the stochastic FR scheduling model, the uncertainty is
modeled through renewable power generation scenarios.
In this study, we use wind power as an example. In order to
generate the scenarios, first, the mean and standard deviation
of the wind speed for each time interval is calculated based
on historical wind data. Historical wind data can be obtained
through different sources, and one of them is the NREL
Wind Prospector [22]. Then, a desired number of wind speed
scenarios can be generated through commonly used wind
speed distributions, such as Gamma, Weibull, and Rayleigh.
Finally, wind power generation is calculated based on the
wind speed in each time interval in each scenario.

Different spatiotemporal characteristics need to be con-
sidered when selecting an appropriate PDF that properly
models the region’s wind speed characteristics. The most
commonly used PDF in wind speed modeling is the Weibull
distribution [23], [24], [25], [26], [27]. It has been used in the
estimation of some wind power generation systems [28] and
wind turbine failure analysis [29]. Nevertheless, Weibull is
not suitable for locations with very low or very high wind
speeds [26]. Meanwhile, the Gamma distribution, another
widely used distribution to model wind speed [30], is suitable
for very low or very high wind speeds, and regions with
different underlying surfaces and climatic conditions [26].
The Rayleigh distribution is a special form of the Weibull
distribution. Because it is easy to estimate the parameters
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of the Rayleigh distribution [26], it is also commonly used
to model wind speed and evaluate the performance of wind
turbines [31], [32].

The Gamma distribution is shown in Equation (17), fol-
lowed by the respective Gamma shape and scale parameters,
which are calculated by Equations (18) and (19), respec-
tively [33].

f (ν) =
να−1

βα0 (α)
exp(−

ν

β
) (17)

β =
σ 2

µ
(18)

a =
µ2

σ 2 (19)

The Weibull distribution is presented in (20). Similar to
the Gamma distribution, the shape and scale parameters are
calculated using the mean and standard deviation of the wind
speed in Equations (21) and (22), respectively. One of the
main limitations of the Weibull probability density function
(PDF), as criticized by [34], is the lack of accuracy when
representing probabilities of observing lowwind speed values
or zero wind cases.

f (ν) =
k
c

(ν

c

)k−1
exp

(
−

(ν

c

))k
(20)

k =

(
σ

µ

)−1.086

(21)

c =
µ

0
(
1 + k−1

) (22)

Lastly, the Rayleigh distribution is a special formulation
of the Weibull distribution, following the same PDF as (20).
Rayleigh distribution has a constant scale parameter of k = 2,
with the only variable being the shape parameter, as Equation
(23) shows. Rayleigh distribution has been widely imple-
mented due to its easy implementation by being a single-
parameter PDF [34].

c =
2

√
π

µ (23)

To calculate the wind power generation according to the
wind speed, Equation (24) is used [35]. The wind power
generation model considers three important values: the cut-in
speed, a wind speed below which will result in a zero-power
output from the wind power generator, the cut-out speed,
a wind speed above which will result in a zero-power output
from the wind power generator, and the rated wind speed of
the turbine. When the wind speed is between the rated and
cut-out speeds, the wind power generator produces the rated
power output.

Pr,s =


Prate, if νrate ≤ ν ≤ νco

Prate
ν3 − ν3ci

ν3rate − ν3ci

, if νci ≤ ν ≤ νrate

0, otherwise

(24)

C. THE WIND POWER UNCERTAINTY PRICE
CALCULATION
To accommodate the uncertainty of wind power, FR will be
scheduled, and generation dispatch will be affected. Also,
the uncertainty of wind power increases the likelihood of
wind power and load curtailment. In this paper, we propose a
method to evaluate the uncertainty of wind power uncertainty
by comparing the dispatch costs, compensation for wind
energy curtailment, and cost for load curtailment between the
cases with and without uncertainty.

After the wind power generation without uncertainty and
the wind power generation scenarios with uncertainty are
obtained, two cases of optimal FR scheduling can be imple-
mented using the model presented in Section III-A: (1) FR
scheduling with only one scenario, the case without uncer-
tainty, and (2) FR scheduling with a large number of wind
power generation scenarios, the case with uncertainty.

First, the generation dispatch cost can be calculated as

Cd
t,φ =

N∑
seg=1

µseg
g Psegg,t (25)

Then, the difference in the dispatch costs between the
deterministic and uncertainty cases can be calculated as

1Cd
t,φ = Cd,Case(2)

t,φ − Cd,Case(1)
t,φ (26)

In the end, the total uncertainty cost can be calculated
by adding up the differences in generation dispatch cost,
compensation of wind power curtailment, and penalty of
load curtailment in the cases with and without uncertainty,
as shown in Equation (27).

µUNC
t,φ = 1Cd

t,φ + µWC
w

(
PWCt,φ − PWCt

)
+ µFLC

b

(
PFLCt,φ − PFLCt

)
∀t, φ (27)

III. MODEL SETUP AND SPECIFICATIONS
A. TEST SYSTEM
The simulations were performed on a modified RTS-96 test
system, similar to [36], with minor modifications. In this
study, the original peak load values of the system were used.
The system includes two 200-MW wind farms at bus 3 and
24, respectively.

B. WIND SPEED SCENARIOS
To study the impact of wind power uncertainty, 200 wind
speed scenarios on a five-minute resolution were created
for the duration of a day using the three wind speed dis-
tributions, Gamma, Rayleigh, and Weibull, as described
in Section III-B. To generate these scenarios, the wind
speed data of Taylor, TX, for the year 2012 was obtained
[29], [35], [36], and the mean and standard deviation of
the wind speed at each five-minute time point in January
were computed. The mean and standard deviation of the
wind speed at each time point was used to create 288 shape
parameters c and scale parameters p (i.e., twelve 5-minute
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intervals each hour for 24 hours) that yielded 288 different
PDFs. Using these PDFs, 200 random wind speed values
were generated at each time point using the gamrnd, wblrnd,
raylrnd functions for Gamma, Weibull, and Rayleigh PDFs,
respectively, inMATLAB (version 2020a). The 200 scenarios
allowed the optimization problem to cover a representative
number of uncertainty cases of the wind speed.

C. WIND POWER GENERATION FOR EACH SCENARIO
With the wind speed scenarios generated in Section IV-B, the
wind power output at each wind speed was calculated using
Equation (24). The cut-in speed used for the model was 4m/s,
and the cut-out speed was 25 m/s. The rated wind speed was
14m/s, and the rated power output of each wind farm was
200MW. Using the 200 wind speed values for each 5-minute
interval, 200 wind power output scenarios were created for
every interval of the day for each PDF.

D. CONDITIONS FOR THE CASE STUDIES
In this study, case studies were carried out under five
conditions:

1) Only one scenario was considered in the stochastic
optimal FR scheduling problem, and wind power gen-
eration was assumed to be always zero in this scenario.

2) Only one scenario was considered, and the mean wind
speed at each time point was used to generate the wind
power output scenario.

3) 200 scenarios generated from the Gamma distribution
were considered.

4) 200 scenarios generated from the Rayleigh distribution
were considered.

5) 200 scenarios generated from the Weibull distribution
were considered.

In the stochastic optimal FR scheduling model, wind
power curtailment and flexible load curtailment were allowed
but penalized in the objective function. The penalties
for wind power curtailment and flexible load curtailment
were $30/MW and $10,000/MW, respectively. In Conditions
(i) and (ii), FR was not allowed because there was no uncer-
tainty in the two cases.

IV. SIMULATION RESULTS
A. UNCERTAINTY ANALYSIS
To evaluate the impact of wind speed uncertainty, the devi-
ations of wind speed from its average value were evaluated.
The deviations were calculated using the wind speed of each
five-minute interval during the day in Condition (iii)-(v),
respectively, minus the wind speed in Condition (ii). The
process was repeated for each of the 200 scenarios, creat-
ing a total of 57600 deviation entries for each of the three
distributions.

The histograms in FIGURE 2 - FIGURE 4 show the nor-
malized errors of the deviations. The normalization process
was realized by dividing each individual error by the maxi-
mum absolute error of each distribution. In order to evaluate

TABLE 1. Error distribution parameters.

FIGURE 2. Normalized histogram of forecasted Gamma errors.

these deviations, four statistical parameters were obtained
from the 57600 deviation entries from each distribution,
as presented in Table 1. The four parameters are mean (µ),
standard deviation (σ ), kurtosis (κ), and skewness (γ ).
From the results, it can be seen that the Gamma and

Rayleigh distributions tend to underestimate the wind speed,
while the Weibull distribution tends to overestimate the wind
speed, and the standard deviations indicate that the devia-
tions from the Gamma and Rayleigh distributions have a
smaller spread and higher concentration of mass near the
mean than those from the Weibull distribution. The kurtosis
values indicate that the distributions of the deviations from
the Gamma and Rayleigh distributions tend to have a higher
peak and fatter tail than those from the Weibull distribution.
The skewness of the deviations from the three distributions
shows that those from the Gamma and Rayleigh distributions
tend to lean toward the farther left side than those from the
Weibull distribution.

B. FR CAPACITY SCHEDULING
To analyze the FR scheduling with uncertainty generated by
different distributions, we calculated the averages of sched-
uled FR for each hour of the day considering the results from
simulations carried out using load profiles in the month of
January. The averages in MW are presented in FIGURE 5.
The valley at hour 4 corresponds to small deviations from
the average values, which could be addressed by using only
a relatively small amount of FR. The spike from Hours 11-16
in the FR down curve shows that there was excessive wind
energy generated during these hours from both the Gamma
and Weibull distributions, which required conventional, dis-
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FIGURE 3. Normalized histogram of forecasted Weibull errors.

FIGURE 4. Normalized histogram of forecasted Rayleigh errors.

patchable resources to ramp down to facilitate the integration
of wind energy.

C. FR DEPLOYMENT
While FR capacity was scheduled to meet the worst-case
scenario in Conditions (iii), (iv), and (v), the deployment
of FR varies in each scenario. To analyze FR deployment,
we calculated the average percentage of FR deployed for each
hour in the day considering the 200 scenarios in an overall
length of 31 days. The results are shown in FIGURE 6. Since
FR deployment was co-optimized with generation dispatch,
the deployment of FR is determined by several factors, such
as the availability of wind energy, load profile, and generation
dispatch. During night hours, with a low load level and high
wind speed, downward FR was more frequently used than
upward FR to address the deviations in wind speed. During
the day, with a high load level and low wind speed, upward
FR was more frequently used than downward FR to address
the deviations in the wind speed.

D. DISPATCH COST
Since producing wind energy does not incur a fuel cost,
integrating wind energy in a power system can reduce its

FIGURE 5. Gamma, weibull, and rayleigh FR up / FR down capacity
scheduling.

generation dispatch cost. FIGURE 7 shows that regardless
of uncertainty being present or not, the generation dispatch
cost in the case with RES is lower than that without RES.
By excluding the cost of FR capacity and FR deployment,
the dispatch cost is slightly higher overall in cases with
uncertainty. The difference in dispatch cost in the cases with
and without uncertainty is calculated as a percentage of the
dispatch cost without uncertainty and is shown in FIGURE 8.
Positive percentages indicate that the cases with uncertainty
have a higher generation cost than the case without uncer-
tainty. As the figure shows, the average generation dispatch
cost is higher in the cases with uncertainty in most hours of
the day.

E. WIND POWER CURTAILMENT
The wind power that could not be integrated into the system
even with the deployment of FR was curtailed in the model.
The average wind power curtailment for each hour of the
day is presented in FIGURE 9. The wind power curtailment
in the figure was obtained from the stochastic optimiza-
tion model with uncertain scenarios generated by Gamma,
Rayleigh, and Weibull distributions, respectively. It can be
seen from the plot that wind energy curtailment occurred
at night when the wind speed was high. For the cases with
uncertainty, the case with scenarios from the Rayleigh distri-
bution had the most curtailment among the three cases, this
is because the Rayleigh distribution tends to underestimate
wind speed values, as Table 1 shows.
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FIGURE 6. Gamma, weibull, rayleigh FR up/down deployment.

FIGURE 7. Generation dispatch cost.

F. FLEXIBLE LOAD CURTAILMENT
Flexible load represents the load that could be curtailed dur-
ing emergencies, such as customers who possess emergency
generators and have a contract in place with the utility that
allows the utility to disconnect them from the grid for a
short period of time during emergencies. In the simulations
implemented in this study, load curtailment is a very rare
condition. The average flexible load curtailment for each hour
of the day is presented in FIGURE 10. As the figure shows,
load curtailment only occurred when the Gamma distribution
was used to generate the scenarios and the maximum load
curtailment was less than 1 MW. The load curtailment was
caused by a combination of low actual wind speed and a high
expectancy for the availability of wind energy.

G. UNCERTAINTY PRICE EVALUATION
As Section IV-D indicates, uncertainty increases the overall
dispatch cost. In addition, the uncertainty also causes wind

FIGURE 8. Generation dispatch percentage difference.

FIGURE 9. Wind power curtailment.

FIGURE 10. Gamma, rayleigh, and Weibull flexible load curtailment.

power curtailment and flexible load curtailment in some sit-
uations. In this study, uncertainty prices were calculated in
Conditions (iii), (iv), and (v) using Equation (27) consider-
ing generation dispatch cost, compensation of wind power
curtailment, and penalty of flexible load curtailment. The
uncertainty prices of wind power evaluated under each dis-
tribution in each hour of the day are shown in FIGURE 11.
In a further uncertainty price comparison, a daily average
uncertainty price was computed for each distribution and
displayed in Table 2. Results show that Rayleigh distribution
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FIGURE 11. Gamma, rayleigh, and weibull hourly uncertainty price.

TABLE 2. Average daily uncertainty Price.

FIGURE 12. Gamma, weibull, and rayleigh computer efficiency.

induced the lowest uncertainty cost, followed byWeibull, and
lastly Gamma by presenting the highest uncertainty cost.

H. COMPUTATIONAL EFFICIENCY
FIGURE 12 shows the average computational time of the FR
scheduling optimization model with predetermined dispatch
and reserve for each hour of the day for the whole month
of January. The model was implemented using the Gurobi
C++ API in the Linux Environment on a computer with an
Intel Core i7-8550U processor and 16 GB of RAM. Fig. 9
shows that every FR optimization model can be solved within
21 seconds (s), with a whole average of 12.45s for Gamma,
11.67s for Weibull, and 14.46s for Rayleigh.

V. CONCLUSION AND FUTURE WORK
This paper proposes a method to evaluate the uncertainty
price of wind power based on a stochastic optimization
model. The model was implemented using wind speed sce-
narios generated from the Gamma, Weibull, and Rayleigh
distributions. Results show that the model can schedule FR
products to effectively address the uncertainty of wind power.
Also, the uncertainty of wind power increases the generation
dispatch cost, wind power curtailment, and load curtailment.
Thus, the price of wind power uncertainty can be defined
as the sum of the increase in generation dispatch cost, the
compensation for wind power curtailment, and the penalty
of load curtailment. The uncertainty prices differ by up to
5% depending on the probability distribution function used
to represent the uncertainty. Thus, selecting the right method
to represent the uncertainty is important for system operators.
Although the uncertainty prices in the case studies were
obtained for a specific test system, the proposed method can
be used by any power system operators to guide policymakers
and electricity market designers to incentivize the builders
to reduce the uncertainty from RES. Also, the uncertainty
pricing model could be solved within 15 seconds, which
shows the computational efficiency of the proposed model.

For future work, we plan to further improve the compu-
tational efficiency of the method and use it for large-scale,
real-world power systems. A sensitivity study on how the
number of scenarios affects computational efficiency and the
representativeness of the distributions will be done, and a
trade-off between the computational efficiency and the rep-
resentativeness of the distributions will be studied.
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