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ABSTRACT The smart textile and wearables sector is looking towards advancing technologies to meet
both industry, consumer and new emerging innovative textile application demands, within a fast paced
textile industry. In parallel, inspiration based on the biological neural workings of the human brain is
driving the next generation of Artificial Intelligence (AI). AI inspired hardware (neuromorphic computing)
and software modules mimicking the processing capabilities and properties of neural networks and the
human nervous system are taking shape. The textile sector needs to actively look at such emerging and
new technologies, taking inspiration from their workings and processing methods in order to stimulate new
and innovative embedded intelligence advancements in the e-textile world. This emerging next generation
of AI is rapidly gaining interest across varying industries (textile, medical, automotive, aerospace, military).
It brings the promise of new innovative applications enabled by low size, weight and processing power
technologies. Such properties meet the need for enhanced performing integrated circuits (IC’s) and complex
machine learning algorithms. How such properties can inspire and drive advancements within the e-textiles
sector needs to be considered. This paper will provide an insight into AI advancements in the e-textiles
domain, before focusing specifically on the future vision and direction around the potential application
of neuromorphic computing and spiking neural network inspired AI technologies within the textile sector.
We investigate the core architectural elements of artificial neural networks, neuromorphic computing (2D
and 3D structures) and how such neuroscience inspired technologies could impact and inspire change and
new research developments within the e-textile sector.

INDEX TERMS Artificial intelligence, e-textiles, neural networks, neuromorphic computing.

I. INTRODUCTION
Smart clothing traditionally refers to a garment with the
capability to enable/disable a function such as monitoring a
person’s physical condition [1], whereas an e-textile provides
an added layer of intelligence such as connection to a periph-
eral or embedded electronic device into the garment or fabric,
providing added value to the person that wears the item. Smart
clothing leveraging embedded intelligent e-textiles with com-
putational and memory capabilities are foreseen as the next
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big market mover in the Internet of things space. Demand
for usable and wearable technology is constantly growing and
the expected market traction has forecasted e-textiles growth
from 2981 Million Dollars (2022) to 8508.1 Million Dollars
(2028) [2] [60]. Examples of such e-textiles applications
include textile sensors for body biometric monitoring, wound
monitoring or ECG analysis [3] [4]. During the COVID pan-
demic, there has been an increased interest in e-textile appli-
cations that focused on innovative smart personal protective
equipment (PPE), such as smart face-masks [5].

Three generations of smart textiles have evolved over
the years [6] (1) 1st generation of smart textiles: there
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was little integration between the electronics and the tex-
tile (2) 2nd generation of smart textiles: evolved with
the adaptation of traditional textile fabrication methods to
include additional functionality e.g. sewn in conductive
thread into textiles and (3) 3rd generation of smart textiles
the integration of electronic sensing properties into textile
materials.

What will the next generation of e-textiles and smart cloth-
ing look like. Advancements of ICT technologies AI inter-
twined with nanotechnology (nano-textiles and wearable
sensing nanomaterials) are example key enabling drivers of
the next generation of smarter and more advanced e-textiles,
driving AI inspired computing fabrics.

AI at a very simplistic level aims to simulate human
behaviour in a machine. We live in a world where increased
levels of ’Big Data’ are being created. AI utilises machine
learning algorithms (a branch of AI) to take this data and
use artificial neural network (ANN) techniques to pro-
duce knowledge or useful predictive information quickly
and accurately. Over the years, AI has developed advanced
perspectives capable of AI image recognition and image
generation [7]. Currently ANN is progressing and evolving
towards spiking neural network (SNN) biologically inspired
and more powerful models. Such AI SNN and neuromor-
phic computing core technologies, computational capabilities
as well as their architectural structure bring the potential
to inspire new and fresh innovations across many domains
including the e-textile and smart wearables sector.

Wearable memory in a textile environment is also becom-
ing a hot topical research area for further investigation. Rajan
et al. highlight the advantages of wearable memories and
computing devices (WMCs) and recent advances in nan-
otechnology and materials science [8], and how resistive
switching devices (RSD) such as memristor RSD, threaded
SD or wearable RSD are emerging as potential candidates for
WMC applications [9], [10]. Such RSD wearable memories
are foreseen to implement AI biologically inspired artificial
neural networks. The link between WMC and the human
brain could enable fast operation along with interface com-
plexity, directly mapping continuous states available to bio-
logical systems.

Currently the textile sector has been experiencing a digital
transformation predominately within its textile manufactur-
ing processes and production industry, where AI-enabled
technologies are being adopted for production line fab-
ric inspection and defect detection, enhancing output
quality [11]. Li et al. provide a survey of state of the art
technological interventions that meet automatic fabric defect
detection aligning to the industry 4.0 initiative [12], detailing
traditional (statistical methods, structural methods, model
based methods) as well as learning based methods (machine
learning or deep learning). Intelligent clustering and clas-
sification techniques adopted and utilised in the textile’s
industry are summarised in [13], highlighting both super-
vised and unsupervised learning types supporting production

planning, fabric fault detection, performance and predictive
models.

In this paper we will examine in more detail AI ICT
advancements focusing specifically on neuromorphic com-
puting and spiking neural network AI, assessing their archi-
tectural structure, vision, capabilities and how these elements
could be of relevance to inspire future research advancements
in the e-textiles sector. Healthcare is emerging as one of the
key sectors where e-textiles and new advances in AI driving
embedded textile intelligence and on-body computation, can
be leveraged and utilised in the near future both within a clini-
cal environment such as a hospital and also support enhanced
remote monitoring of patients from the comfort of their own
home. Sethuraman et al. details a smart garment MyWear
that monitors and collects physiological data (muscle activity,
stress levels and heart rate variations) processing the data
in the cloud and providing predictions to the user based on
abnormalities detected [14]. Such e-textile applications and
services utilising these AI technologies bring the added value
of a more effective real time monitoring and analysis for
varying health conditions such as cancer care, cardiovascular
and neurological disorders, leading when required to early
interventions as critical health concerns are detected. Elo et al.
gathered feedback from a workshop of 50 participants focus-
ing on the use of e-textiles to assist healthcare, rehabilitation
and well-being, posing questions that focused on who could
benefit from e-textiles and how could e-textiles be used [15].
Feedback obtained stated the potential beneficial uses of
e-textiles linked to (1) Work environment (e.g. safety and
ergonomics, radiation monitoring, well-being monitoring (2)
Rehabilitation (e.g. neurological, mental health monitoring,
speech and language) (3) Healthcare (e.g. home care, hospital
care, pain relief) (4) Daily Life (e.g. safety, communications,
emotions). The ‘Internet of Smart Clothing’ [16] pushes
the boundaries around smart garment intercommunication,
their interaction with environmental objects and how they
actively communicate with remote servers for the provision
of advanced services. The next generation of smart clothing
and e-textiles brings more intelligent embedded technologi-
cal layers than before and hence has requirements for more
flexible, modular, integrated, seamless and usable function-
ality to meet end user needs. The structure of this paper as
detailed in Figure 1, provides an initial insight into current
AI intelligence activities of relevance within the textile sector
along with an example of such applications. The remainder
of the paper provides a deeper dive into the key properties
of spiking neural networks and neuromorphic computing,
creating a mapping across to traditional functional technical
properties of importance that are necessary to be considered
for any new AI inspired e-textiles driven innovations. The
paper is organized as follows: Section II details AI intelli-
gence currently impacting the textile sector, highlighting the
four core functional technical properties of importance to be
considered linked to data flow communication and process
methodology. Section III provides an insight into example
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FIGURE 1. Structural and topical review elements in the paper.

use case AI e-textile intelligence. Section IV discusses the
architectural properties of a spiking neural network with
cross-reference to the four core technical functional prop-
erties and section V discusses the architectural properties
of neuromorphic computing and their alignment to the four
functional technical properties to provoke thought around
how inspiration can be taken from these elements and actively
feed into next generation of e-textiles. Section VI finalises the
paper with a conclusion.

II. ARTIFICIAL INTELLIGENCE IMPACTING TEXTILE
SECTOR
E-textile research domain experts, suppliers and manufactur-
ers are starting to investigate at a deeper level the impact
AI and machine learning technologies can have across vary-
ing sectors [17]. Digital transformation through the use of
AI back propagation algorithmic neural network models are
currently impacting the textile industry through the creation
of a more sustainable digital supply chain and smart intelli-
gent textile manufacturing optimization (production planning
and operational process management) right through to fabric
defect identification, pattern inspection analytics and much
more [18], [19]. Sikka et al. provide an insight into the
application of AI in textile manufacturing areas including
yarn production, fabric production and dying production [20].
Such innovations have proven to boost productivity, enhance
the percentage of yarn/fiber defects identified, as well as
providing a safer working environment. How such enhanced
and smart technologies can aid the textile industry towards
a sustainable and circular economy is of high priority and
gaining a substantial amount of attention [21]. Textile fabric
based design software is also seeing the adoption and usage of
AI based software tools in pattern design, making and cutting,
providing a superior level of tools with inbuilt 3D visualisa-
tions features (3DCLO, Marvelous Designer) [22], [23].

The adoption and use of AI within fabric based tex-
tiles requires a structured and methodological process taking

into account technical properties of importance along with
the end user functional and form factors, as listed in
Table 1.
All these elements directly relate to the data flow commu-

nication and processing methodology. In this paper we will
adopt these elements in order to map across new AI technol-
ogy properties to the textile domain within section IV and V.
Currently within the healthcare medical sector such technical
functional properties are applied and demonstrated through
intelligent e-textiles for patient centric garment-based wear-
ables [24]. Such considerations in the design and devel-
opment enable the possibility to gather human monitored
health related data sets such as Electromyography (EMG) or
Electrocardiography (EKG) data-sets through textile based
sensors in wearable garments. Such data collection type gar-
ments and textiles need to be adaptable to the user’s needs
for ease of use at varying levels. Through the active col-
lection of these data-sets, this allows for the transmission,
processing and extraction of key analysis and results for
effective decision. This is aided through the development and
implementation of intelligent algorithms.

TABLE 1. Technical properties to consider for embedded fabric based
textile intelligence.

The use of AI based algorithms and techniques enables
an era of intelligent textiles utilising real time and accurate
data knowledge in dynamically changing healthcare moni-
toring type environments. When considering such embedded
AI in a textile environment, there is a need to also look at
the state of the art of current AI formal methods (e.g. data
preparation, training etc) and how they must be advanced to
adapt stemming key challenges and questions that will require
further investigation and research as technology advances and
emerges in this space.

One such example pushing the boundaries around the use
of conductive threads and embedded smart wearable intelli-
gence and functionality, Chan et al. were successful at their
attempts to store data in fabric. Data is stored in bit strings on
a magnetised smart fabric, where it is encoded as a positive or
negative polarity (0 or 1) using the ferromagnetic properties
of the conductive fibre. They successfully demonstrated an
application utilising a shirt encoded with an image that is
stored as a pass-code, once when scanned using a magne-
tometer and matches the predefined pattern allows a door to
open in order to gain access by swiping the shirt’s arm that
holds the pass-code [25].

Further investigation and experimental research is required
to identify what fabric-based AI algorithms could look like,
how they could be developed and integrated in a functioning
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FIGURE 2. Fabric based Neural Network Workflow.

manner in the very core of a fabric and fibre environment.
Not only will new fabric AI design fabrications begin to
emerge, but also new fully fabric driven data acquisition
and data processing driven approaches potentially adopting
or inspired by new AI best practice, standards and method-
ologies. Key features of fabric-based AI algorithms need
to consider during implementation speed (response time),
processing capabilities, complexity/size and also learning.
Figure 2 provides an overview of the key components for
consideration for a textile driven AI workflow facilitating
fabric based data acquisition, a data processing fabric-based
engine, data execution in a fabric environment and also
deployment. From an e-textiles point of view, each of these
four AI pillars need further research and in-depth analysis to
consider how such a workflow can operate and function in
a textile fabric environment. From integrated intelligent tex-
tiles sensors in a fabric environment, how such data sources
can be collected and processed need to be considered. The
concept of a fabric neuron and fabric neural network embed-
ded in a textile environment are actively being considered,
so how can this support advanced data selection and fab-
ric edge driven computation where fabric based algorithmic
learning/training can be incorporated and executed in real
time.

Other advancements and research linked to AI and textiles
include Shi et al. [17] who provide a comprehensive review of
advancements in Smart textile integratedmicroelectronic sys-
tems, highlighting the core properties of importance (1) flex-
ibility allowing for effective drape on 3D curvilinear surface
such as a human body and (2) structural transformation of
textiles resulting in low fibre strain and fabric life cycle
longevity. Loke et al. [26] convey a vision of moving from
fibre devices to fabric computers, where the fabric fibers have

inbuilt capability to perform sensory, storage, processing and
powering capabilities providing a fabric based computing
environment. Such a powerful fabric fibre based processing
capability enables the execution of fabric based programs that
can activate fiber sensors, processing and storing data within
the fabric computer.Work has been ongoing around the devel-
opment of such new fibres with specific focus on scalable
processes using thermal drawing, melt spinning, coating to
provide fibre structures that can house and deliver computing
functionality [27], [28], [29]. Investigative methods into the
digital fabrication of fibres is being researched where inbuilt
functionality provides in-fibre storage programs, data stor-
age, sensors and digital communication, such a fabrication
structured process proposes uniform placement of discrete
in-fibre electronic devices that will carry out such functional-
ity. Researchers are actively thinking outside the box about
new and potentially disruptive innovative ways to fuse AI
with e-textiles moving away from the traditional textile world
as we know it [30], [31]. This is sparking a renewed interest in
this domain and shows promise of real impact across multiple
sectors. The next section will provide an insight into two
potential use case applications, demonstrating the potential
for advancements in this area.

III. AI TEXTILE INTELLIGENCE APPLICATION EXAMPLES
Embedded AI intelligence in a fabric based environment has
the potential to be applied across many sector based applica-
tions. Here we briefly provide two such examples in order to
convey the possibilities of such an advanced fabric computing
and fabric AI intelligence driven era, (1) the healthcare sector
application space and (2) the unmanned aircraft/drone sector
where textile driven drone control intelligence applications
could be exploited.
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A. HEALTHCARE AI SMART TEXTILE USE CASE
Smart garment applications can greatly contribute towards
remotemonitoring, where individual and personalised health-
care provides enhanced real time assessment and early inter-
vention. Embedded seamless AI in a textile environment adds
another layer of real time intelligent wearable point of care
going beyond current state of the art. The application of
AI intelligence in a fabric wearable environment bring the
potential for enhanced quality of life for end users. Here
we provide two such conceptual end user-centric scenario
examples.

Healthcare Use Case: Aisling is concerned about getting
a variant of COVID-19 and is looking for a new means
to be able to monitor and track her general health without
it impacting on her daily activities. Aisling purchased an
AI monitoring package (textile sensors and Fabric AI patch
intelligence) that can be fitted in a modular manner into her
latest modular clothing garment. Aisling now has embedded
AI in her everyday clothing and can monitor her breathing
and temperature, analyse the data in real time and be alerted
about abnormalities that occur, allowing her to respond in an
efficient manner, detect symptoms early, take a COVID test
and restrict her movements if needs be.

B. TEXTILE-DRIVEN DRONE CONTROL USE CASE
The application of e-textiles across multiple domains and
sectors is gaining traction. New innovative ideas extending
beyond the norm of healthcare are starting to be considered
and emerging. Advances in fabric based AI intelligence open
the opportunity to extend applications of e-textiles fusing
non-traditional techniques and new technologies. An exam-
ple of one such area is the application and use of a based
fabric textile intelligence with unmanned Ariel vehicles
(UAV). The following provides an example use case for
consideration.

Taking a modular designed dynamic field programmable
or Fabric AI-driven smart garment with intelligent embedded
control logic functionality [32], [33] opens up opportunities
towards the use of such a smart garment as a control device
of the UAV’s based on human control activated movements
linked to the smart garment triggering smart textile sensors
as actuators directing the movement and control of the UAV.
Such fabric AI driven haptic wearable devices can have
multiple applications for varying devices, providing a more
seamless embedded control options for end users. This has
numerous innovative applications in construction, defence
and more.

The next two sections of the paper will focus on emerg-
ing AI technologies (1) spiking neural networks (SNN) and
(2) neuromorphic computing. We will delve into the techno-
logical and architectural aspects of importance, aligning them
where relevant to the four core functional technical properties
identified in section II table 1, that are required to be taken
into account when considering embedded AI technical func-
tionality in a fabric driven e-textile environment.

IV. SPIKING NEURAL NETWORK PROPERTIES INSPIRING
NEXT GENERATION OF E-TEXTILES
Artificial neural networks are seeing the emergence of new
SNN technologies. SNN simulates functionality using elec-
tronics components replicating and mimicking human brain
biological workings of neurons, synapses and neural net-
works. Core architectural properties of an SNN include

• Neurons that emit a spike once a set threshold has been
met.

• Learning in the neural network is completed by altering
the synaptic weight. Random weight change algorithm
is one of the most adopted and simple algorithms used
during the learning phase. For this algorithm the correct
output is known and the error increased or decreased as
required.

• Results obtained depends on the neuron spiking activity
and also the neural node inputs.

Taherkhani et al. detail and explain a single neuron
level [34], giving 1D neuron model examples such as Leaky
integrate and fire (LIF) [35], the Spike Response Model
(SRM) as well as more complex and biologically feasi-
ble artificial neurons such as the Hodgkin and Huxley
model [36]. We will now assess the core computational,
monitoring/measurements, communications and energy of
such SNN, highlighting structural and processing paradigms
inspired by the human brain and the potential they could
bring to the e-textiles domain. Figure 2 details the adop-
tion of this data flow communication and processing tech-
nology methodology to the e-textile domain, highlighting a
fabric based workflow of relevance towards the implementa-
tion, validation and deployment of fabric driven AI (neural
network) intelligent e-textile wearables. In the next section
we will delve into key SNN computational technical ele-
ments, highlighting core current research textile component
advancements of importance.

A. SPIKING NEURAL NETWORK COMPUTATIONAL
CONSIDERATIONS
Data acquisition refers to the methodology and process of
acquiring data and performing analysis in order to interpret
it. This involves the use of varying techniques and tools used
to sample data, convert the data into a format that can in turn
be used for further analysis and processing. From a neural
network point of view, we will now investigate further the
main computational elements with a focus on highlighting
architectural aspects of importance for consideration in a
textile environment (1) Artificial fabric neurons (2) Artificial
fabric synapses (3) Artificial fabric neural networks required
to perform data acquisition and processing and the potential
for adoption into a fabric environment.

1) E-TEXTILE ARTIFICIAL FABRIC NEURON
Neurons are the core building blocks of neural networks.
The workings of a neuron include synapses represented
by weights, a threshold and an output spike that in turn
resets the neuron. Each neuron has a membrane potential.
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This membrane potential is the equivalent of a voltage and
when that voltage passes a defined threshold a spike (or
action potential) is emitted and hence this generated spike
is the method by which one neuron communicates to another
neuron in a SNN, through information encoded in the fre-
quency of the spikes. Taking these aspects, how can we begin
to consider a fabric based neuron, its workings to replicate not
only an individual neuron’s functionality but having the capa-
bility to be extended to implement multiple interconnected
neural nodes in a fabric environment. To work towards such
a goal, we have to delve into the artificial electronic neuron
representations currently defined and that could inspire future
fabric based neural implementations. Here we will consider
the Leaky integrate and Fire Model and the Hodgkin and
Huxley Model. Further enhancements to these models and
other models exist, but this is outside the scope of this paper.

2) LEAKY INTEGRATE AND FIRE MODEL (LIF)
The most simplistic model of a neuron is the Leaky Integrate
and Fire neuron artificial electronic circuit based on the logic
that if the spike (driving current) goes beyond the defined
threshold, then the neuron emits its own spike and resets. The
model operates based on a resistor and capacitor (RC circuit)
driven by a current I(t) demonstrated in [Fig 3].

FIGURE 3. Simple Integrate and Fire artificial (RC) neural node.

Limitations of the LIF model is that no memory of spiking
activity is retained as the membrane potential is reset after
each spike. We need to consider how such a LIF model could
be replicated to produce an event driven spiking neuron in
a fabric environment leveraging the leaky integrate and fire
neuron model. The following details current textile compo-
nent based research ongoing of relevance when considering
the creation of a LIF fabric neuron.

• Soft textile based resistors can be fabricated using con-
ductive thread, typically using a zigzag sewing machine
stitch. Depending on the conductive thread (resistance
level, ohms permetre) as well as the density of the zigzag
stitch utilised, this dictates the overall resistance level
when choosing such a textile resistor to create.

• Ongoing research is active around the development of
textile based capacitors [37]. Blecha and Moravcova

investigate methods for the capacity increasing of textile
capacitors for planar and sandwich type textile capac-
itors using hybrid conductive threads and conductive
textiles [38]

• Additional embedded textile transistor gated circuitry
is required in order to implement the threshold level
Vth for the membrane potential, when this threshold has
been reached this produces an action potential spike.
Bonfiglio et al. detail an organic field-effect transistor
that is realized on a flexible film that can be applied,
after the assembly, on textiles [39]. Carey et al. showcase
a fully inkjet-printed 2D-material active heterostructures
with graphene and hexagonal-boron nitride (h-BN) inks,
which are used to fabricate an inkjet-printed flexible and
washable field-effect transistors on textile [40]. Such
advancements in textile based FET’s bring the capability
to incorporate textile threshold level gates, enabling the
possibility of varying threshold levels for the various
neural nodes in a fabric spiking neural network.

• Experimental research has also been ongoing into
the development of wearable fabric Brain enabling
on-garment edge-based sensor data processing inspired
by SNN architectural techniques and LIF model [41].
This wearable smart sleeve prototype developed and
tested a 3 input, 2 hidden layer, 2 output wearable SNN
connected to fabric pressure sensors in the garment,
capable of classifying the haptic sensing coming from
the textile pressure sensors in the garment’s sleeve at
key placement points (base thumb, mid-forearm and
lower elbow). The wearable fabric brain can compute
in real time in a fabric environment, which part of the
arm’s smart sleeve has been touched. Such advance-
ments will open up options and new methods to work
towards functional fabric based neural nodes based on an
RC circuit and LIF model, capable of processing event
spike driven activity replicating a neural node, that can
be extended into a basic working event driven spiking
neural network.

3) HODGKIN AND HUXLEY
neuron model is a more complex model to replicate the gen-
eration of an action potential of a neural node. The model can
describe the time behaviour of the membrane potential and
currents through potassium (K) and sodium (Na) channels
using differential equations as seen in [Fig 4]. They were
able to observe the generation of action potential as well
as the refractory period [42]. In this circuit the capacitor is
representative of the cell membrane, the circuit has variable
resistors that represent the voltage-dependent K+ and Na+
conductance’s and there is also a fixed resistor representing
the voltage-independent leakage conductance. This model
has three power batteries for the reverse potentials for the
corresponding conductance’s.

Generation of this model in a fabric environment would
require the textile resistor and capacitor, as well as the
requirement for a variable resistor interconnected using
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conductive thread. To date, variable textile resistors have
been created in the form of fabric based potentiometers. Such
fabric potentiometers contain a conductive wiper function
as well as a resistive track where its ends has measurement
points included. The conductive wiper acts as a means to
set and measure a variable resistance through adjustment
of the sliding wiper. Lindrupsen details and demonstrate a
zipper based potentiometer [43]. Other variable resistance
elements that could be considered to produce such a variable
resistor include Eeonyx Stretchy Variable Resistance Sensor
Fabric (Adafruit) that can be utilised to make soft sensors
that are required to be movable and adaptable. Such stretch
fabric sensors using stretchable conductive fabric enables
changes in resistance when stress is applied. Further research
is required into how textile and fabric based variable resis-
tance can be leveraged and potentially be utilised in the
design of a fabric neural node. Key textile components are

FIGURE 4. Hodgkin and Huxley electronic Artificial neural node.

in existence to enable the creation of a fabric based Hodgkin
Neural Node, how such elements can come together from a
design perspective to produce a working neural node is the
key challenge here in order to produce a working Hodgkin
and Huxley fabric neural node.

4) E-TEXTILE ARTIFICIAL FABRIC SYNAPSE
Current learning in SNN are dependent on the capability to
alter and interchange the synapse weights for each of the
neural network nodes. When a neuron threshold is reached,
it fires and produces an action potential. This is a result of
the sum of excitatory and inhibitory potentials and these are
connected to the neuron through the synapse. We refer to
the synapse as a synaptic weight. This is the strength of a
connection between two nodes in a neural network. Park et al.
investigated yarn coated with reduced graphene oxide (RGO)
to produce two-terminal memristor-based artificial synapses
suitable for use in wearable neuromorphic computing sys-
tems [44]. They successfully fabricated an artificial synapse
using reduced graphene oxide (RGO) coated conductive
yarns capable of emulating synaptic functions even when

bending was endured. The author believes the yarn based
artificial synapse created is a potential good candidate for
future wearable neuromorphic systems. Ham et al. researched
the design and development of a one-dimensional organic
artificial multi-synapses enabling electronic textile neural
network for wearable neuromorphic applications, where the
multi-synapses consisting of ferroelectric organic transistors
fabricated on a silver (Ag) wire [45].

To replicate a SNN in a fabric environment we need to
consider the functionality required for the fabric synapse
and how to embed this in a workable manner into a textile
environment. As the weight influences the firing of a neuron,
in a SNN, at a basic level this can be replicated by embedding
the option to be able to connect and interchange from one
conductive thread-based resistor in a fabric environment to
another conductive thread resistor. Such textile resistors can
in turn be utilized as synaptic fabric-based weights. Further
advancements with the introduction ofmemristors as synaptic
weights are emerging and need to be considered from a fabric
synapse implementation point of view, these will be covered
in section V neuromorphic computing properties.

TABLE 2. Types of Neural Network more relevant to SNN’s.

5) E-TEXTILE ARTIFICIAL FABRIC SPIKING NEURAL NETWORK
There are multiple types of neural network’s perceptron, mul-
tilayered perceptron, feedforward, recurrent, fully connected,
Convolution, Radial Basis Functional, Long Short-Term
Memory (LSTM), Sequence to Sequence Models and Mod-
ular Neural Network. Table 2 provides an overview of a
feedforward and recurrent neural network properties of rel-
evance when considering a SNN type to adopt and conform
to [46], [47], [48]. When designing an embedded neural
network in a fabric environment key fabric and end user
properties need to be accounted for including aesthetics, dura-
bility, comfort and maintenance. Based on the overall size
of the SNN and the number of hidden layers it incorporates,
this deciphers the number of textile artificial neural nodes,
synapse interconnections and interconnected fabric multi-
layers required. We can then begin to investigate the best
possible design, layout and functionality integration meth-
ods around how to accommodate and embed into a fabric
environment.

B. SPIKING NEURAL NETWORK MONITORING AND
MEASURING CONSIDERATIONS
A SNN can learn by supervised learning, where an input and
an output variable and the algorithmic computation within the
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neural network learns from a training dataset. Once an accept-
able level of performance is achieved, the learning stops.
An unsupervised method in comparison has input variables
but no output variables that are used to support training and
learning of the neural network. Pfeiffer and Pfeil present an
overview of the varying training methods for SNN’s such
as conventional deep networks [49], constrained training,
spiking variants of back-propagation and variants of Spike
time dependant plasticity (STDP) in order to categorise SNN
training methods and also highlight their advantages and
disadvantages. Creating such a training or learning process in
a fabric e-textile is a challenge that has not yet been achieved.
The use of nanotech is the obvious initial best approach to
attempt to embed such a learning element into an intelligent
fabric garment.

Depending on the structure of a SNN, this identifies its
classification. For this paper we will focus on a fully con-
nected multi-layer neural network. Such a multilayered Spik-
ing neural network consists of multiple layers of artificial
neural nodes (usually has three or more layers and utilizes a
nonlinear activation function). From a design perspective in a
fabric environment once we have identified the core textile
components required to implement a working neural node
as well as a functional method for interchangeable synaptic
weights, the next step is to progress towards the identification
of a most practical and feasible fabric-driven design in order
to incorporate multi-layers, their interconnections and how to
be capable of validating and modifying during the execution
phase.

Several layers of fabric woven and stacked produces a
multi-layer fabric, secured together with connecting yarns
in a third (Z direction) dimension. Such woven fabrication
techniques along with layered and interwoven fabric manip-
ulations are design options which need to be assessed to
identify suitable and best practice design for the development
of SNN technical textiles as demonstrated in [Fig 5].Weaving
multiple layers in a fabric provide the opportunity to embed
neural network nodes and interconnected neural networks
in an embedded fabric environment. Research into the best
approach, the best methodology to adopt and also core com-
ponents and their re-usability still remain under investigation,
but as textile components and intelligence along with nan-
otechnology advances, new opportunities are emerging push-
ing towards this vision of a Fabric AI Driven intelligence.
In section V we will delve a little further into 2D/3D stacked
layered techniques, taking inspiration from neuromorphic
computing and advancements here.

C. SPIKING NEURAL NETWORK COMMUNICATION
CONSIDERATIONS
SNNdrives the adoption of brain-inspired computing, provid-
ing not only fast but also a substantial amount of event-driven
data processing. An SNN neural computation and communi-
cation is defined through the generation of spikes enabling
neurons to communication from one to another via such

FIGURE 5. Multilayered conceptual design approaches inspired by
stacked neural networks.

triggered spikes. Research is ongoing around the types of
neuronal information encodings. Auge et al. summarise the
signal encoding schemes for a spiking neural network [50].
Neuronal encoding and decoding is the information and com-
munication process where for example an external variable
or stimulus triggers neural activity within the brain. Such
stimuli (e.g. touch stimuli) produce varying neural activity
patterns in the brain. Zeldenrust et al. provides an overview
of neural coding with bursts and new methods for their anal-
ysis [51]. Comsa et al. introduce spiking autoencoders with
temporal coding and pulses, trained using backpropagation to
store and reconstruct images with high fidelity from compact
representations [52].

Classification of the spike train pattern and what this
means, enables active decoding of the pattern. One such
example is the classification of spike train through active
matching of the spike train patterns to templates. Such a
template would be a set word, meaning or result. Within an
e-textile world neural information encoding, decoding and
the creation and validation of potentialFabric SNN classifica-
tion templates mapping to external sensing embedded textile
sensors linked to fabric based neural networks, could enable
the communication and processing of fabric based SNN
encoding. Such Fabric SNN classification templates could
correspond to an alert notification raising awareness around
a critical health monitoring scenario where such a template
could be used in conjunction with a SNN fabric Smart gar-
ment to assess the health status and provide feedback to the
wearer based on the use of such classification templates to
raise alerts to the wearer as required. Core to the fundamental
working of a SNN is the manner in which the network nodes
interconnect and how information flows and communication
between the nodes is enabled. Multiple artificial neural net-
work types exist. Guo et al. provides a comparative overview
of neural coding in a spiking neural network with in-depth
detail on rate coding, time-to-first spike (TTFS) coding, phase
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TABLE 3. Neuronal Information Encoding Types.

coding, and burst coding [53]. Table 2 provides a substantial
list of the types of neuronal information encoding techniques
utilised to-date for consideration. It highlights their key ele-
ments for consideration when investigating the potential for
fabric-driven SNN neuronal encoding and decoding.

D. SPIKING NEURAL NETWORK ENERGY
CONSIDERATIONS
Spiking neural networks bring the promise of enhanced
energy efficiency. As an SNN is a dynamic system, this
suits more dynamically driven processes and applications.
Research is ongoing to investigate how to effectively lower
synaptic operations and hence the computational perfor-
mance of the neural network. Sorbaro et al. focus on the
optimization of energy consumption of SNN for neuromor-
phic applications through a hybrid training strategy that also
accounts for energy cost stemming from the networks compu-
tations [54]. From a structure and architectural point of view
SNN have typically fewer neural nodes than more traditional
artificial neural networks along with the fact that SNN can
implement node connection pruning in order to reduce pro-
cessing power and improve overall the working functionality
and energy efficiency of the SNN as demonstrated in [Fig 6].
By removing select unnecessary weights in the model this
enables model compression while maintaining the core func-
tionality of the neural network as conveyed in [Fig 6].
Shi et al. develop a pruning method for SNNs by exploit-

ing the output firing characteristics of neurons, which can
be applied during network training [55]. Rathi et al. detail
the process of pruning STDP-based connections as well as

FIGURE 6. Difference conveying no pruning in SNN versus pruning in SNN.

quantizing the weights of critical synapses at regular intervals
during the training process [56]. They test the network for
digit recognition (Modified National Institute of Standards
and Technology (MNIST) dataset) [20] and also completed
an image recognition test based on images coming from the
Caltech 101 dataset. They validate a classification accuracy of
90.1 percent and show an improvement in energy efficiency.
When implementing a SNN in a textile environment, the
capability to be able to disconnect and reconnect fabric neural
nodes needs to be considered in order to be able to prune
the Fabric SNN (fabric node pruning) in an efficient manner
enhancing the fabric SNN energy operational functionality.
From a computational point of view the SNN has the capabil-
ity to operate more quickly due to the neurons sending spike
impulses. As SNN’s adopt temporal information retrieval this
increases the overall processing time and productivity and
hence has a very positive end impact on energy consumption
in the SNN. The next section provides detail on neuromorphic
computing and key architectural elements of importance for
consideration.

V. NEUROMORPHIC COMPUTING PROPERTIES
INSPIRING NEXT GENERATION OF E-TEXTILES
Neuromorphic computing concept originated in the 1980’s,
inspired by computer science, mathematics and bio-inspired
models of neural network technologies. This emerging inter-
disciplinary research field has the potential to be disruptive,
moving away from traditional computing methods and archi-
tectural implementations, such as the von Neumann archi-
tectural approach where separate memory and computing
capabilities reside in order to meet high computational power
requirements. Instead neuromorphic computing will focus on
the implementation of more centralized and combined mem-
ory functionality. Such inspiration coming from the working
of the human brain paves the way for new and more fault
tolerant layered and parallel architectural designs and layouts.
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TABLE 4. Taking Inspiration from SNN and neuromorphic advancements, highlighting key considerations to feed into future e-textile neural network
research and prototypes.

FIGURE 7. Timeline of technological advancements in Neuromorphic
Computing.

In order to understand what aspects of neuromorphic
computing can inspire innovative advancements in the next

generation of smart e-textiles and on-garment edge based
intelligence, we will first highlight the core architectural
elements of importance within neuromorphic computing and
assess their potential within an e-textiles domain. Neuro-
morphic computing core architecture is based on the con-
cept of communicating through event driven spikes generated
through simple processing structures represented by synapses
and neurons.

Ongoing research is pushing the production possibilities
using complementary metal oxide semiconductor (CMOS)
technology to develop neuromorphic spiking neural network
hardware implementations [57], [58], [59]. Key properties
such as size, weight, low power consumption, and modu-
lar design (scalability) are dominating the research areas of
focus linked to such technologies. Advancements in CMOS
technology has been a key enabler towards the design and
development of smaller and more energy efficient systems,
hence providing the capability to mass produce on a larger
scale. Such technology combined with advanced machine
learning techniques has directly lead to the simulation and
implementation of silicon based neurons, otherwise defined
as neuromorphic computing.

Figure 7 highlights neuromorphic computing advance-
ments over time, with Brainchip (https://brainchip.com/)
announcement in 2022 claiming to be the world’s first com-
mercial producer of a Neuromorphic AI processor ‘Akida’
that has the capability to mimic the working of the human
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brain and process data with high precision and energy effi-
ciency. Akida, an event-based AI neural processor, features
1.2 million neurons and 10 billion synapses. The following
subsections will delve into the key neuromorphic computing
architectural properties of importance.

A. NEUROMORPHIC COMPUTING COMPUTATIONAL
CONSIDERATIONS
1) CROSSBAR ARRAY ARCHITECTURAL PROPERTIES
As neuromorphic computing moves away from the tradi-
tional Von Neumenn architecture towards a more focused
in-memory computational architecture, the processing occurs
inside the memory functionality elements, hence reducing
data transfer time and energy. Hardware architectural design
considerations need to take into account (1) synapse inter-
connections between neural nodes and (2) how this can be
implemented in order to complete a fully connected neu-
ral network. Key to neuromorphic computing architectural
design is the crossbar array structure. From a hardware design
perspective, the crossbar array architecture has been adopted
in neuromorphic computing in order to implement a full
complement of interconnections required to meet the neural
network structure requirements.

FIGURE 8. Conceptual Jacket design with embedded neural network
using crossbar array architectural design.

• The crossbar array architecture includes a number of
rows (word lines) and columns (bit lines) with mem-
ory devices interconnected between both the row and
column.

• Advancements have been made through the develop-
ment of resistive memory devices known as memris-
tors (one transistor and 1 resistor combination). The
operational functionality of the crossbar array is based
on input current (voltage pulse) to selected rows which
in turn activates selected columns via a voltage pulse,
depending on the activation of varying cells in the cross-
bar array. For active cells in a particular row/column
vertical line in the crossbar array, the sum of currents

equals the output current, calculated using Ohms law
and Kirchhoff’s law.

Research into memristor crossbar arrays for brain inspired
computing neural networking has been investigated [60].
Kim et al. report a 64 × 64 passive crossbar circuit that
demonstrates approximately 99 percent non-volatile metal-
oxide memristors, enabling the active storing of large neural
network models on neuromorphic chips [61].

From a functionality and design perspective, how can
inspiration be taken and mapped to an e-textiles fabric envi-
ronment in order to progress towards an embedded neural
network. The crossbar row/column structure design is a key
element to consider, how can this architectural design be
accommodated in a fabric material in order to recreate such
a neural network as demonstrated in [Fig 8]. Such a visual in
[Fig 8], demonstrates a fabric AI jacket with embedded cross-
bar array architectural intelligence with a 3 input, 2 hidden
layered crossbar arrays and 3 output neural network appli-
cation. Can embroidery based techniques and patterns using
conductive thread, fabric tape or embeddedwoven conductive
elements into a fabric environment be experimented with
in order to recreate such a crossbar array type architectural
structure in a fabric material. This is a key design element for
further exploration and research.

B. NEUROMORPHIC COMPUTING
MONITORING/MEASURING CONSIDERATIONS
Memristors also known as resistive switching random access
memory devices that have the capability to change their resis-
tance state and act as non-volatile memories for embedded
memory based devices are showing promise in the neuro-
morphic world as key components to implement high-density
memory. Properties of memristors include small device/high
density integration, low power, high speed and highly scal-
able [62]. New research is focusing on the potential to enable
controls for resistive filament switching in synapse applica-
tions, as well as further investigation around varying mem-
ristor materials for artificial synapses with specific focus on
the synaptic behaviours of organic materials, 2D materials,
emerging materials (halide perovskites) and low-dimensional
materials [63]. The memristor is very suitable for analog
based circuits as well as hardware multi-state neuromorphic
applications due to its high and low resistance state. Intercon-
nections between the neural nodes in the human brain have a
joint strength represented by the synapse.

Memristive synapses are ideal candidates to create an
artificial synaptic device, helping it mimic interconnection
strengths between artificial neural nodes. A core requirement
is the need to enable and alter resistance states. When we
consider fabric smart material, how wearable memory can be
incorporated into a fabric environment is a key element that
requires extensive investigation and research. Taking inspi-
ration from memristor-based analog memory circuits, what
properties and elements need to be considered when consid-
ering the link between fabric materials and the application
functionality. Analog memristors exhibit a gradual change
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FIGURE 9. Core building modules and emerging technologies that are contributing towards the next smart textile’s generation, incorporating Fabric AI
inspired e-textiles.

in resistance and hence are more suitable for analog circuits
and neuromorphic system applications. Bi-stable memristors
act as binary memory/switches and digital logic circuits.
Multi-state memistors are used as multi-bit memories, recon-
figurable analog circuits, and neuromorphic circuits [64].
Researchers have implemented a method of weaving flexible
computer memory into garments. This flexible memory is
woven together using strands of copper and copper-oxide
wires. Liu et al. demonstrate advanced research into the devel-
opment of a textile memristor using a robust fibre through
an electric field assembly method that weaves the fibres into
a scalable textile memristor [65]. This exciting research era
will see advances through the fusion of nanotechnology level
memristor devices and e-textiles embedded AI intelligence.

C. NEUROMORPHIC COMPUTING COMMUNICATIONS
AND ENERGY CONSIDERATIONS
Building on the crossbar array design, neuromorphic chip
advancements look to implement energy efficient lower
power consumption architectures supporting the required pre-
cision communication. In order to accomplish this research is
ongoing around the design and development of smaller and
multiple arrays. Such multiple arrays are emerging as either
having a lateral 2D layout or a 3D vertical stacking layout.
Circuit designs are required to be efficient in order to enable

data flow between each layer in such 3D passive arrays. 3D
memristive neural networks are taking inspiration from string
stacking for 3D NAND flash (Xia et al.).

From a design perspective when considering how to embed
a multilayered neural network in a fabric environment, it is
vital to consider key properties of the fabric as well as
key design and usability functionality requirements for end
users. We already touched on possible layered and woven
conceptual design layout approaches as seen in [Fig 5], but if
adopting a 3D stacked layered fabric approach, how we can
interconnect the layered neural node connections also need
to be considered. How do we interconnect from one fabric
layer to another fabric layer in an energy efficient, low power
and reduced size capacity to ensure a high operational stan-
dard for the fabric based neural network. A modular fabric
design-based approach with inter-changeable neural nodes
and hidden neural layers may prove to be a more suitable
option availing of the capability to interconnect, remove and
replace neural nodes using for example snap connectors or
other connector method options as described in [66].

VI. CONCLUSION
It’s evident that AI driven technology advancements are mov-
ing at a rapid pace. Vast research stemming from architec-
turally inspired specification and design properties of SNN
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and neuromorphic computing provide valuable inspiration
towards new techniques, methodologies and designs that
can be applied across to drive emerging innovations in the
e-textiles domain. This paper has delved into key architectural
properties of SNN (artificial neurons and synapses) as well
as neuromorphic computing (crossbar analysis, memristors,
stacked and layered design based approaches) to stem such
experimental research avenues. Table 4 and [Fig 9] provide a
summarised visual of the progression from 1st to 3rd genera-
tion of neural networks, as well as core topical research focus
areas of importance to inspire and drive new and novel inno-
vations in the next generation fabric AI inspired (e-textiles).

Key findings of the study include

• Identification of key technical functional properties
(computational, monitoring, measuring, communica-
tions, energy) required to be taken into consideration in
a fabric based neural network workflow.

• Highlighting SNN architectural elements of relevance
for consideration in e-textiles innovations such as
e-textile artificial fabric neurons, fabric synapses and
fabric neural networks.

• SNN architectural design inspiration from multilayered
(stacked and woven) neural network design approaches.

• Consideration of SNN neuronal encoding and spike train
pattern classifications that have the potential to drive
research linked to fabric SNN classification templates.

• Identification of Neuromorphic computing hardware
architectural design elements providing inspiration to
the future design of e-textiles (crossbar array, wearable
memory/memristor, 2D/3D vertical stacking architec-
tural layout).

Continued research is required in this area. Key research
questions and challenges still remain unanswered, hence
validating the need for further research in this space. Such
challenges and future research investigations include the
following

• Advancements in the specification, design and verifica-
tion of Fabric AI.

• Consideration around the identification and develop-
ment of a Fabric AI based development language.

• Investigation into how AI algorithms can be embedded
in an operational manner in a Fabric AI environment.

• In a textile environment what methods or processes can
be applied to enable ML based data abstraction and
processing.

• Specification and formalisation of textile driven proper-
ties to support fabric AI systems.

• The need to further investigate research around the veri-
fication of Fabric AI approaches, delving into trustwor-
thy and explainable Fabric AI.

AI technologies have developed at a much quicker pace over
the past few years, it’s now time for the e-textiles domain
to embrace such advancements and build on core defined
elements and properties in order to stem new and exciting
research driven innovations in the e-textiles domain.
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