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ABSTRACT With the development of AI technology, the parameters and calculation overhead of advanced
models have increased exponentially, resulting in the existing low-end GPU(Graphic Processing Unit) being
unable to meet the computing power required for model operation. In order to speed up the inference
speed in edge scenarios, various manufacturers have launched NPU(Neural Processor Unit), a special chip
for neural networks, which can improve the overall inference efficiency and reduce energy consumption
through a certain loss of precision. However, in the current common edge-side solutions, the problem of
CPU+GPU+NPU co-processing is not well considered. At the same time, edge-side devices are more easily
affected by the ambient temperature. In this paper, CPU+GPU+NPU is used to jointly process edge-side
inference tasks, and we first established a heterogeneous device temperature perception model based on
the ambient temperature of the edge device, then proposed a TAS(temperature-aware schedule) algorithm
to control the running speed of the heterogeneous device, and then proposed a task scheduling algorithm
for the heterogeneous device, namely TASTS(TAS-based task schedule). At the same time, we also use
a hungarian matching algorithm to optimize the final result. This paper finally verified several models in
real edge environment, found that it can improve the performance by 20-50% compared with conventional
methods under temperature constraints.

INDEX TERMS Heterogeneous computing, schedule, temperature-aware.

I. INTRODUCTION
With the rapid advancement of global science and technology,
artificial intelligence plays a role in more and more fields,
such as smart machines, smart homes, smart phones, etc.
The operating speed, application scenarios and equipment
configurations are gradually improving, and the edge devices
must process a large amount of image and video information.
With the increase of images, frame numbers, and resolutions,
the demand for high-performance and high-speed hardware
is also gradually increasing [1], [2], [3].

In the past ten years, convolutional neural network [4]
has become an irreplaceable tool due to its excellent perfor-
mance on some complex image problems, including image
classification [5], object detection [6] and semantic segmen-
tation [7], the influence of convolutional neural network has
gone beyond academia, and it has been continuously applied
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in industry, such as some real-time processing tasks such as
automatic driving, intelligent robot and intelligent camera
technology [8].

However, cloud devices have problems such as poor inter-
face flexibility, dependence on data networks, and time-
consuming communication, which cannot meet the require-
ments of some systems for power consumption and portabil-
ity. Terminals equipped with artificial intelligence chips are
centered on engineering applications and have strict require-
ments on software and hardware modules and power con-
sumption costs.

At the same time, the complexity of the environment where
the inference task is located may affect the performance of
the edge device, and it is necessary to control the power
consumption of each processor in the edge device to ensure
the smooth operation of the edge device.

At present, the edge device mainly adopts the CPU+GPU
solution(CPU:Central Processing Unit, GPU:Graphics Pro-
cessing Unit), and the NPU(Neural Processor Unit) has not
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been widely used in edge scenarios. CPU+GPU heteroge-
neous computing has many limitations at the edge, including
limited inference speed and high energy consumption. The
NPU can not only effectively solve the above-mentioned
problems and accelerate inference task, but also can reduce
power consumption. At the same time, the environmental
load on the edge side, especially the ambient temperature will
seriously affect the operating efficiency of the device, and the
existing research rarely considers the impact of this problem.

The contributions of this paper mainly include:
1. According to the ambient temperature and processor

power, the temperature model of the edge device under tem-
perature constraints is established.

2. Combined with the temperature model, a temperature-
aware schedule algorithm to control the running speed of the
heterogeneous device is proposed, namely TAS.

3. According to the TAS algorithm, we establish the
heterogeneous task scheduling algorithm, namely TASTS
(TAS-based task schedule).

4. Propose an overall heterogeneous scheduling framework
that uses NPU to improve overall efficiency and reduce power
consumption, uses GPU to reduce precision loss, and uses
CPU to schedule tasks and optimize results

5. Propose a collaborative optimization algorithm to pro-
cess the detection frame obtained by NPU inference, and
match and merge the detection frame obtained by Hungarian
matching algorithm and GPU, so as to achieve the optimal
inference effect.

The organization structure of this paper is as Figure 1.
The Section I is introduction, the Section II is related work,
the Section III is modeling, the Section IV is system and
algorithm design, the Section V is test and analysis, and
finally, the Section VI is conclusions.

II. RELATED WORK
A. NEURAL NETWORK PARALLEL TECHNOLOGY
With the rapid development of neural network, the lay-
ers number of neural network continues to deepen, and
the amount of parameters and calculations also continue to
increase. The number of parameters in AlexNet [9] is about
60 million, and the number of parameters in VGG16 and
VGG19 [10] are 138 million and 143 million respectively,
while the number of parameters of ResNet [11] reaches
3.6 billion. Faced with such a huge amount of parameters
and calculations, if only the original training and inferencing
methods are used, the convergence time of neural network
training and inference delay will be longer, which cannot
meet the user’s delay requirements.

Based on this situation, in recent years, researchers have
proposed the concept of distributed machine learning [12].
Distributed machine learning refers to the division of large-
scale models or parameters, and the training of neural
networks by using multiple processors at the same time.
At present, neural networks mainly have two parallel meth-
ods: data parallelism [13] and model parallelism [14].

FIGURE 1. The structure of this paper.

Yadan et al. [15] used both data parallelism and model
parallelism to train convolutional neural networks on multi-
ple GPUs. The experimental results showed that the mixed
parallelism achieved faster convergence than the single paral-
lelism. Wu [16] et al. proposed GNMT, which uses the atten-
tion mechanism to connect the bottom layer of the decoder
and the top layer of the encoder, and divides the encoder
and decoder networks along the depth dimension and places
them on multiple GPUs. Mirhoseini [17] and others pro-
posed ColocRL, which achieved a 19.7% improvement in the
training speed of deep neural networks compared to other
traditional methods. Jia [18] and others proposed Opt CNN,
which uses an effective algorithm to find the globally optimal
parallelization strategy and realize support for hierarchical
parallelism.

Existing distributed machine learning methods pay more
attention to large server clusters, and pay less attention to par-
allel inferencing on small edge devices. Most of the parallel
methods used in the above are homogeneous processors, and
heterogeneous processors are not considered.

B. HETEROGENEOUS COMPUTING TECHNOLOGY
Heterogeneous computing mainly refers to the computing
method that uses a variety of computing units with differ-
ent structures to jointly execute the same relatively complex

54774 VOLUME 11, 2023



X. Gao: TAS: A Temperature-Aware Scheduling for Heterogeneous Computing

algorithm in the same system. The more common heteroge-
neous structure is the heterogeneity of the CPU and GPU.
Due to the structure is different, and there are also significant
differences in performance. The CPU is mainly used as a
control unit, which plays a basic control and management
role. The GPU is mainly used as a computing unit, and
is more responsible for calculating complex floating-point
operations or matrix operations. In addition to these two
computing units, ASIC, FPGA, and NPU have also joined the
ranks of heterogeneous computing in recent years, and their
computing power has greatly improved compared to CPU
computing power and performance parameters.

Lane et al. proposed DeepX [19], a collaborative infer-
ence method for multiple heterogeneous processors in mobile
devices. Deep X decomposes the deep neural network into
various types of unit blocks, and divides each unit block
according the characteristics to CPU and GPU respectively,
and the network is compressed according to the perfor-
mance of the processor to adapt to the computing power of
the processor. Kim [20] et al. proposed µlayer , a parallel
inference method for single-layer neural networks based on
mobile devices. Zhang et al. [21] proposed Fine Par, a fine-
grained calculation division method for matrix operations,
and put most of the calculations with fewer non-zero bits on
the GPU. Wang et al. [22] studied the use of heterogeneous
mobile devices for distributed deep neural network training
in federated learning [18], and used an efficient polynomial
time algorithm to schedule different workloads on different
mobile devices.

C. ENERGY AND TEMPERATURE AWARE SCHEDULE
There are many papers address the challenge of energy-
efficient and temperature-aware scheduling on heteroge-
neous platforms, with different approaches and trade-offs.
Moulik et al. presents a low-overhead heterogeneous multi-
core scheduler for real-time periodic tasks [23]. The pro-
posed scheduler utilizes a novel task mapping algorithm,
which minimizes the cache miss rate and reduces contention
among cores while achieving high performance. Nair P P et
al. proposes Fest, a fault-tolerant energy-aware scheduling
approach for two-core heterogeneous platforms [24]. Fest
maximizes energy efficiency by utilizing dynamic voltage
and frequency scaling (DVFS) techniques while ensuring
fault tolerance via replica-based scheduling. Moulik et al.
introduces TARTS, a temperature-aware real-time deadline-
partitioned fair scheduler that considers both real-time and
thermal constraints [25]. The proposed scheduler partitions
the available resources into multiple virtual CPUs and assigns
priorities based on the deadline of each task and the temper-
ature of the corresponding CPU.

Singh et al. proposes a semi-partitioned scheduler that
partitions the cores into two groups and schedules tasks
accordingly to reduce energy consumption [26]. Hussain et
al. proposes a scheduler that considers both temperature and
energy constraints while scheduling tasks on heterogeneous

platforms [27]. Kumar and Kumar eproposes a cluster-based
approach that schedules tasks based on their criticality and
their placement in different clusters [28]. M. Lim et al.
proposes a hybrid approach that combines dynamic voltage
frequency scaling and taskmigration tominimize energy con-
sumption while meeting timing constraints and temperature
limits [29]. Rahman et al. proposes a fault-tolerant sched-
uler that assigns tasks to two types of cores with different
performance levels, while meeting energy and temperature
constraints [30]. Li et al. proposes a cluster-based scheduler
that considers both energy and temperature awareness along
with task criticality [31].

Overall, these papers address the challenge of energy-
efficient and temperature-aware scheduling on heterogeneous
platforms, with different approaches and trade-offs. However,
they did not consider edge heterogeneous acceleration device
scenarios such as NPU in their researchs.

D. SUMMARY
Problems existing in the current edge heterogeneous solution:

1) The environment of the edge scene is complex, and the
stability of the device is very high, especially the ambient
temperature.Many existing scheduling algorithms do not take
this issue into consideration.

2) GPU is a special engine for image processing, which
has higher computing density and parallel computing char-
acteristics. However, AI computing only requires the paral-
lel computing capability of GPU, not its graphics rendering
capability. Moreover, the cost of GPU is high, and it generates
a lot of heat. For the problem of high power consumption, the
resources at the edge end are already limited, and its power
consumption needs to be further reduced.

3) Compared with GPU, NPU is more suitable for neural
network inference and has higher energy efficiency ratio.
However, the existing NPU uses quantization technology to
convert float models into data such as int8 or int16 to reduce
inference time. The cost of computing power and energy
consumption is a certain loss of precision. Existing work does
not consider how to reduce or avoid these losses.

III. MODELING
In addition to being widely used in daily life, tasks such as
neural network inference are also widely used in industrial
production, such as product quality inspection, equipment
flaw detection and other fields, and these application fields
often have the characteristics of high ambient temperature.
Therefore, it is necessary to set the power consumption of the
device processor according to the ambient temperature, so as
to ensure the stable operation of the device. For a edge device
D equipped with CPU, GPU and NPU, the relevant attributes
in the device are shown in the table 1.

A. TEMPERATURE MODEL
This section focuses on the establishment of the temperature
model for a edge device D, which shows the relationship
between temperature and speed.
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TABLE 1. Math symbols.

The clock frequencies (cycles per second) of the CPU,
GPU and NPU in device D are FC , FG, FN . The number
of floating-point operations per cycle is OC , OG and ON .
The floating-point operation speed (times/second) can be
respectively:

SpeedC = FCOC (1)

SpeedG = FGOG (2)

SpeedN = FNON (3)

The power consumption of the edge device is composed of
the standby power consumption of the device itself and the
power consumption generated by the processor in the device
when it is running. The power consumption of a processor
is related to the clock frequency of the processor, and the
correspondence between them can be expressed as:

Powerp = µF3 (4)

Powerp represents the power consumption of the processor,
µ is a processor architecture-determined. The power con-
sumption of CPU, GPU and NPU in device D is:

PowerC = µC (
SpeedC
OC

)3 = χCSpeed3C (5)

PowerG = µG(
SpeedG
OG

)3 = χGSpeed3G (6)

PowerN = µN (
SpeedN
ON

)3 = χNSpeed3N (7)

Base on the equations 5, 6, 7, the power consumption
of the processor is positively correlated with the floating-
point operation speed of the processor. Therefore, the power
consumption of the processor can be adjusted by changing
the floating-point operation speed of the processor.

The relationship between the standby power consumption
of the device and the environment and the device voltage can
be approximated by the performance model as:

T = λ1Tenv + λ0 (8)

Poweridle = VT = V (λ1Tenv + λ0) (9)

The Poweridle standby the power consumption of device D,
V is the voltage of the device, Tenv is the ambient temperature,
the coefficients λ1 and λ0 are related to the performance of
the device. It can be seen from equation 9 that the standby
power consumption of the device is related to the ambient
temperature of the device and the voltage of the device.When
the ambient temperature of the device is high, the standby
power consumption of the device will also be high. Then, the
total power consumption of device D can be expressed as:

Power = Poweridle + PowerC + PowerG + PowerN
= V (λ1Tenv + λ0)+ χC (SpeedC )3

+ χG(SpeedG)3 + χN (SpeedN )3 (10)

So, for device D, its power consumption is affected by the
floating-point speed of the CPU, GPU and NPU in the device,
as well as the ambient temperature. According to the thermal
circuit model, the temperature of the device can be expressed
as a function related to the power consumption of the device.
The temperature of the device at time t can be expressed as:

T (t) = Tenv(t)+ PowerR

= (1+ VRλ1)Tenv(t)+ RχC (SpeedC )3

+ RχG(SpeedG)3 + RχG(SpeedN )3 + VRλ0

= κ1Tenv(t)+ κ2(SpeedC )3 + κ3(SpeedG)3

+ κ4(SpeedN )3 + κ0 (11)

For the equation 11, the R represent thermal resistance.
To make the device work stably for a long time, the tem-
perature of the device should always be lower than its maxi-
mum stable working temperature TMAX . Correspondingly, the
floating-point operation speed of the CPU, GPU and NPU in
device D should obey the constraint:

κ2(SpeedC )3 + κ3(SpeedG)3 + κ4(SpeedN )3

≤ Tmax − κ1Tenv(t)− κ0 (12)

B. HETEROGENEOUS TASK ASSIGNMENT
This section mainly divides computing tasks according to the
performance of heterogeneous processors in edge devices and
the structural characteristics of each layer in neural networks.
For a neural network G, the parameters in the device are
shown in the table 1.

For a neural network Gwith n layers, L = {L1,L2, . . . ,Ln}
is the set of layers in G, where Li ∈ L is the i-th layer
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in G. C = {C1,C2, . . . ,Cn} is the calculation amount of
each layer in G, where Ci ∈ C is the calculation amount
of the i-th layer in G. CC

= {CC
1 ,CC

2 , . . . ,CC
n }, C

G
=

{CG
1 ,CG

2 , . . . ,CG
n } and C

G
= {CN

1 ,CN
2 , . . . ,CN

n } represent
the calculation amount of each layer of CPU, GPU and NPU
when executing the inference task of neural networkG,where:

Ci = CC
i + C

G
i + C

N
i , i ∈ {1, 2, 3 . . . , n} (13)

For layer Li, when both CPU, GPU and NPU are used
to perform calculations on this layer, if the layer is a con-
volutional layer or a fully connected layer with the number
of convolution kernel channels K, the CPU, GPU and NPU
will perform convolution calculations on the input data using
convolution kernels ofKC ,KG andKN channels respectively,
where K = KC

+ KG
+ KN . Then, the calculation amount

of CPU, GPU and NPU at this layer can be expressed as:

CC
i =

KC

K
Ci (14)

CG
i =

KG

K
Ci (15)

CN
i =

KN

K
Ci (16)

Therefore, for layer Li, using CPU, GPU and NPU to
perform the calculation of this layer at the same time, the

time required to perform calculations are
CCi

SpeedC
,

CGi
SpeedG

and
CNi

SpeedN
, respectively. Then, the latency of executing layer L in

parallel can be expressed as:

tPi = max{
CC
i

SpeedC
,

CG
i

SpeedG
,

CN
i

SpeedN
} (17)

The latency is the lowest when the
CCi

SpeedC
=

CGi
SpeedG

=

CNi
SpeedN

. So, the lowest execution time of layer Li is:

ti =
n∑
i=i

min{tPi , tCi , tGi , tNi } (18)

The tCi =
Ci

SpeedC
, tGi =

Ci
SpeedG

and tNi =
Ci

SpeedN
is

the time required to execute layer Li using only CPU, GPU
and NPU, respectively. Then, in order to obtain the lowest
inference delay of the neural network G, it is necessary to
load-distribute the computing tasks of each layer in G, so that
the inference delay of each layer in G is the lowest.

The heterogeneous inference problem of edge equipment
under temperature constraints can be transformed into an
optimization problem subject to certain constraints:

n∑
i=i

min{(tPi + t
m
i ), t

C
i , tGi , tNi }, i ∈ {1, 2, . . . , n}

s.t. κ2(SpeedC )3 + κ3(SpeedG)3

+κ4(SpeedN )3 ≤ A

A = Tmax − κ1Tenv(t)− κ0

SpeedC ≤ SpeedCmax

FIGURE 2. Overall architecture.

SpeedG ≤ SpeedGmax
SpeedN ≤ SpeedNmax

tPi =
CCi

SpeedC
=

CGi
SpeedG

=
CNi

SpeedN
(19)

The SpeedCmax , Speed
G
max , Speed

N
max represents the maxi-

mum floating-point operation speed of CPU, GPU and NPU
in D respectively, Pmax represents the maximum power con-
sumption. It is necessary to maximize the computing power
of the device by setting the floating-point operation speed
of the CPU, GPU and NPU under the power consumption
and temperature constraints of the device, and minimize the
single-layer inference time of each layer by allocating the
computing load of each layer in the neural network, so as to
obtain the lowest delay inferred by the neural network of the
terminal device, and ensure the long-term stable operation of
the device.

IV. SYSTEM AND ALGORITHM DESIGN
The overall system architecture is shown in the Figure 2.

From the architecture diagram, we can see that the overall
architecture can be divided into three parts:

1. TAS module: the main function is to calculate the oper-
ating speed of CPU, GPU and NPU that are most suitable for
the current ambient temperature according to the TAS model
established previously

2. Scheduling module: according to the chip running speed
determined by the TASmodule, the tasks of each layer can be
further scheduled to GPU and NPU for execution according
to the task scheduling algorithm

3. Optimization module: according to the inference result
of GPU, lower the confidence threshold of NPU and match it
with the inference result of GPU combined with Hungarian
matching algorithm. Through this joint optimization, reduce
the precision loss caused by NPU inference

A. TEMPERATURE AWARE ALGORITHM
In order to achieve the optimization goals, this paper pro-
poses a temperature-aware scheduling algorithm, TAS, and
the main algorithm flow is shown in the algorithm 1.
When device D receives an inference task from a neu-
ral network G, it first judges according to the ambient
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temperature. If the device can perform the task with max-
imum performance under this temperature, the floating-
point operation speed of the CPU, GPU and NPU is set to
SpeedCmax , Speed

G
max , Speed

N
max ; otherwise, the algorithm will

adjust the floating-point speed of the CPU, GPU and NPU to
meet the temperature constraints. This paper uses a fast multi-
parameter search strategy based on binary search to quickly
set the floating-point operation speed of CPU, GPU andNPU.

The complexity of judging whether the maximum floating-
point operation speed conforms to the constraint is O(1), and
the complexity of adjusting the CPU and GPU floating-point
operation speed is O(log(SpeedCmax+Speed

G
max+Speed

N
max)),

therefore, the complexity of algorithm 1 is O(log(n)).

Algorithm 1 TAS Algorithm

Data: SpeedCmax , Speed
G
max , SpeedmaxN ,Power idle,

Tmax ,Tenv
Result: SpeedC , SpeedG, SpeedN
# If the current system temperature meets the threshold,
the GPU and NPU can be at the maximum speed
if κ2(SpeedC )3 + κ3(SpeedG)3 + κ4(SpeedN )3 ≤
Tmax − κ1Tenv(t)− α0
then

SpeedC = SpeedCmax
SpeedG = SpeedGmax
SpeedN = SpeedNmax

else
# If the current temperature exceeds the threshold, find
the maximum CPU, GPU and NPU speed under the
temperature threshold according to the dichotomy

SpeedClow = 0, SpeedGlow = 0, SpeedGlow = 0
SpeedChigh = SpeedCmax , Speed

G
high = SpeedGmax

SpeedNhigh = SpeedNmax
SpeedC =

SpeedCmax
2 , SpeedG =

SpeedGmax
2

SpeedN =
SpeedNmax

2
while α2(SpeedC )3 + α3(SpeedG)3 + α3(SpeedN )3 not in
[F - σ , F]
do

Using the binary search to get the result
return SpeedC , SpeedG, SpeedN

B. HETEROGENEOUS TASK ASSIGNMENT
When we get the GPU and NPU floating-point operation
speed base on the temperature, we need to allocate comput-
ing load according to the computing performance of CPU
and GPU, as well as the computing volume and structural
characteristics of each layer in the neural network. The detail
algorithm is shown as algorithm 2.
Algorithm 1 output the floating-point operation speed of

GPU and NPU. Then for the neural network G, which may
contain the convolutional layer, fully connected layer and
pooling layer, it needs to determine how to distribute the
workload between GPU and NPU. In algorithm 2, we first

distribute workload for each layer based on the floating-point
operation speed of GPU and NPU. Then according the dis-
tributed load of GPU and NPU, it can get the inference delay
of each layer in the neural network using parallel computing
(GPU + NPU), tPi . Then we can calculate the latency when
only using the GPU or NPU, tGi , tNi . Then we compare the
latency, when the tPi is the lowest, we will use the parallel
computing (GPU + NPU), otherwise we will only use GPU
or NPU. The complexity of Algorithm 2 is O(n).

Algorithm 2 TAS-Based Task Schedule(TASTS)
Data: SpeedC , SpeedG, SpeedN , each layer load Ci for

neural network G
Result: CG,CN

for i = 1 to n do
# Initialize the task allocation ratio of each layer of

GPU and NPU according to the running speed of NPU
and GPU set in algorithm 1

CG
i ←−

CiSpeedG
SpeedG+SpeedN

CN
i ←−

CiSpeedN
SpeedG+SpeedN

# If the current GPU processing time delay is
minimum

if min{tPi , tGi , tNi } = tGi then
CG
i ←− Ci, CN

i ←− 0
# If the current NPU processing time delay is

minimum
else if

CN
i ←− Ci, CG

i ←− 0
# If the current GPU and NPU work together to

minimize the time delay
else

break
return CG,CN

C. OPTIMIZATION
For the inference results obtained by NPU and GPU, the
Hungarian algorithm is used to match the inference results on
the CPU side. The main matching principles are as follows:

1. GPU and NPU speculate different frames respectively
2. The threshold of GPU is set higher to ensure the detec-

tion accuracy
3. The threshold of NPU is set low to get more detection

frames
4. Match the detection frames of the two and filter out

inaccurate frames

V. TEST AND ANALYSIS
In the previous algorithm 1 and 2, we set the floating-
point operation speed of the processor under the temperature
constraint, and at the same time assign tasks accord-
ing to the speed and the structure of each layer of the
neural network. In our experiment, we use the XiaoMi
11 mobile phone, which has Qualcomm Kryo 680 CPU
with 1.8GHz, Qualcomm Adreno 660 GPU with 1.8GHz,
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FIGURE 3. Device temperature and frequency under 20◦C .

FIGURE 4. Device temperature and frequency under 40◦C .

QualcommHexagon 780 NPU with 1GHz.The model we use
is YOLOV5sVGG16 and AlexNet.

In this paper, we first conduct experiments at room tem-
perature of 20◦C, and observe the temperature changes
of the device after using the CPU, GPU, NPU, and
CPU+GPU+NPU simultaneously for a period of time.
As shown in Figure 3, with the operation of the device, the
temperature gradually increased and gradually stabilized to
around 70◦C. During the entire running process, the CPU,
GPU, NPU, and when using CPU+GPU+NPU at the same
time, its clock frequency can always maintain a stable max-
imum value, mainly because the device temperature has not
reached the maximum operating temperature.

Next, the effect of high-temperature environments on
device performance was observed at higher ambient temper-
atures. The Figure 4 shows the calculation using all CPU,
GPU,GPU at an ambient temperature of 40◦C. It can be found
that with the operation of the device, the temperature of the
device rises rapidly, and after a period of time, it has exceeded
80◦C. At this time, the clock frequency of the CPU, GPU
and NPU also began to fluctuate, and the clock frequency
of the CPU dropped from the initial 1800MHz to 1150MHz,
the clock frequency of the GPU dropped from the initial
1800MHz to 1450MHz, the clock frequency of the NPU
from the initial 1000MHz to 620MHz, indicating that the
ambient temperature has a significant impact on the terminal
equipment.

FIGURE 5. Device temperature and frequency with
temperture-aware(TAS) under 40◦C .

FIGURE 6. AlexNet performance.

Finally, through the TAS algorithm proposed in this paper,
after setting the temperature threshold to [78,80], the opti-
mal CPU, GPU, GPU floating-point operation speeds under
this temperature threshold are calculated in an environment
with a room temperature of 40◦C. After setting the clock
frequency of CPU, GPU and NPU as 1580MHz, 1650MHz
and 800MHz respectively, Figure 5 shows the experimental
results under this setting. Under this setting, as the device
continues to operate, the temperature of the device continues
to rise, and finally reaches a stable temperature around 78.5◦C
and fluctuates around this temperature. During the operation,
the processor always maintains a stable clock frequency,
no frequency drop occurred.

The above experiments show that by controlling the clock
frequency of the processor of the edge device, the power con-
sumption of the device can be adjusted, thereby adjusting the
temperature of the device during operation. Therefore, in the
neural network inference of intelligent terminal equipment,
by setting the GPU and NPU floating point operation speed
of the equipment according to the temperature constraints, the
stable operation of the equipment can be guaranteed and the
performance of the equipment can be improved.

The Figure 6, 7 and 8 shows the results of the above four
methods of inference for the AlexNet, VGG16 and Yolov5s
models. We can find that compared with a single processor,
the GPU+NPU method has better performance in most sce-
narios, but due to the fixed task distribute ratio, each model
layer is not well considered the characteristics and power
consumption issues, so there is a scenario where the delay is
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FIGURE 7. VGG16 performance.

FIGURE 8. Yolov5s performance.

greater than that of a single processor. The TAS algorithm in
this paper dynamically changes the running speed of the pro-
cessor according to the ambient temperature, so as to ensure
the optimal running speed without affecting the performance.
At the same time, according to the task amount of each
layer and the current processor Speed, dynamically adjust the
task allocation of each layer, so as to achieve the optimal
performance. From the data, we can also see that in the
AlexNet, VGG16 and yolov5s scenarios, the average delay of
the our temperature-aware CPU+GPU+NPU schedule(TAS)
can get 20-40%, 16.6-29.9% and 29-50% performance bene-
fit compared with traditional operation method.

VI. CONCLUSION
In order to solve the problems of weak processor perfor-
mance of terminal devices and high inference delay of neural
network, heterogeneous collaborative inference acceleration
devices such as CPU + GPU/NPU have been proposed.
However, the architecture and technical implementation of
heterogeneous devices are different, and it is necessary to
combine the characteristics of the model to perform optimal
scheduling of inference tasks. At the same time, the com-
plexity of the environment where the task is located may
affect the performance of the edge device. Therefore, this
study conducts task modeling based on the heterogeneity
of edge device, and constructs a temperature-based energy
consumption constraint model. Finally, a task scheduling

algorithm TAS (Thermal Aware Schedule) based on het-
erogeneous devices is proposed. Through multiple sets of
experiments, it is proved that the scheme in this study has
higher performance under energy consumption constraints.
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