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ABSTRACT Recent developments in deep learning have contributed to numerous success stories in
healthcare. The performance of a deep learning model generally improves with the size of the training
data. However, there are privacy, ownership, and regulatory issues that prevent combining medical data into
traditional centralized storage. Decentralized learning approaches enable collaborative model training by
distributing the learning process among several nodes or devices. Conceptually, decentralized learning builds
on earlier work in distributed optimization, but the focus of this paper is on recent and emerging techniques
such as Federated Learning (FL), Split Learning (SL), and hybrid Split-Federated Learning (SFL). With
common, universal deep learning models and centralized aggregator servers, FL overcomes the difficulties
of centralized training. Additionally, patient data remains at the local party, upholding the security and
anonymity of the data. SL enables machine learning without directly accessing data on clients or end devices.
It further enhances privacy in a decentralized setting and mitigates clients’ storage issues. In this survey,
we first provide a contemporary survey of FL, SL, and SFL approaches. Second, we discuss their state-of-
the-art applications in healthcare, particularly in medical image analysis. Third, we review these emerging
decentralized learning approaches under challenging conditions such as statistical and system heterogeneity,
privacy preservation, communication efficiency, fairness, etc. Then, we address existing approaches to
tackle these challenges. We detail unique complications related to healthcare applications including data,
privacy and security, and communication challenges. Finally, we outline potential areas for further research
on emerging decentralized learning techniques in healthcare, including developing personalized models,
reducing bias, incorporating hybrid non-IID features, hyperparameter tuning, developing sufficient incentive
mechanisms, and incorporating domain expertise knowledge.

INDEX TERMS Data privacy, federated learning, hybrid split-federated learning, split learning, healthcare.

I. INTRODUCTION
Deep learning has demonstrated promising outcomes in
healthcare applications that support clinical data-based med-
ical diagnosis and treatment decisions. It helps with text
detection in medical laboratory reports, brain tumor seg-
mentation and classification in Magnetic Resonance Imaging
(MRI) scans, cancer diagnosis and prognosis, and many other
tasks [1]. When developing deep learning models, a large
amount of training data is needed for reliable performance.
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In the healthcare domain, such training data are obtained
from various clinical resources such as biological sensors,
clustered patients, hospitals, medical research institutions,
pharmaceutical companies, etc. In the clinical setting, access-
ing healthcare data for training a specific deep learning
model is challenging. Normally, the amount of data related
to a specific disease/condition in a single institution is lim-
ited, while obtaining data from other institutions is compli-
cated due to privacy and data protection-related regulations.
In Canada, medical data are subject to the Personal Infor-
mation Protection and Electronic Documents Act (PIPEDA)
and also Provincial Privacy Laws such as British Columbia’s
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E-Health (Personal Health Information Access and Protec-
tion of Privacy) Act, Alberta’s Healthcare Information Act,
and Manitoba’s Personal Health Information Act.1 Data pri-
vacy has been termed as the ‘‘most important issue in the next
decade’’ [2]. It has gained prominence as a result of laws like
the California Consumer PrivacyAct (CCPA) and theGeneral
Data Protection Regulation (GDPR) of the European Union.2

Thus, considerable effort is required to enable model training
on private data, such as patients’ medical records.

In the machine-learning literature, several solutions for
data privacy-related issues have been established. Homomor-
phic encryption [3], differential privacy [4], Private Aggrega-
tion of Teacher Ensembles (PATE) [5], and secure multiparty
computation [6] are traditional techniques for data privacy in
Artificial Intelligence (AI). Federated Learning (FL) [7] is a
more recent technique, involvingmultiple clients/institutions,
each with their own data. By retaining the data locally
at each client, FL enables model training using data from
many institutions while avoiding data sharing and the chal-
lenges associated with establishing and maintaining large
central databases. Although FL addresses the issues with data
sharing, it is not without its own challenges. For example,
FL assumes that each institution has sufficient computational
resources to train its own version of the full deep model
(called a local model), which is not always realistic.

Split Learning (SL) [8] was developed to tackle some of the
challenges associated with FL, specifically those involving
computational resources. SL allows medical institutions to
implement only a portion of the model on the hardware
resources available to them, while the majority of the compu-
tation is carried out at a remote server. At the same time, orig-
inal data can be kept at each institution to preserve privacy.
The amalgamation of FL algorithms with the SL framework
facilitates a combination of these approaches, where multiple
institutions/clients with limited resources can participate in
training a large model. Our objective in this paper is to survey
the FL, SL, and emerging hybrid Split-Federated Learning
(SFL) approaches in healthcare. There are numerous chal-
lenges to such learning due to data properties (e.g., imbal-
anced or non-identically distributed data at different clients),
privacy (embodied in various attacks), hardware heterogene-
ity, etc. We will review these issues throughout this survey
article.

There are several related surveys on FL and SL in the
literature, but relatively few focus on healthcare, particu-
larly medical image analysis. Moreover, SFL, as a more
recent concept, has not been reviewed in detail. Yang et al. [9]
summarized the early FL literature for general privacy-
preserving techniques. Kulkarni et al. [10] highlighted the
need to personalize global models to work better for indi-
vidual clients. Jin et al. [11] provided a brief overview of
the most common semi-supervised FL algorithms, detailing
potential approaches, contexts, and difficulties. Lim et al. [12]

1https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada
2https://www.osano.com/articles/data-privacy-laws

presented applications of FL for mobile edge network opti-
mization. A survey of the research addressing communication
constraints in FL has been presented in [13]. A survey of FL
threats has been presented in [14], highlighting the intuition,
various approaches, and fundamental premises of various
attacks. The authors in [15] provided a detailed analysis of
recent advances and open problems in FL.

In addition, [16] discussed the current state of FL in health-
care. The reference [17] presented a comprehensive review
of FL in healthcare from the perspective of data properties
and applications. Chowdhury et al. [18] reviewed FL in the
field of oncology with its associated future clinical directions.
Majorly focusing on the biomedical space, [19] presented
their survey showing the challenges and potential solutions.
Rieke et al. [20] explored how FL may benefit the future
of digital health. Recently, [21] provided a detailed review
of the current and future research trends of FL on medical
applications, highlighting FL’s statistical problems such as
device challenges, security, privacy concerns, etc.

As seen above, the concept of FL has been reviewed exten-
sively in the recent literature, even in the area of healthcare.
However, SL, and especially SFL, have yet to be thoroughly
reviewed. This is where our survey paper differs from existing
literature on the topic, as we survey all three emerging decen-
tralized learning paradigms – FL, SL, and SFL – in the context
of healthcare. This allows us to draw parallels and explore the
benefits and weaknesses of all three learning methodologies
from the point of view of healthcare. We focus particular
attention on medical image analysis, one of the main areas of
healthcare research.We review the existing publicly available
datasets that can be used in medical image analysis research.
To the best of our knowledge, this is the first survey to present
a unified treatment of existing FL, SL, and SFL approaches
with a view towardmedical image analysis, alongwith related
datasets.

The structure of the paper is as follows. Section II presents
the preliminaries on centralized and decentralized learning
needed for the remainder of the paper. Section III reviews
the applications in healthcare from existing literature on FL,
SL, and SFL, with a special view toward medical image
analysis. The general challenges faced by the three emerg-
ing decentralized learning paradigms and proposed solutions
are discussed in Section IV. Section V discusses challenges
specific to healthcare, current trends, and possible future
research directions. Finally, Section VI concludes the paper
with a summary of the main conclusions.

II. PRELIMINARIES
This section contains descriptions of the survey’s primary
topics. We describe centralized machine learning and decen-
tralized machine learning, which are federated learning, split
learning, and hybrid split-federated learning, in-depth.

A. CENTRALIZED MACHINE LEARNING
Centralized machine learning is carried out at one location,
usually a powerful server or the cloud. The basic premise
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FIGURE 1. Centralized machine learning and inference.

is that all data is available at that location. In a healthcare
setting, this means that all clients (clinics, hospitals) need
to transmit their labeled data to the server where the global
model is being trained. Upon training, the inference may
also be carried out at the central server, especially if the
clients lack the computational infrastructure to run the model.
In this case, clients may upload their data to the server and
get inference/prediction results back from the server. This
framework is illustrated in Fig. 1. Health service providers
have used cloud-centralized frameworks, such as Microsoft
Azure Healthcare, to promote healthcare solutions.

While centralized solutions address the lack of powerful
computational infrastructure for the clients, the main issue
with their use is the protection of health data. Both training
and inference require uploading data to another location,
which may be in a different jurisdiction and subject to dif-
ferent (if any) health-related privacy protection regulations.
For this reason, centralized machine learning (and inference)
in healthcare may not be feasible except in very special cases.

B. DECENTRALIZED MACHINE LEARNING
Decentralized learning can alleviate issues with data protec-
tion by keeping data at the clients. In the most basic setting,
each client would train its own local model. However, this
type of solution has many drawbacks. First, clients might not
have the infrastructure to train large models, so they would
be forced to compromise on the ultimate accuracy of their
model, compared to a larger centrally-trained model. Second,
since local models are trained only on the client’s local data,
they will likely not generalize as well as a centrally-trained
model with access to more data. Finally, having different
models for different clients may cause inequity in health
outcomes, as the clients with more data (e.g., those in urban

FIGURE 2. Ensembling as a form of distributed inference.

centers with larger populations and better infrastructure) are
likely to end up with better, more accurate models.

Although different local models can be pooled together
through ensembling techniques [22], this would still require
sharing data and/or predictions from different clients. A sim-
ple version of ensembling is illustrated in Fig. 2, where
predictions made by the different local models are aggre-
gated at the central server, but for this to work, local models
would have to operate on the same input. Federated Learning
(FL) [7] was developed as a decentralized learning strategy
that avoids such data sharing, yet is able to create a model
that benefits from all clients’ data. In the remainder of this
section, we present the preliminaries of FL, as well as related
decentralized learning strategies of Split Learning (SL) and
hybrid Split-Federated Learning (SFL).

1) FEDERATED LEARNING
Federated Learning [7] is a decentralized machine learning
approach that enables multiple clients (data centers, organi-
zations, remote devices, . . . ) to train a global model with-
out sharing their data. It was first introduced by Google to
improve next-word prediction models on Android mobile
phones. In FL, a model is trained using data from different
clients, and the process is controlled by a central server,
as illustrated in Fig. 3. The basic FL procedure has the
following steps. Steps 2-5 comprise one federated round or
global epoch and are repeated until stopping criteria are met:

Step 1: The server transmits the initial model to the clients.
Step 2: Clients train their local modelswith their own data

for a certain number of local epochs.
Step 3: Each client sends the parameters of its local model

to the server.
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FIGURE 3. Illustration of federated learning.

Step 4: The server aggregates the model parameters from
various clients using an averaging scheme and
sends the aggregated parameters back to the clients.

Step 5: Clients update their local models with the aggre-
gated model.

According to [15], FL methods can be divided into
cross-silo, where FL takes place among data centers or
organizations, and cross-device, where FL takes place
among IoT/mobile devices, which have lower computational
resources. Another classification exists considering clients’
features and labels [11], [15]: horizontal FL, vertical FL, and
the federated transfer learning. In horizontal FL, datasets at
different clients share the same feature space, but different
label spaces. An example would be different units in the
same hospital, which use the same input data (patients’ health
records) but are interested in different diagnostics and/or
outcomes. In vertical FL, clients share the same label space,
but different feature spaces. An example would be oncology
units in different hospitals or health authorities, which are
interested in the same outcomes but may differ in the type of
patient data they have access to. Finally, in federated transfer
learning, neither feature space nor label space is shared across
clients. An example would be the generic problem of ‘‘cancer
detection’’ across different hospitals or health authorities.
While available inputs and expected outputs may differ across
different clients, knowledge of common characteristics of
cancer may be transferable and useful for each client’s model.

FL can be applied to any machine learning model,
although the focus in the current literature is on Deep
Neural Networks (DNNs). Examples include Multi-Layer
Perceptron (MLP) [23], which is common for making pre-
dictions using tabular medical data; Convolutional Neural
Networks (CNNs), which are common for medical image

analysis [24], and other models such as auto-encoders [25],
Generative Adversarial Networks (GANs) [26], Long
Short-Term Memory (LSTM) networks [27], Support Vector
Machines (SVMs) [28], etc.

Although FL addresses data protection and privacy con-
cerns, it requires all clients to train their local models, which
are of the same size as the global model. This is chal-
lenging when considering modern DNNs with hundreds of
millions of parameters since the clients might not have the
required computational infrastructure and associated Infor-
mation Technology (IT) support. Another distributed learning
strategy – Split Learning – was developed to address this
computational imbalance between the clients and the server.

2) SPLIT LEARNING
In Split Learning (SL), a DNN is split into several parts,
which can be located on various devices and/or servers.
In its most basic form, a front-end of a DNN (usually the
initial few layers) is located on a client device, and a more
computationally-demanding back-end is located on a server.
SL is the learning counterpart of split inference, also known
as collaborative inference or collaborative intelligence [29],
and was introduced as SplitNN [8], where the authors have
described the split network training approaches with and
without label propagation.

Various SL configurations are possible depending on
where the data and the labels are located: simple vanilla SL,
where the client keeps its data but shares labels with the server
(Fig. 4(a)); U-shaped SL, where the client keeps both its data
and labels, without sharing with the server (Fig. 4(b)); and
SL with vertically partitioned data, which involves multiple
clients, each keeping its own data but sharing labels with the
server (Fig. 4(c)). Another classification can bemade depend-
ing on how the DNN is split between the client(s) and the
server. In horizontal SL, the split is introduced between layers
(as shown in Fig. 4), so that each layer is fully executed on
a single device/client. In vertical SL [30], layers themselves
can be split across multiple devices/clients.

The basic steps of vanilla SL (Fig. 4(a)) are outlined below.
Steps 2-5 are repeated until the stopping criteria are met.
The more sophisticated versions of SL are extensions of
this procedure, involving additional transmission of data and
gradients between the server and the client(s).

Step 1: A DNN model is split between the client and the
server, taking into account computational resources
available at the client, communication link between
the client and the server, etc.

Step 2: A batch of data is loaded and passed through the
client-side model front-end, and the features (also
known as smashed data) are computed and sent to
the server.

Step 3: The server receives the features, processes them
through the back-end, and computes the outputs.

Step 4: The server compares the outputs with the
ground-truth labels, computes error gradients, back-
propagates them through the model back-end
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FIGURE 4. Split learning configurations.

(updating model parameters along the way), and
sends the gradients from the split layer back to the
client.

Step 5: The client receives the error gradients and
back-propagates them through the front-end, updat-
ing the model parameters along the way.

In the literature, SL has been demonstrated on a number
of popular datasets such as the Modified National Institute
of Standards and Technology (MNIST) database [31], Ima-
geNet Large Scale Visual Recognition Challenge (ILSVRC)
dataset [32], and Canadian Institute For Advanced Research
(CIFAR) datasets [33], and it was shown [8] that – assuming
perfect communication links – its performance is similar to
conventional centralized learning. In practice, SL has been
used in real-world IoT settings [34], where the overhead,
training time, power consumption, and memory usage were
studied. Reference [35] described an efficient model training
in IoT systems. Their approach, termed ARES (Adaptive
Resource-Aware Split Learning for the Internet of Things),
accounted for time-varying communication link throughput
and computing resources. SplitNet [36] is an SL approach
that splits a deep network into a tree of sub-networks, which
allowed for a simple model parallelization while simultane-
ously reducing the number of parameters and computations.

SL solves the issue of computational imbalance between
the client(s) and the server that exists in FL, and in cer-
tain cases has lower communication requirements than FL.
For example, [37] found that SL is more communication-
efficient3 than FL when there are many clients or when the

3Needs to communicate fewer data.

model is large. However, unlike FL, the basic SL schemes
do not offer a way for clients to collaborate among them-
selves to increase the pool of data and potentially train bet-
ter models. For this reason, hybrid split-federated learning
(SFL) approaches were developed to combine the best of both
worlds.

3) HYBRID SPLIT-FEDERATED LEARNING
As seen above, FL and SL each have their own advantages
and disadvantages. Research has been done to combine these
two approaches to yield the best of both worlds. We will
refer to such combined approaches as hybrid Split-Federated
Learning (SFL). The overall goal of SFL is to appropriately
use the computational resources available at the clients and
the server (like SL), while allowing clients to collaborate in
model training and keep their data private (like FL).

The first reported SFL approach is SplitFed [38]. It elimi-
nates FL’s and SL’s drawbacks with their modified architec-
tural design. SFL enhances overall data privacy and model
robustness compared to that of FL and SL [34], [38], [39],
[40], [41]. An SFL model allows training better models with
enhanced performance since it combines the strengths of SL
and FL architectures.

Steps 2-10 comprise one communication round or global
round or global epoch and are repeated until stopping criteria
are met:

Step 1: Federated Server (FS) chooses a statistical model;
which is supposed to be the client-side model to be
trained (client-side global model).

Step 2: FS transmits this initial client-side global model to
several units (clients).

Step 3: Clients train their client-side models locally with
their own data (Forward propagation (FP)).

Step 4: Clients send their model features to the main
server.

Step 5: Themain server processes the forward propagation
on its server-side model separately and in parallel.

Step 6: The main server does the backpropagation (BP) on
the server-side model.

Step 7: The main server sends the gradients to the respec-
tive clients.

Step 8: The main server updates its server slide global
model.

Step 9: Each client receives the gradient update and per-
forms the back-propagation on its client-side local
model, and computes its gradients.

Step 10: Fed server updates its model.

SplitFed appears in two main variants: SplitFedv1 (SFLV1)
and the SplitFedv2 (SFLV2) [38]. In SFLV1, the number
of server-side sub-networks equals the number of clients.
SFLV2 performs sequential server-side sub-network training
over the smashed data of the clients and shares only one copy
of the sub-network on the server-side. The authors in [34]
also discussed a generalized version of SFL (SFLG) that
merges SFLV1 and SFLV2 enabling a varying number of
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FIGURE 5. Illustration of SplitFedv1 (SFLV1) approach without label
sharing.

server-side sub-networks. SplitFedv3 (SFLV3) [40] is another
new version that involves unique client-side sub-networks
and averaged server-side sub-network. The problem of catas-
trophic forgetting is avoided in SFLV3 due to averaging of the
server-side network. Fig. 5 illustrates the SFLV1 approach
without label sharing. Similar designs can be occupied for
SFLV2, SFLG, and SFLV3.

Research has been particularly done to study the effect
of client-side and server-side model synchronization. The
Multi-Head Split Learning (MHSL) approach [41], [42] stud-
ied SplitFed without client-side model synchronization. The
performance ofMLmodels that did not use client-side param-
eter aggregation was comparable to that of those that did. The
similar research Parallel SL with Split-Layer Gradient Aver-
aging and Learning Rate Splitting (SGLR) [43] discussed a
scalable SL framework. In contrast to SplitFed, the server in
SGLR broadcasted a common gradient averaged at the split
layer, simulating FL without any further client interactions.

The number of clients and servers was equal in the Feder-
ated Split Learning framework suggested in [44]. It trained
the server-side model corresponding to each client on a
separate server. Each client-server pair was simultaneously
trained. After each global round, the server-side models were
aggregated by an FS and updated on each server. This method
leveraged the PySyft and PyGrid libraries. The authors con-
firmed better accuracy and the privacy guarantee, provided
that each client has a reasonable amount of training data.
The authors in [45] showed that the vanilla SL could have
the possibility of overfitting due to the sequential nature of
training and proposed the Parallel Split Learning Concept
(PSL) that prevents overfitting.

Federated Deep Learning with Private Passport (FDL-PP)
[46] considered the layers prior to the split as private
layers and the following layers as public layers. They

suggested adopting FL in public layers to prevent any attacks
at the split. The server only aggregated the model param-
eters of the public layers. PyVertical [47] is a framework
that supports vertical federated learning using a split neural
network. It enabled a data scientist to maintain raw data on an
owner’s device while training neural networks on vertically
partitioned data features among several owners. Adasplit [48]
is another hybrid approach of SL and FL, that enabled effi-
cient scaling to SL to low resource scenarios in reducing
bandwidth consumption and improving performance across
heterogeneous clients. The authors in [49] suggested a hybrid
approach to updating client- and server-side models simulta-
neously through local-loss-based training. Losses were cal-
culated for each local split.

FedFly [50] is an approach to migrate a partitioned neu-
ral network when devices move (device mobility challenge)
between the edge servers during FL training. FedLite [51]
showed high communication costs associated with model
splitting. The authors solved this problem by using a new
clustering scheme and a gradient correction method to com-
press the extra communication. LocFedMix-SL [52] showed
that existing parallel SL algorithms achieve neither scalability
nor fast convergence since there is an imbalance between
the FP and the BP updates. To fix this problem, the authors
added local parallelism, FL, and mixup data augmentation
techniques to parallel SL to keep the FP and BP updates
balanced.

In accordance with the principle of ‘‘first-parallel-then-
sequential’’, federated parallel training in SL was made pos-
sible by the Cluster-based Parallel SL (CPSL) method [53].
Each training round in CPSL was divided into two phases:
sequential inter-cluster training followed by simultaneous
intra-cluster training. Client devices were organized into sev-
eral clusters. All clients in the same cluster cooperated with
the server to carry out parallel training, similar to SplitFedv2.
After the completion of a single round of intra-cluster train-
ing, each client’s client-side model was sent to the server for
aggregation and updating. The client model was then initial-
ized in the following cluster to begin intra-cluster training
using the updated model.

Hybrid Split and Federated Learning (HSFL) scheme [54]
was proposed to deal with challenges in collaborative
learning in highly diverse IoT devices with heterogeneous
resources and data distributions. This framework organized
clients into two groups: one group performed FL, and the
other group performed SL.

Figure 6 shows a summary of the described emerging
decentralized learning approaches along with their evolution-
ary timeline. Table 1 outlines a comparative evaluation of FL,
SL, and SFL under different criteria.

III. DECENTRALIZED LEARNING APPLICATIONS IN
HEALTHCARE
This section reviews State-of-the-art (SOTA) FL, SL, and
SFL applications in healthcare. Readers are requested to
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FIGURE 6. Evolutionary timeline of federated, split, and hybrid
split-federated learning.

TABLE 1. Characteristics of FL, SL, and SFL.

follow Table 5 of the Appendix for descriptions of the pub-
licly available medical imaging datasets mentioned in this
section.

A. FL IN HEALTHCARE
FL has found its way into healthcare, from medical imaging
use cases to Electronic Health Record (EHR) management
as outlined in Fig. 7. SOTA applications in medical imaging

FIGURE 7. FL applications in healthcare.

cover a wide range, including the brain, chest, skin, breast,
eye, prostate, skin, and abdomen which are discussed in this
Section. Some other interesting advanced studies associated
with FL in the healthcare domain include patient similarity
learning [55], patient representation learning [56], phenotyp-
ing [57], and predictive modeling [28] etc.

1) FL APPLICATIONS ASSOCIATED WITH BRAIN
The first reported FL used for multi-institutional applications
in medical imaging was done by Intel in collaboration with
the Centre for Biomedical Image Computing and Analytics
at the University of Pennsylvania for brain image segmen-
tation [58]. The data was a collection of multi-institutional,
multi-model brain MRI scans from glioma patients that are
publicly available as part of the Brain Tumor Image Seg-
mentation Benchmark (BraTS) challenge 2018 [59]. This
system was based on a U-Net. The server aggregated the
model parameters of chosen clients to form the global model.
They proved that the semantic segmentation performance
of the federated model is superior to that of the central-
ized model. FedDis [60] is a disentangled FL application
for unsupervised brain pathology segmentation. The model
is trained with two brain MRI scan datasets: Open Access
Series of Imaging Studies-3 (OASIS-3) [61] and Alzheimer’s
Disease Neuroimaging Initiative-3 (ADNI-3) [62]. The
model was tested with two public Multiple Sclerosis (MS)
datasets (MSLUB [63], MSISBI [64]) and an in-house
MS and glioblastoma database. Silva et al. [65] suggested
an FL architecture, to securely access and meta-analyze
any biomedical data without disclosing personal informa-
tion. They investigated brain structural relationships across
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diseases and clinical cohorts. Li et al. [24] proposed a
privacy-preserving approach for multi-site Functional Mag-
netic Resonance Imaging (fMRI) classification using feder-
ated transfer learning and domain adaptation. Experiments
were conducted with fMRI data from the Autism Brain Imag-
ing Data Exchange (ABIDE) dataset [66]. Promising results
were achieved while improving neural image analysis perfor-
mance and identifying valid disease-related biomarkers. Fed-
BioMed [67] proposed a robust and scalable open-source FL
framework accommodating different models and optimiza-
tion methods and tested it with brain imaging datasets from
four institutions. The authors in [68] investigated the feasi-
bility of applying differential privacy techniques by applying
their FL algorithm on the BraTS 2018 dataset [59].

2) FL APPLICATIONS ASSOCIATED WITH CHEST
FL research related to the chest has mostly been done
with pneumonia Computerized Tomography (CT) lung can-
cer scans, and coronavirus disease (COVID)-19 CT scans.
An interesting FL application, C-DistriM (Chained Dis-
tributed Machine learning) delivered a superior performance
with Non-Small Cell Lung Cancer (NSCLC) radiomics
dataset [69] in predicting two-year lung cancer survival [70].
With the COVID-19 pandemic, a major focus of AI was
shifted to institutional data collaboration through FL. The
authors in [71] showed the viability of an FL approach for
identifying CT anomalies associated with COVID-19. The
authors investigated FL strategies to create a COVID-19med-
ical image diagnosis AI model with strong generalizability
on seven international datasets. The public dataset developed
by Radiology Ai One-Stop solution (RAIOSS) [72] was also
used during the model validations. The FL research [73]
performed collaborative training of multiple medical insti-
tutions’ models using the two public chest X-ray screening
datasets: Montgomery County chest X-ray dataset (MC) [74]
and Shenzhen chest X-ray dataset [74]. The authors inves-
tigated several key specificities of FL settings, including
non-(Independent and Identically Distributed) IID and unbal-
anced data distributions. The FL research in [75] devel-
oped an abnormal chest radiograph classification model on
GoogLeNet-22 and ResNet-50 using the public Chest X-ray
(CXR) dataset [76]. The authors discussed the challenges of
sample size and label distribution variability in FL.

3) FL APPLICATIONS ASSOCIATED WITH SKIN
FedPerl [77] is a semi-supervised FL method devel-
oped to classify skin carcinoma data. It encouraged
the community to use collaborative learning to gen-
erate more accurate pseudo-labels for unlabeled data.
They used 71,000 skin lesion images from four pub-
licly available datasets: International Skin Imaging Col-
laboration (ISIC)19 [78], Human Against Machine with
10,000 training images (HAM10K) [79], Derm7pt [80], PAD-
UFES [81]. The FL model in [82] focused on multimodal
melanoma detection using ISIC19 [78] data. The FL model’s

performance was comparatively better than that of the cen-
tralized model. A gradient aggregation method that better
extracts the shareable information frommultiple local servers
is presented in [83]. The authors applied it to skin lesion
segmentation using seven datasets, including HAM10K [79]
and Derm7pt [80] datasets. FedMix [84] is a federated skin
lesion segmentation model developed with the HAM10K
dataset [79].

4) FL APPLICATIONS ASSOCIATED WITH BREAST
FedMix [84] also tested their FLmodel using the breast tumor
datasets: Breast Ultrasound (BUS) [85], Breast Ultrasound
Image Segmentation (BUSIS) [86], and UDIAT [87]. Using a
cooperative strategy with seven clinical institutes worldwide,
Roth et al. [88] developed an FL model for breast density
categorization. According to their experimental findings, the
FL model beat the individually-trained models on the local
data of each institute by an average of 6.3%. Additionally,
when the FL model was assessed using external testing
datasets from other participating sites, a relative improvement
of 45.8% in the model’s generalizability was established. The
memory-aware curriculum learning method for FL is pro-
posed in [89]. Their findings with three mammography imag-
ing datasets demonstrated the benefits of federated adversar-
ial learning for multi-site breast cancer categorization.

5) FL APPLICATIONS ASSOCIATED WITH EYE
The authors in [90] evaluated the performance of an FL
framework for DNN-based retinal microvasculature seg-
mentation and referable diabetic retinopathy classification
using Optical Coherence Tomography (OCT) and OCT
angiography (OCTA) images. FL is applied to diabetic
retinopathy detection in [91]. The authors used five datasets:
EyePACS [92], Methods to Evaluate Segmentation and
Indexing Techniques in the field of Retinal Ophthalmol-
ogy (MESSIDOR) [93], Indian Diabetic Retinopathy image
Dataset (IDRiD) [94], Asia Pacific Tele-Ophthalmology
Society (APTOS) [95], and University of Auckland (UoA)
diabetic retinopathy database [96]. The model was investi-
gated with three approaches: standard transfer learning, fed-
erated averaging, and federated proximal framework. The
authors in [75] also evaluated their models with a diabetic
retinopathy detection task using the Diabetic Retinopathy
binary classification dataset [97].

6) FL APPLICATIONS ASSOCIATED WITH PROSTATE
The authors in [98] introduced a flexible FL framework for
cross-site training, validation, and evaluation of deep prostate
cancer detection. Their method used an abstract representa-
tion of the model architecture and data, enabling NVFlare
FL framework to be used to train prototype deep learning
models. Prostate biopsy data were collected from two Uni-
versity of California research hospitals. Their method showed
improvements in prostate cancer detection and classification
compared to that of SOTA. A personalized FL model was
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developed for prostate segmentation in [99]. The authors sug-
gested an adaptation strategy that enables uniquemodel archi-
tecture for each client. The suggested strategy was assessed
on MSD1 [100], PROSTATEx [101], PROMISE12 [102],
and National Cancer Institute–International Symposium on
Biomedical Imaging (NCI-ISBI) [103] datasets. It was
demonstrated to enhance the local models’ performance fol-
lowing adaptation. The authors in [104] applied a Federated
Cross Learning (FedCross) algorithm on prostate cancerMRI
segmentation using the same datasets as in [99].

7) FL APPLICATIONS ASSOCIATED WITH ABDOMEN
The authors in [105] investigated the automatic segmentation
of pancreatic cancer CT scans with three datasets including
the publicly available MSD1 [100] pancreatic dataset and
Synapse dataset [106]. The authors applied heterogeneous
optimization techniques to achieve significant performance.
MoNet [107] is a highly optimized federated pancreatic CT
scans segmentation algorithm, that used the MSD1 [100]
pancreatic dataset.

8) FL APPLICATIONS ASSOCIATED WITH EHR DATA
EHRs are a vital source of real-world healthcare data. EHRs
contain information such as a patient’s medical history, diag-
noses, medications, treatment plans, immunization dates,
allergies, radiology images, and laboratory test results. Sev-
eral FL research with EHR is available in the literature.
They cover areas of medications [108], [109], [110], human
emotions [108], activity recognition [111], [112], EEG clas-
sification [113], personalized wearable healthcare applica-
tions [111], patient hospitalization [114], patient mortality
[114], and preterm birth data [115].

B. SL IN HEALTHCARE
The applicability of the SL in healthcare was first shown by
the authors in [8], [116] with their SplitNN model pointing
to its promising advantages. Then the first application of SL
based approach in the medical field was reported in [117].
The authors applied their model to a binary classification
of fundus images and a multi-label classification of chest
X-rays. The authors in [118] first showed the clinical fea-
sibility of SL. They discussed the inference performance
aspects, convergence rates, computational efficiency, and
communication requirements in relation to clinical feasibility.
SL applications in healthcare still only cover a limited range,
including the chest, eye, brain, and EHR.

1) SL APPLICATIONS ASSOCIATED WITH CHEST AND EYE
The binary classification task in [117] used a dataset of
9,000 fundus images, and the multi-label classification task
used a dataset of 156,535 chest X-rays. As the first study
in the SL and medical settings, their research paved the
way for future developments in the collaborative training of
DNNs. The authors in [118] developed a 121-layer denseNet

for multi-label classification of chest X-ray images from the
Chexpert dataset [119].

2) SL APPLICATIONS ASSOCIATED WITH BRAIN
The authors in [118] also used their approach for brain tumor
segmentation with the BraTS datasets [59]. One another brain
tumor classification task is presented in [120]. The authors
vertically distributed brain MRI scans and classified them as
healthy or tumorous using a partitioned neural network.

3) SL APPLICATIONS ASSOCIATED WITH EHR DATA
An SL framework for Electrocardiogram (ECG) classifi-
cation was proposed in [121]. The system was trained on
the Physikalisch-Technische Bundesanstalt (PTB-XL) ECG
dataset [122]. Results showed a significant reduction in the
computation and communication overhead with minimal per-
formance loss. SL approach in [123] was based on a 1D CNN
model, where heart abnormalities are detected with ECG
data. The authors studied the effects of privacy preservation
on model performance.

C. SFL IN HEALTHCARE
The first-ever SFL approach in healthcare was initiated by
The authors in SplitFed [38], by using their proposed model
on a skin lesion segmentation task. Similar to SL, SFL appli-
cations in healthcare are comparatively less prevalent than
FL. These cover areas in healthcare related to the skin, chest,
bones, stomach, brain, eye, cervix, and EHR.

1) SFL APPLICATIONS ASSOCIATED WITH SKIN
SplitFed [38] authors evaluated their experiments using
the dermatoscopic images of the HAM10K dataset [79].
MHSL [41], [42], which is described in the Section II-B3
was tested on ResNet-18 and 1D CNN architectures with the
HAM10K [79], MNIST [31], and CIFAR [33] datasets.

2) SFL APPLICATIONS ASSOCIATED WITH BRAIN
Split-U-Net [124] applied SFL with vertical FL on four insti-
tutions for multi-model brain tumor segmentation. Experi-
ments were done using the Medical Segmentation Decathlon
(MSD1) brain tumor dataset [100]. It was the first applica-
tion of SFL to a multi-modal image segmentation task. The
authors quantified the amount of data leakage in biomedical
image segmentation and presented defense strategies. Spli-
tAVG and SplitAVG-V2 [125] are two interesting research
that focused on heterogeneity-aware FL. They were tested
on a brain tumor segmentation model with the BraTS
datasets [59].

3) SFL APPLICATIONS ASSOCIATED WITH EYE
SplitAVG and SplitAVG-V2 were also evaluated in a diabetic
retinopathy binary classification task. It achieved 96.25% of
accuracy on the Diabetic Retinopathy binary classification
dataset [97].
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4) SFL APPLICATIONS ASSOCIATED WITH CHEST, BONES,
STOMACH, AND EHR
‘‘Spatio-temporal split learning’’ presented in [126] allowed
collaboration among privacy-sensitive organizations. They
spatially spread many clients to cover a variety of datasets
from various participants. The algorithm was tested on
MURA X-ray images [127], and COVID-19 CT scans from
the COVID-CT dataset [128]. FL and SL have achieved
95.7% and 98.5% respectively, for the classification task. The
same authors came up with ‘‘multi-site split learning’’ [129]
that enabled secure medical data transfer between hospitals.
They explored the optimal number of clients via experi-
mental analysis. They empirically investigated the optimal
data split ratio for the best-split learning performance. Fed-
erated Learning on Medical Datasets using Partial Networks
(FLOP) [130] presented a framework that only shared a par-
tial model between the server and the clients, keeping the rest
of the layers private within the client’s own space. Experi-
ments were carried out with the COVIDx dataset [131] and
the Kvasir dataset [132]. FLOP achieved better performance
while reducing privacy and security risks.

Apart from the above-mentioned, [133] applied Vertical
SL to five medical datasets related to cervical cancer, dia-
betes, heart disease, stroke, and stroke rehabilitation. The
authors evaluated the impact of different networks and feature
distributions on predictive performance and compared the
performance with the centralized architecture.

IV. DECENTRALIZED LEARNING CHALLENGES AND SOTA
SOLUTIONS
This section gives a summary of the major challenges in FL,
SL, and SFL and the SOTA solutions in tackling them.

A. CHALLENGES ASSOCIATED WITH FL
Existing research on FL is mostly focused on reducing the
effects of corrupted or noisy clients, dealing with statisti-
cal and system heterogeneity issues, improving communica-
tion efficiency, addressing privacy issues, improving fairness,
handling biased sources, and dealing with system challenges.
Researchers have taken steps to evaluate their algorithms
under different challenging circumstances. These techniques
have helped in developing more robust FL algorithms.

1) RESEARCH ON HANDLING CORRUPTED OR NOISY
CLIENTS IN FL
Data annotation is a complex task, even for experts, and
depending on the nature of the data and the considerations for
labeling, it is time-consuming. Since in an FL setting, local
data are gathered by different clients, it is difficult to ensure
that the data are annotated correctly. Furthermore, clients may
have different standards according to their domain expert’s
knowledge. Thus, clients’ annotated data may have distinct
distributions compared to that of a centralized annotation.
As a result, data corruption or data mislabelling could occur.
Similarly, clients’ local data might include noise. Noise can

TABLE 2. Prior research on FL handling corrupted and/or noisy clients
issues.

arise from clients using different data acquisition sources or
devices, communication barriers, system errors, etc. In the
collaborative FL environment, if the clients’ data are cor-
rupted or noisy, the global aggregated model produces wrong
predictions. Table 2 describes prior research on handling
corrupted or noisy client issues in the FL network [84], [134],
[135], [136], [137], [138], [139].

2) RESEARCH ON HANDLING HETEROGENEITY ISSUES IN FL
Heterogeneity is defined as the quality or state of being
diverse in character or content. Although data heterogene-
ity is not new in machine learning, it is significantly more
prominent in FL than in CML. Heterogeneity is classified
into two categories in FL: Statistical heterogeneity, which
is the non-IID data across the network, and the Systems
heterogeneity, which is the significant variability of system
characteristics [7], [140], [141]. The systems’ characteris-
tics include storage, computational, and communicational

VOLUME 11, 2023 54197



C. Shiranthika et al.: Decentralized Learning in Healthcare: A Review of Emerging Techniques

FIGURE 8. FL handling heterogeneity issues.

capabilities (memory and CPU/GPU), network connectivity
(3G, 4G, 5G, orWi-Fi), and power capabilities (battery level).

The bounds on convergence caused by heterogeneity were
theoretically presented in [142], and the impact of adjusting
heterogeneity onmodel performancewas empirically demon-
strated in [143]. The challenges of heterogeneity for FL were
discussed in [140]. The authors in [144] demonstrated how
the clients’ local model weights diverge as a result of the
data heterogeneity. New insights for protecting against the
non-uniformity introduced by data heterogeneity in FL as
a solution for backdooring attacks were shown in [145].
FedKL [146] used federated reinforcement learning to tackle
heterogeneity issues. Data problems and resource hetero-
geneity in FL were discussed in [147]. The authors in [148]
came up with the concept of Virtual Homogeneity Learning
(VHL), where a virtual dataset addresses data heterogeneity
issues. VHL improved the speed of convergence and perfor-
mance generalization drastically.

Fig. 8 illustrates a categorical representation of FL in
handling heterogeneity issues. Methods for handling hetero-
geneity can be categorized into two groups: fine-tuning local
models and fine-tuning the global model. The local model
fine-tuning group utilizes personalized FL methods, regu-
larization methods, and non-aggregated methods of training.
A variety of parameter aggregation variants (Table 3), fairness
tackling methods, and regularization methods are used in
global model fine-tuning.

SOTA on personalized FL can be categorized based
on the model’s architectural design, training process, and
multi-task learning. FedBN [149], FedAP [150], and Fed-
Per [151] come under the personalizing models based on
architectural design. PerFed Avg [152], MetaFed [153],
FedFV [154], pFedMe [155], and FedMGDA+ [156] come
under personalizing approaches based on the training process.
MOCHA [157] and VIRTUAL [158] designed FL for multi-
task learning. FedCross [104] presented an FL approach
that doesn’t involve parameter aggregation, where it sequen-
tially trained the global model across different clients in a

TABLE 3. Federated parameter aggregation in depth.

round-robin manner. Ditto [159] and Adaptive Personalized
Federated Learning (APFL) [160] performed local model
fine-tuning using regularization methods.

Fairness in FL is inspired by fair resource allocation
and encourages equitable or uniform resource distribution
throughout a federated network. Agnostic Federated Learn-
ing [161], q-Fair Federated Learning (qFFL)/qFedAvg [162],
and Hierarchically Fair Federated Learning (HFFFL) [163]
are the most distinguished research on fairness in FL lit-
erature. FedProx [141] is a popular regularization method
that facilitates stable convergence in heterogeneous settings.
It used a proximal term to the local sub-problem to minimize
the impact of varying local updates on clients.
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3) RESEARCH ON HANDLING COMMUNICATION
EFFICIENCY ISSUES IN FL
In FL settings, communication efficiency is a popular
topic with several SOTA studies. FedKD [143] showed a
communication-efficient FL algorithm based on knowledge
distillation and gradient compression techniques. It reduced
communication costs (by 94.89%) and achieved competi-
tive results on medical Named Entity Recognition (NER)
datasets. FedPAQ [168] is another communication efficient
scheme based on averaging models periodically at the server,
using only a fraction of clients in training and quantized
message passing at edge nodes. It achieved near-optimal the-
oretical guarantees for strongly convex and non-convex loss
functions and demonstrated the communication-computation
trade-off. FedAGM [169] improved server-side aggregation
using an accelerated model to guide local gradient updates.
It achieved communication efficiency even with low client
participation.

B. CHALLENGES ASSOCIATED WITH SL
Although SL offers improved privacy compared to CML and
FL settings [8], [37], [116], [117], SL still has several privacy
loopholes. Smaller client-side models can lead to private data
leakage.

1) RESEARCH ON HANDLING PRIVACY ISSUES IN SL
The authors in [123] examined SL’s privacy-preserving train-
ing in 1D CNN models. The authors adopted two privacy
mitigation techniques: addingmore hidden layers to the client
side and applying differential privacy. SplitHE [170] pre-
sented an empirical security evaluation using membership
inference applying homomorphic encryption. The model was
built on top of the SplitNN architecture. Marvell (optiMized
perturbAtion to pReVEnt Label Leakage) [171] is a realistic
threat model that proposed a privacy loss metric to quantify
label leakage in SL. By minimizing the amount of label leak-
age, it found the structure of the noise disturbance in a smart
way. TPSL (Transcript Private Split Learning) [172] is a sim-
ilar gradient perturbation-based SL approach that provides
a provable differential privacy guarantee. Their experiments
demonstrated robustness and effectiveness against label
leakage attacks. SL in the context of the private collaborative
inference against reconstruction attacks are analyzed in [173].
Their approach modified model training to reduce data leak-
age while maintaining accuracy. SplitGuard [174], [175]
detected and mitigated hijacking attacks in SL. UnSplit [176]
studied data oblivious model inversion, model stealing, and
label inference attacks against SL. These methods showed
that vanilla SL is not very secure and showed how important
it is to take additional steps to make secure protocols.

C. CHALLENGES ASSOCIATED WITH SFL
Similar to SL, SFL offers privacy preservation advantages,
as previously discussed. However, SFL can still suffer from
several privacy loopholes. Like SL, private data can leak

through the smashed data with smaller client-side models.
Also, research has been done to tackle the heterogeneity
issues associated with SFL.

1) RESEARCH ON HANDLING PRIVACY ISSUES IN SFL
Research has enabled SFL to be performed in a privacy-
preserving manner. To protect sensitive data and limit the
amount of data sent during training, encryption, and other
security measures are used. SplitFed authors [38] came up
with several privacy preservation mechanisms on the client-
side, the FS, and the main server. Among these were adding
a PixelDP noise layer and using differential privacy to train
the client-side model. These methods allowed for model
training without disclosing sensitive information. The recent
work, [177] performed an empirical analysis of SplitFed’s
robustness to strong model poisoning attacks.

2) RESEARCH ON HANDLING HETEROGENEITY ISSUES
IN SFL
The SFL framework of [178] proposed an energy- and
loss-aware selective updating method for heterogeneous
systems, updating client-side models based on clients’
energy and loss changes. Experiments were conducted using
CIFAR [33] datasets. SplitAVG [125], as previously stated,
also dealt with heterogeneous clients.

V. HEALTHCARE VIEWPOINT ON CHALLENGES, CURRENT
TRENDS, AND FUTURE DIRECTIONS
In this section, we discuss the problems, the current research
trends, and some possible directions for the future from the
point of view of healthcare.

A. CHALLENGES SPECIFIC TO HEALTHCARE
Despite the fact that these decentralized learning approaches
have enormous advantages and work well in healthcare appli-
cations, this field is still in its early stages due to the chal-
lenges that are frequently rising [179], [180]. We categorized
these healthcare-specific challenges into three: data chal-
lenges, privacy and security challenges, and communication
challenges. Data challenges involve issues with data quality,
data heterogeneity, or data biases of the healthcare partici-
pants. Privacy and security challenges include data poisoning
attacks, adversarial attacks, membership inference attacks,
or free-riding attacks in the collaborative network. Commu-
nication challenges might occur due to failure or dropouts of
healthcare participants, energy consumption issues, or com-
putational and communication overhead prevalent with sys-
tems. In contrast to the technical challenges, some other
specific challenges exist, as shown under Section V-C.

B. CURRENT TRENDS SPECIFIC TO HEALTHCARE
It is evident that the research communities are truly active
in mitigating associated challenges, as we detailed in Sec-
tion IV. Prior to their local model training during the collabo-
ration, all of the healthcare participants should have mutually
agreed upon these mechanisms.
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Decentralized learning paradigms require agreements to
specify the scope, objective, and technology used, which
might be challenging to determine because they are still
relatively new. Research has revealed that massive projects
being undertaken now are paving the way for future norms
of inventive, safe, and fair collaboration in healthcare appli-
cations. Several university and industrial research institutions
jointly lead Federated Learning (FL) research in the health-
care area. Associated institutions have successfully imple-
mented several projects to guarantee efficient standards for
confidential, equitable, and creative healthcare application
collaboration. These collaborative projects and consortiums
aim to unite researchers and practitioners interested in FL.
Students, professors, and business leaders from around the
world get together for these projects or consortiums to learn
more about the topic, find technical problems, and discuss
possible solutions. Table 4 highlights popular consortiums
and collaborative healthcare projects associated with FL.

Currently, some open-source software has also been devel-
oped to facilitate proofs-of-concept and experiments. These
software hold open-source federated datasets, including med-
ical datasets, strict evaluation frameworks, and reference
implementations that try to show the problems and complex-
ities of real-world federated environments. Some of the most
accessible medical datasets relate to COVID, Alzheimer’s
disease, and predictive maintenance. Federated AI Tech-
nology Enabler (FATE),4 Substra,5 OpenFL,6 Tensorflow
Federated,7 IBM Federated Learning,8 NVIDIA Clara,9

PySyft10+PyGrid platform,,11 and enterprise-grade FL plat-
forms such as Apheris,12 are some popular open-source
software.

C. FUTURE DIRECTIONS SPECIFIC TO HEALTHCARE
Here are some possible directions for future research on how
FL, SL, and SFL can be used in healthcare.

1) DEVELOPING PERSONALIZED MODELS
FL and SFL approaches produce a common global model
for all participants. Healthcare decisions are generally sci-
entifically designed in a personalized health management
scheme. Care might vary institution-wise, physician-wise,
and patient-wise. SOTA has some general research about FL
personalization, as shown in Fig. 8 under personalized FL.
However, how to combine the medical domain knowledge
and produce personalized versions of the global models in
collaborative networks is yet to be investigated.

4https://fate.fedai.org/
5https://www.substra.ai/
6https://github.com/intel/openfl/
7https://www.tensorflow.org/federated/
8https://ibmfl.mybluemix.net/
9https://developer.nvidia.com/clara/
10https://blog.openmined.org/tag/pysyft/
11https://github.com/OpenMined/pygrid-admin/
12https://www.apheris.com/

TABLE 4. Popular consortia/ collaborative healthcare projects associated
with FL.

2) REDUCING BIAS
Although FL and SFL limit the effects of a biased dataset by
utilizing multiple datasets, systems with biased data propa-
gation may exist due to poor system design. In the collab-
orative network, individual datasets should be appropriately
weighted to reduce the risk of biased or insecure data. Even
though they’re weighted properly initially, bias might still
emerge later in training. The reason is that client features such
as data distribution may still vary over time (e.g., with the
addition of new patients or the demise of existing patients).
Thus, developing more robust models resistant to handling
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TABLE 5. Publicly available medical imaging datasets used in the recent decentralized learning research.
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TABLE 5. (Continued.) Publicly available medical imaging datasets used in the recent decentralized learning research.
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TABLE 5. (Continued.) Publicly available medical imaging datasets used in the recent decentralized learning research.

bias with proper parameter aggregation schemes is an impor-
tant research direction.

3) INCORPORATING HYBRID NON-IID PROPERTIES
Healthcare institutions have different sample sizes, label
distributions, resolutions, data measurement frequencies,
types of laboratory tests, laboratory tools, data acquisition
mechanisms, and various demographic features of subjects
such as age, gender, etc. Therefore, medical datasets often
involve several non-IID features [181]. Most FL studies focus
exclusively on one of the non-IID features, such as noisy or

corrupted labels. There hasn’t been a thorough investigation
of various non-IID features in medical datasets. Therefore,
in the future, another focus for the decentralized learning
paradigm could be addressing challenges related to multiple
non-IID features in medical data.

4) HYPERPARAMETER TUNING
Hyperparameter tuning in machine learning is cru-
cial but time-consuming. Optimizing hyperparameters is
significantly challenging in collaborative learning [182],
while it is extremely difficult in healthcare collaborations.
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Future research will urgently require automated techniques
or frameworks to choose the best hyperparameters in decen-
tralized learning models in healthcare.

The following are identified as non-technical directions
that need specific attention.

5) DEVELOPING SUFFICIENT INCENTIVE MECHANISMS
Healthcare organizations may have limited trust in the new
technological frameworks. They might even be required to
undergo considerable communication and computation over-
heads. Naturally, theymight be unwilling to participate in col-
laborative learning tasks without well-designed incentives.
Finding effective ways to encourage organizations with stan-
dard imaging or related data to participate in the learning
process is a fundamental problem for the future.

6) INCORPORATING DOMAIN EXPERTISE KNOWLEDGE
The healthcare industry relies on professionalism and accu-
racy. Physicians or subject-matter experts delicately perform
tasks like devising treatment plans, prescribing medications,
or forecasting specific health conditions. Even if there is a
large medical dataset, healthcare experts will not trust or
accept the predictions of a collaborative model trained in
a collaborative network in the first round. Such predictions
require expert knowledge, supervision, and intervention.
Experts in the medical field could oversee the entire process
of collaborative learning, from the first step of collecting data
to the last step of making a prediction based on the global
model. Such oversight by experts will lead to more accurate
and confident results.

VI. CONCLUSION
In this survey, we reviewed the emerging decentralized learn-
ing approaches of FL, SL, and SFL and their applications
in healthcare, with a particular focus on medical imaging.
In general, several studies have tried to address some of
the challenges in FL, SL, and SFL settings. We detailed
major challenges with SOTA solutions. From the healthcare
perspective, these challenges still need to be fully addressed.
Since FL, SL, and SFL will be active research areas for
the next ten years, we detailed current trends and possible
directions for future research in their healthcare applications.
There is a lot of room and need for systems and algorithms
that are more realistic, perform better, and ensure security and
privacy.

APPENDIX
PUBLICLY AVAILABLE MEDICAL IMAGING DATASETS
USED IN RECENT DECENTRALIZED LEARNING RESEARCH
Having open access to data is an essential component of
research. In healthcare, publicly available data would benefit
researchers and academia to a greater extent. Open data helps,
without a doubt, in coming up with effective and efficient
solutions to life-threatening diseases or long-lasting problems
that plague humanity.

As part of the survey, we contributed to the design of a
collection of publicly available medical imaging datasets that
have been used in the recent decentralized learning research.
It is identified that these datasets cover a large range, includ-
ing data related to the brain, chest, skin, breast, eye, prostate,
skin, abdomen, etc. Table 5 lists our findings.
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