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ABSTRACT The Cloud-native model, established to enhance the Twelve-Factor patterns, is an approach to
developing and deploying applications according to DevOps concepts, Continuous Integration/Continuous
Delivery, containers, and microservices. The notion of observability can help us cope with the complexity
of such applications. We present a Systematic Mapping Study (SMS) in the observability of Cloud-native
applications. We have chosen 56 studies published between 2018 and 2022. The selected studies were
thoroughly analyzed, compared, and classified according to the chosen comparative criteria. The presented
SMS assesses engineering approaches, maturity, and efficiency of observability by deliberating around
four research questions: 1) What provides the motivations for equipping Cloud-native applications with
observability capabilities? 2) Which research areas are addressed in the related literature? 3) How are
observability approaches implemented? 4) What are the future trends in the Cloud-native applications
observability research?

INDEX TERMS Cloud-native, microservice architecture, observability, monitoring, logging, tracing, sys-
tematic mapping study.

I. INTRODUCTION
The architectural style known as Cloud-native [1], [2], [3] has
been established to augment the Twelve Factor [4] patterns
of designing modern applications. Opposed to on-premise
applications are new applications built in a Cloud-native
manner fully exploiting the Cloud Computing (CC) model.
Cloud-native is an approach to developing and deploying
applications according to DevOps concepts [5], [6], Contin-
uous Integration/Continuous Delivery (CI/CD) [7], [8], [9],
containers [10], [11], and microservices [12], [13]. Cloud-
native is a philosophy of programming. Adopting it requires
a lot of effort and imposes new engineering challenges that
organizations face.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

Cloud-native Computing Foundation (CNCF) [14] in its
trail map [15] among optional steps lists Observability &
analysis. Observability is a concept that originated in Control
Theory [16]. According to this theory, a system is observ-
able if the current state can be determined in finite time
using only the outputs. Measurement of overall microservice
performance imposes the application’s Quality of Service
(QoS) metrics. The system has to properly externalize its
state through instrumentation techniques to attain negotiated
Service Level Agreement (SLA) parameters.

Observability is often defined as consisting of (i) met-
rics (collected while monitoring activities), (ii) logging, and
(iii) tracing. Observability is an indispensable feature of every
Cloud-native execution environment [17]. Its importance in
the software lifecycle allows us to call all its activities observ-
ability engineering. Observability engineering focuses on
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FIGURE 1. Interest in components of cloud-native.

understanding multi-layered and complex architectures. The
principal aim of observability is to make the Cloud-native
system more understandable in numerous planes. The ben-
efits of observability features underline gained capabilities
allowing one to identify behavior deviations, perform root
cause analysis, forecast failures, alert on events, optimize
performance, proactively improve customer experience, etc.

Although recent publications indicate that Cloud-native
observability is a significant topic [18], [19], there is a
compelling demand for a systematic study that assesses
the engineering approaches of observability, its maturity,
efficiency, tools and also shows future research directions.
The contribution of this work is the Systematic Mapping
Study (SMS) [20] in the area of Cloud-native Application
(CNApp) observability. SMS addresses all the research ques-
tions asked. As a result, it provides a map that is an overview
of the state-of-the-art. Observability is an optional step of
Cloud-native environments. Probably due to this option, this
research area feels the scarcity of high-quality primary stud-
ies, especially papers related to logging and tracing. [21]
recommended the SMS for areas with poor coverage. This
fact also justifies our research.

In the first place, we have made a Systematic Literature
Review (SLR). It helps prepare SMS by performing a more
in-depth analysis of the literature. The SLR also considers
the quality of the studies. Unlike usual, our SMS method-
ology includes the analysis of the full text of the selected
studies. It is not based only on abstracts. Our SMS analyzes
56 primary studies from the last five years. The studies were
selected based on the queries from the four defined research
questions. Finally, we formed three categories related to
Concepts, Management, and Supporters, with 12 entries.
We gathered our data in summary tables and provided a set
of plots representing the category entries.

The structure of this paper is as follows. Section II on a few
topics discusses key design patterns. It also presents related
work. Section III describes the details of our methodology,
including the selection process, categories, and the mapping
of primary studies. The results with all the summary tables
and graphs are discussed in Section IV, while the conclusions
and possible future directions summarize Section V.

II. DOMAINS OF THE OBSERVABILITY
The term observability has been known for decades [16].
However, in the context of other technologies, this word
has disappeared, or other substitutes are used. Fig. 1 shows

TABLE 1. Hits of observability domains returned by the google search
engine.

FIGURE 2. Trends of cloud-native observability and its domains.

Google trends for Cloud-native terminologies, which have
distinguished CNCF on its landscape map. It has to be
stressed that the Google search engine is not a good source of
research findings, rather its hits are industry-directed. How-
ever, the results give a basic understanding of the researched
field. The Google search engine results confirm the highest
interest in the Cloud-native obligatory steps. Little attention
is paid to the optional steps. However, in the case of the term
observability, the absolute values are the lowest. The reason is
the popularity of the word observability. Instead, its domains
are often used, such as monitoring, logging, or tracing. The
particular hits returned by the search engine are the following:

To restrict the context, we have decorated each word with
the Cloud-native adjective. However, in the case of tracing,
it is more often described as distributed than Cloud-native.
Fig. 2 confirms that the word observability is less used than
its domains. This word has maximally only about 20.000 hits.
The most popular among businesses is monitoring. We can
deduce that logging and tracing are underinvested domains.
Therefore, it is probably worth further work. A similar situ-
ation is noticed in the scientific field, as resulting from our
SMS.

Fig. 3 shows a high-level architecture of a modern observ-
ability ecosystem. Telemetry Data is collected from the
underlying Cloud-native Applications and their Execution
Environment. The definition of the Execution Environment
is introduced in [17]. In short, it contains microservices,
an orchestration system, containers, and a computing infras-
tructure. Data collected from standard logs, automatic instru-
mentation, and metric sampling are usually insufficient for
understanding a complex CNApp with its execution environ-
ment. It is valuable to continuously add instrumentation to
the application to collect more rich telemetry data. Telemetry
data should be structured and time-stamped events containing
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FIGURE 3. The observability ecosystem.

metrics or log entries, along with trace information. Data Col-
lector(s) is a layer that receives telemetry data from its sources
and delivers them to various destinations. For example Open-
Telemetry [22] divides this layer into Receivers (consuming
data), Processors (transforming data), and Exporters (export-
ing data to backends). Data Backends provide long-term
storage for telemetry data and advanced queries, used by the
Analysis/Visualization tools.
Cloud-native applications gain the advantage if their exe-

cution environment supports observability features. Some
benefits of the observability ecosystem are as follows:

• Increased visibility allows for seeing more details on
what, where, how, and when things happen in the
system. For example, what services are running, how
they perform, where the application components are
deployed when specific events occur, or notice unknown
unknowns [23].

• Improved alerting and earlier issue detection – it allows
early detection of issues even before they arise. Hence,
it is possible to detect problems not only in the applica-
tion performance but also in the architecture and design
of the system.

• Improved development workflow andDevOps processes
– it can drive the development process because of more
valuable insights into the system behavior. As Cloud-
native applications can rely on many cloud services,

it is not always obvious to make some design decisions
without observing the running system. Therefore, the
insights from these observations can influence re-design
or change in the architecture.

• Improved scalability – while designing the system,
it is possible to ensure that all subsystems, particularly
observability subsystems, are designed with scalability
in mind, which allows adapting to the growing data
demands when the system grows.

• Enabling automation – observability data can automate
scaling, self-healing, and, in general, the autonomous
control of the whole application.

• Valuable data for mining – collecting data about the
holistic view of the system allows for more advanced
analysis using statistics and machine learning, which in
turn can provide additional information on the behavior
of a CNApp and its execution environment.

• Ultimately, the observability of the application leads to a
better user experience, customer satisfaction, and other
business goals of the application under observation.

Including the observability ecosystem to support the above
features is not always straightforward. Architectural design-
ers should be aware of some challenges:

• Diverse and separate data sources – observability
requires gathering data that are hard to integrate and cor-
relate due to the differences in origin, type, and concern
from which they come. These are challenges to the data
model and its analysis, which needs building a complete
picture of these separate and fragmented views.

• Big data challenges – combining telemetry data from
a multitude of services in a distributed system leads
to challenges related to, e.g., volume, velocity, variety,
etc. These problems are typical for large data process-
ing systems. Hence, running an observability subsystem
will require solving data engineering and data science
problems, as in large-scale analytic applications.

• Instrumentation, connectors, and overall configuration
– these technical challenges need accounting for when
planning and implementing observability solutions.
They have costs in development, maintenance, and oper-
ations efforts.

• Performance overheads and interference – any active
measurements on the running system always influence
the performance of the observed system. Hence, it is
significant not only to provide appropriate technology
which is as non-invasive as possible but also to tune the
observability parameters, e.g., the sampling frequency
or the level of accuracy.

Typically, observability is focused on the performance
of systems and can be defined as the ability to accurately
capture, analyze, and present (collectively) information on
the performance of a computer system [24]. The parallel
computer systems of the 1990s were becoming so complex
that measurement and monitoring were challenging due to
the lack of appropriate methods and tools. We can notice
that complex systems, e.g., physical or biological systems,
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pose challenges to observability. The ideas of observability
and controllability known from Control Theory have become
particularly relevant in the context of other technologies, such
as, e.g., Autonomous Computing (AC) [25]. Today, as the
complexity of computer systems, in particular Cloud Com-
puting technologies, increases, and while many details of the
computing infrastructure are hidden from the cloud provider,
the observability of CNApps is an increasingly important and
challenging topic.

A. RELATED WORK
There are many examples of SMSs and SLRs in the domains
of Cloud Computing, microservices, and in CNApps in par-
ticular. One of the examples is the overview of Cloud-native
applications after ten years of Cloud Computing [3]. It eval-
uates 49 papers on CNApps from a software engineering
perspective. It discusses the areas of focus and trends that deal
with CNApp engineering, and finally, it defines the Cloud-
native. However, the term observability is not mentioned in
the discussion, and neither logging, monitoring, nor tracing
domains. A similar systematic study of CNApp design and
engineering presents [26]. Although it analyzes 110 papers,
it does not include any discussion of observability.

The paper [27] presents a systematic study of microservice
architecture. The study selected 88 of the 2754 initial sets of
papers and, finally, after manual check, included 42 articles in
the survey. The authors examine how various architecture pat-
terns depend on diverse migration, orchestration, storage, and
deployment settings. One of the often mentioned advantages
of the microservice architecture, as reported in the survey,
was that a microservice architecture helps visualize the health
status of all services in the system. Therefore, it allows for
rapidly locating and responding to any problem.

An example of SMS applied to serverless computing [28]
acknowledges testing and observability as one of the main
categories included in the analysis, confirming that observ-
ability is an important topic. But in that work, only five
papers were identified as belonging to this class. In addition,
a related systematic study of microservice architecture [29]
shows that monitoring (e.g., logging, profiling) has increased
interest in the research community, but no detailed discussion
of observability is provided.

There are also many papers focusing on cloud monitoring,
e.g., [30] and [31], which provide an overview of prob-
lems, approaches, and tools for cloud monitoring. Some also
propose taxonomies and discuss open questions, as in [32]
and [33]. However, these papers do not cover all aspects of
observability and do not focus on CNApps.

The conclusion from the related work, which motivates our
research is there are no SMS that address the observability
and its domains.

III. RESEARCH METHODOLOGY
Our methodology is based on the systematic mapping pro-
cedure [20] and the preparation of systematic reviews of the

FIGURE 4. The procedure of observability SMS.

literature [21]. Both are in the software engineering field.
We have adjusted the proposed concepts to our research area
(Fig. 4). We propose to combine the approaches SLR and
SMS. Our research resulted in the synthesis of evidence and
provided this secondary study.

The following subsections form the successive outcomes
of the proposed observability SMS that we have depicted in
Fig. 4.

A. RESEARCH OBJECTIVES
The set of Research Questions (RQs) (Table 2) is an initial
outcome of the observability SMS process. The further activ-
ities and their outcomes distinguished in the SMS procedure
relate to the defined RQs. RQs cover diverse areas of the
investigated field.

The generality of the defined RQs gives a realistic level of
coverage for the Cloud-native observability domain. Further-
more, the focus of the research is not too narrow and is free
from bias.

B. SEARCH STRATEGY
The search strategy (Fig. 5) helps to select studies for inclu-
sion in the SMS. The activities are based mainly on the [20]
guidelines and respond to the defined RQs. Identifying pri-
mary studies includes a combination of automated (over a set
of databases and indexing services) andmanual (over the cita-
tions) searching. We used both techniques. The findings of
automated search answered RQ2, RQ3, and RQ4. To answer
RQ1 we manually searched through the citations.

The search strategy also involves a suitably prepared query.
The query consisted of search strings built in terms of
the Population, Intervention, Comparision, Outcome (PICO)
approach [21]. Their structure is depicted in Fig. 5 that
is in the rightmost table. The particular search strings are
composed while answering our research questions (listed in
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TABLE 2. Research questions.

FIGURE 5. Search strategy.

TABLE 3. Sources of research studies.

Table 2). The Explanation column regards elements formu-
lated in that table. The Population part, mainly reflecting
the research domain of this study, is the same for all RQs.
The Intervention part includes all elements of the Concern
column of Table 2 and its synonyms. The constructed search
question does not touch on the principle Comparison of the
PICO approach. Agreeably, we establish that the Outcome
part will constitute the results of the proposed methodology.
Restricting the search string to that part of the table does not
result in findings confirming that our research is unique.

The number of all primary studies found in the distin-
guished sources is presented in Table 3.

We also checked the sources as DBLP, Google Scholar,
Semantic Scholar, or CiteSeerX, but they returned results as
already in the previous searches. Therefore we did not list
them as the primary sources. The total number of all primary

studies is 147 and, without duplicates, 138. The next step of
the SMS observability procedure is to choose primary studies.
This step presents the following subsection.

C. STUDY SELECTION
We selected the primary studies on the observability of
CNApp based on the inclusion and exclusion criteria listed
below in a tabular form. Purposefully, we ranked them in
the order shown. The order indicates the direction of the
selection procedure. If the studymeets the given criterion, this
procedure stops, which results in the exclusion or inclusion
of the study in the result of this step (Fig. 4). Additionally,
in Table 4, we ended all criteria with the number of papers that
fulfilled it. Finally, we have selected peer-reviewed studies on
Cloud-native application observability published in the last
five years. Table 5 presents selected studies.

In addition to the title, the table contains some basic param-
eters regarding the study. The associated reference number
serves as a reference for citation purposes in the remainder of
this manuscript.

D. CLASSIFICATION SCHEME
First, we used the authors’ keywords associated with par-
ticular studies to develop a classification scheme. The
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TABLE 4. Summary of selection criteria.

keywording procedure is described in [20]. However, if the
authors did not connect keywords with the study, we added
some based on its Abstract. Second, a group of independent
reviewers classified each study according to multiple criteria
included in the designed entry form.1 The goal of the form
was to systematize the review and group the papers into
respective categories. Note that the initial form evolved dur-
ing subsequent reviews according to the reviewers’ feedback.
Third, the number of reviewers reduced the risk of entering
routine and laconic responses. The results of the analyzes
give a high-level view of the contribution to Cloud-native
applications observability research.

The keywording process helped us distinguish representa-
tive categories:

Contribution – This category covers the type of
study and the method that helped achieve the type.
We also distinguished some properties that helped
to match the study with its contribution. The cate-
gorization of study types is proposed in [89]. On its
basis, we propose the entries in the Contribution
category. They are presented in Table 6.
Most of the selected studies are considered evalu-
ation and validation research papers. The knowl-
edge introduced in these papers is interesting, and
the methodology used is justified. Their abstracts
encourage the reader to read on. The remaining cat-
egories are specific to observability and correspond
to the research questions defined in Table 2.
Concepts – This category concentrates on Cloud-
native and observability foundations. First, the
studies distinguish various communities interested
in equipping the solutions with an observabil-
ity paradigm. Then they point to the research
domain they deliberate on. Each study refers to the
Cloud-native background compliant with the pro-
posed observability ecosystem (Fig. 3). We propose
the entries in the Concepts category in Table 7.
Management – The entries in theManagement cate-
gory we divided according to the components of the
Application Lifecycle Management (ALM) [90].
Note that a single study does not address all aspects

1The form is available at https://tinylink.net/KXVJO

FIGURE 6. Mapping RQs into the feedback on observability-related
category entries.

of ALM. ALM is an umbrella term that covers
different aspects of application delivery, from plan-
ning, developing, testing, deploying, and finally
maintaining. The ALM process (and hence our
category) consists of several phases presented in
Table 8.
Supporters – This is the last category and regards
the technology, tools, and platforms used in
the given observability domain. In this category,
we propose the entries presented in Table 9.

The distinguished categories can be classified according to
two different perspectives:

• General – covering the research contribution type, the
methodology, and some properties as, e.g., background.

• Observability-related – covering the observability con-
cepts and, particularly, the technology stack, the man-
agement techniques through the CNApps lifecycle, and
last but not least, the proposed supporters, i.e., tools,
platforms, and technologies.

In summary, in this subsection, we distinguished four
categories that describe the selected studies. They estab-
lish two different perspectives on the classification of the
studies. The general perspective regards all studies and classi-
fies them generally. The observability-related categories with
their entries aim to answer research questions. To recall, RQs
cover diverse areas of the investigated field and give a realistic
level of coverage for the Cloud-native observability domain.
This Is illustrated in the following graph (Fig. 6). The four
RQs map to the feedback on observability-related concerns
in the following way:

• About RQ1 queries the category Concepts,
• about RQ2 queries the categories Concepts andManage-
ment,

• about RQ3 queries the categories Management and Sup-
porters,

• RQ4 is a core of the mapping. Feedback in all categories
answers this research question.

E. SYSTEMATIC MAP
Table 10 presents some final content of the analysis of
primary studies related to observability of CNApps. This
table and the rest form responses, constitute the input
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TABLE 5. Selected studies.

of the researched SMS. The SMS is an interpretation
of all responses in the form. Every response is calcu-
lated. The frequencies obtained in the distinguished cate-
gories allow us to identify gaps and possibilities for future
research.

IV. DISCUSSION OF RESULTS
The analysis of the annual CNCF report leads to a list of
technologies that are considered stable and mature. Those
technologies form the basis for most observability-related
tools. In this section, we analyze the selected primary studies
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TABLE 6. Contribution category.

TABLE 7. Concepts category.

with the CNCF defined taxonomy in mind. Note that the first
CNCF project graduation (Prometheus) took place in 2018,
a date that directly corresponds to the range of our SMS.

A. GENERAL FINDINGS
Cloud-native observability has not been extensively
researched yet (Section II). In our SMS, only three
papers [S21], [S38], [S54] have been published in 2018.
However, Fig. 7 shows that the trend is increasing each

TABLE 8. Management category.

TABLE 9. Supporters category.

FIGURE 7. Distribution among years.

year. The first mentioned study [S38] is a chapter from the
book Cloud Native Architecture and Design. It discusses
observability and scarcely its domains. In our opinion, it does
not propose, as the title of the book suggests, architecture
and design concepts. Rather, it concentrates on the imple-
mentation and demonstrates useful tools such as Prometheus
for metrics, Spring Cloud Sleuth, Zipkin, and Jaeger for
tracing, Fluentd for logging, and Grafana for visualization.
However, these tools have already been recommended by
CNCF. More significant studies are expected to be published
in the coming years. Fig. 8 presents the distribution of the
studies in the observability domains while pointing to the
most cited studies.

Extending the Cloud-native system of the observability
capabilities requires deep reengineering of the system [S2],
[S8]. The management of CNApp must address the entire
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TABLE 10. Selected form responses.
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FIGURE 8. Distribution between observability domains.

TABLE 11. Distribution between popular publication forums.

CNApp execution environment. The observations must be
performed across all levels in the Cloud-native application
stack [S15]. Paper [S18] proposes to observe the changes
in the code while the system migrates from a legacy and
monolithic system to an ecosystem of microservices. This
analysis helps to understand the technical debt. Such a holistic
view aims to gain a deep understanding of how to design
microservices systems, monitor, and test them [S18].

Among the detailed parameters of the studies, its publica-
tion title allows one to determine the most popular journals
and conferences that researchers find appealing to present
their work. Regardless of the quality of the publication forum,
the study counts are small. However, it should be noted that
the following study is the most cited and has 113 citations
[S30] –

X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang,
C. He (2019). Latent Error Prediction and Fault Local-
ization for Microservice Applications by Learning from
System Trace Logs. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering

FIGURE 9. Distribution between type of contribution and research
method.

Conference and Symposium on the Foundations of Soft-
ware Engineering.

1) RESEARCH CONTRIBUTION AND THE METHODOLOGY
Fig. 9 shows the distribution of primary studies by their type
of contribution (shown in the inner ring) and the research
method (shown in the outer ring). The two largest groups
of contribution types are solution proposals (25) and eval-
uation research studies (17). Both groups are diverse in
terms of the adopted methods. There are then six valida-
tion research papers that exclusively rely on the experiment
method [S6], [S10], [S13], [S19], [S23], [S25]. Showing
an experiment is the most frequently used research method
(21 papers), followed by the framework (9), case study (8),
report (6), example (5), and simulation (2). Within the report
methodology, several studies have used user surveys for var-
ious purposes. These are experience papers [S18], [S24], or
opinions [S41].

B. OBSERVABILITY-RELATED FINDINGS
During the keywording process of the observability SMS
procedure (Fig. 4), we created a cloud of keywords. Fig. 10
shows the results. In this step, we can already draw the
following conclusions. Cloud-native is most often described
as composed of microservices (e.g. [S2], [S45], [S52],
[S55]) running as Docker containers that manage the Kuber-
netes orchestrator (e.g. [S4], [S10], [S29], [S45]). The
second-top keyword is monitoring (e.g. [S1], [S3], [S44],
[S18]). From the observability ecosystem, this is the most
widely researched telemetry but is also tracing (e.g. [S27],
[S34], [S54]). Following the figure, the collected data help
in anomaly detection [S13], [S32], fault localization [S30],
root cause analysis [S34].

There are many directions of development (e.g., machine
learning [S5], 5G networks [S6], etc.) worth looking.
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FIGURE 10. The cloud of keywords.

TABLE 12. Distribution between main research focus.

However, the efforts taken have a common goal, namely
improving the performance [S1], [S42], [S51] in various
directions (e.g., network [S36], middleware [S21], ker-
nel [S28], etc.) of a CNApp.

1) THE FOUNDATIONS
The first observability-related category is the Concepts that
concentrate on the basics of the Cloud-native with emphasiz-
ing observability. Cloud-native computing assumes the use of
cloud infrastructure which is central to the majority (48 out of
56) of the reviewed studies. The rest do not directly mention
Cloud Computing (CC), but, e.g. [S13] must operate in its
context.

The selected research also addresses Computing fields
such as the Internet of Things, Edge Computing, or Fog
Computing. However, all of them come from the needs of CC

The tight integration of enterprise systems with a
Cloud-native approach that is undoubtedly attractive from
the financial perspective cannot complicate resource manage-
ment and utilization. This requirement is particularly critical
if the management cost increases significantly. It explains
the appearance of Autonomous Computing in Table 12.
AC provides self-management of resources by ensuring their
capabilities, such as self-configuration, self-optimization,
self-healing, and self-protection [91]. They emerge as a result
of observing the whole execution environment.

The selected studies touch upon diverse subject areas,
among which we can find: Mobile systems (19), Big data
(11), Security (8), Machine Learning / Artificial Intelli-
gence (ML/AI) (7), Networking (6), Telecommunication (6),
Visualization (6), High-Performance Computing (HPC) (2).

We found a few papers focusing on scientific computing,
e.g., HPC systems [S42]. However, we can conclude that in
HPC/scientific computing monitoring in the traditional sense
is still employed.

a: THE ECOSYSTEM
The core of the observability ecosystem (Fig. 3) makes up its
telemetry data. They are the subject of research in all primary
studies. Apart from the data, the studies also focus on the Exe-
cution Environment (bottom part of the ecosystem figure).
Our form surveys some of its components. The responses
group into four concerns: construction, communication, man-
agement, and execution. Table 10 contains the responses of
(i) the microservices and (ii) the entries of the computing
infrastructure. At the end of the table, we also present some
statistics. These concerns among orchestration systems and
containers are as follows: construction – 14, communication
– 13, management – 19, and execution – 22. The results
are less than those achieved for microservices. It is because
microservices run as containers managed by orchestrators.

In some cases, the observability ecosystem (Fig. 3) or
its elements are themselves the subject of research. In
[S37], this is motivated by a lack of a solution for inte-
grated monitoring of infrastructure and applications. The
novel monitoring systems propose [S6] for 5G networks,
[S21] for microservice-based IoT middleware, or [S28] for
microservice systems in general. Subsection IV-B3 includes
an in-depth analysis in this regard.

2) MANAGEMENT TECHNIQUES
The management concerns address a wide range of topics,
as described in Section III-D. For example, some studies
address the observability as an aspect of application devel-
opment (e.g., [S28]). In contrast, others focus entirely on
observing a given application or system in a specific use case
(e.g., [S45]).

Table 13 and partially Table 10 summarize our find-
ings in the context of the functional requirements of the
selected studies. We organized them into the following three
groups: (i) Architecture, (ii) Execution, and (iii) Require-
ments. The architecture group focuses on the topology and
construction of the observability layer and its dependencies,
especially on issues related to microservices architecture and
patterns such as Application Programming Interface (API)
composition. In addition, middleware often addresses pat-
terns used in application processing (e.g., Saga or Command
and Query Responsibility Segregation (CQRS)). Studies also
often address the observability of the network, its efficiency,
and overhead.

The Execution group, on the other hand, is dominated by
the provisioning concern (compare the number of studies
in that group, which list Table 13). It is mainly due to the
complexity of the execution environment. Hence, as part of
the observability process, also because of the need to analyze
all environmental traces. The scheduling concern addresses
the issues related to scaling and optimizing execution
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TABLE 13. Distribution between functional requirements.

overhead. Finally, only one study focuses on the execution
of observability aspects in many functional teams [S37]. It is
worth noting because it reflects the multi-aspect implications
of observability.

In the last group, i.e., the Management group, an important
role plays root cause analysis. It includes topics related to
fault injection and management, anomaly detection, and ser-
vice dependency analysis. Observability of the system often
requires specific SLA agreements, especially in resource
management, resource utilization, overhead, and high avail-
ability. These three top characteristics equally distribute in
our analysis. Finally, an important role plays a policy-driven
approach.

Summing up our findings, an application’s complete life
cycle management relies on observability, including security
and automation.

The distributed nature of modern cloud applications and
the increasingly complex integration of the execution envi-
ronment are the most important non-functional requirements
(Table 14). Surprisingly, scalability is not the primary con-
cern. It is mainly because the execution environment offers
some mechanisms for scalability on which the observabil-
ity components may rely (such as CC and Virtualization).
In addition, the characteristics of the Development phase,
where DevOps integration and CI/CD pipeline dominate
(DevOps column in Table 10), support this claim.

Another vital aspect that is visible in our survey is the
increasing importance of the quality aspects of the observ-
ability (column Other (non)+functional in Table 10). Among
the responses, the stress is on the quality and compatibility
of the data ([S7], [S12], [S14], [S40]), accuracy and time

TABLE 14. Distribution between non-functional requirements.

constraints ([S1], [S51]) and the usability of the observability
([S39], [S41], [S53], [S46]).

Similarly, from a testing point of view, the focus on per-
formance and efficiency of resource usage dominates in the
analyses (Table 15).

The adaptation and faults correction concerns dominate
from the applicationmaintenance point of view (Maintenance
columns in Table 10). It aligns with the requirements con-
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TABLE 15. Testing concerns.

TABLE 16. Distribution of containerization techniques.

TABLE 17. Distribution between the orchestrators.

cerns (where root cause and SLA topics are the most popular)
and the testing concern (where topics related to fault injection
are widespread [S2], [S5], [S9], [S19], [S31], [S34], [S43],
[S49], [S52]).

3) TECHNOLOGY, TOOLS, AND PLATFORMS
Cloud-native applications are built frommicroservices hosted
in containers. The prevalent (Table 16) containerization tech-
nique in our primary studies is Docker. Singularity and
Apache Mesos are also mentioned, but the popularity of
those environments is low. Note that the popularity of Docker
is greater because most papers are focused on higher-level
considerations, such as orchestration and observability.

The services were typically orchestrated with Kubernetes
or OpenShift. Some researchers organize their services in
meshes, based mainly on Istio. The counts are summarized
in Table 17.
Regarding the runtime cloud environment, it seems that

there are no clear preferences concerning the IaaS provider
(Table 18). Most often the OpenStack is used for private
cloud, but the numbers do not show a significant domina-
tion. The papers rarely inform about the methods used for

TABLE 18. Distribution between IaaS providers.

TABLE 19. Distribution of observability software usage.

infrastructure creation; presumably, they are created using
environment-specific tools (it is noteworthy that Terraform
was mentioned only once [S11]).

Table 19 summarizes the software used in our primary
studies. The main interest is in software similar to that pro-
posed by CNCF for observability and analysis on its trail
map [15]. Software of CNCF graduated level (i.e., stable and
widely used in production) we highlighted in bold font. Con-
cerning monitoring, logging, and tracing, it is safe to assume
that the researchers follow the CNCF graduated projects. The
suggested technologies fit their needs.

Elastic offers a complete observability stack. It was for-
merly known as Elasticsearch and commonly referred to as
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TABLE 20. Distribution between infrastructure-specific tools used for
observations.

TABLE 21. Distribution of data storage methods.

FIGURE 11. Additional features of the supporting technologies.

the ELK Stack (from Elasticsearch, Logstash, and Kibana).
Elasticsearch is the core component of the Elastic Stack. Its
unified interface for logs, traces, and metrics, which simpli-
fies insight into the cloud system, is a significant virtue of this
stack.

Observing the underlying systems sometimes forces us
to use infrastructure-specific tools (Table 20). Noticeably,

Extended Berkeley Packet Filters (eBPF) is of significant
focus. It provides a low-level interface for network traffic
analysis and CNCF projects that is, Cilium, Falco, or Hubble
use it.

The results of the observations are kept by the monitoring
systems or stored directly in databases (Table 21).

Research must be reproducible. To do this, all supporting
technologies should be freely available. Fig. 11a shows the
distribution of this characteristic among our selected studies.
Thirty-five of them use free software, and only six studies use
software with paid licenses.

Fig. 11 summarizes our findings. It is noteworthy that
reviewers of two-thirds of the studies noted that all supporting
technologies are freely available. Furthermore, more than
70% of the used technologies CNCF recommends.

V. CONCLUSION
Building and executing applications as Cloud-native is an
architectural style that has gained importance in the research
community. Its crucial aspect is observability, which consists
of monitoring, logging, and tracing. Although Cloud-native
observability is not a new research topic, there have been
no systematic review studies so far that motivated our work.
In this paper, we conducted a systematic mapping study
(SMS) in which we reviewed 56 recent publications, which
we selected according to the defined search criteria.

The main contribution of our work is a systematic map,
which we presented in Section IV. We summarize the main
conclusions in the following grouping. Each group represents
our research questions.

• RQ1: What provides the motivations for equipping
CNApps with observability capabilities? – The main
motivations come from the execution stage of Cloud-
native applications. They relate to (i) provisioning
focusing on run-time tracing, (ii) measuring the sys-
tem overhead, and (iii) scheduling, including scalability,
autoscaling, and load balancing. From the management
perspective, the most important motivations are those
that relate to root cause detection (anomaly detection,
failure prediction, fault management, dependency anal-
ysis), SLA management (including load, availability,
QoS, and violations), as well as end-to-end management
(covering performance, response time, latency analy-
sis, and end-to-end tracing). Finally, observability is
motivated by the distributed nature of the application,
integration with many technologies, autonomic features,
heterogeneity, and interoperability, as well as testing
concerns such as performance and efficiency.

• RQ2: Which research areas are addressed? – In this
respect, we observed that the main research areas are
traditionally cloud and distributed computing, but new
areas, including IoT, Edge, and Fog Computing, have
also appeared. An important observation is the relation
of Cloud-native observability studies to big data, secu-
rity, and ML/AI topics.
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• RQ3: How are observation approaches implemented?
– Looking at the implementation landscape, we see
that some solutions are most popular in research. Most
notable are Prometheus as a monitoring system, Fluentd
as a logging system, Jaeger as a tracing system, and
Grafana as a visualization system. As a general-purpose
observability stack, Elastic is the most popular. These
often couple with Docker, Kubernetes, and OpenStack
as an alternative to standard public clouds.

• RQ4: What are the recommended future trends in
CNApps observability research? – Based on our
research, we identified the following gaps in require-
ments and research areas covered. First and foremost,
in the category of CNApp execution, scheduling has
not been widely addressed. Second, in management cat-
egory, policy-based approaches haven’t been covered
much. Third, from non-functional requirements con-
cerns, we observed that the self-* aspects of applications
and systems are not widely explored. Fourth, testing,
security, compliance, and governance have not received
much attention. Finally, we also expect that observability
would cover ML/AI, visualization, and security.

One of the significant notions not addressed in this paper
is Serverless Computing, which can be closely related to
cloud andmicroservice architectures.We can expect that with
increasing interest in serverless approaches and in the light
of converging technological solutions (e.g., Knative server-
less frameworks based on Kubernetes), the observability of
serverless computing and applications will become a com-
pelling research area. Another general trend we observe in
computing is the expansive growth of data-driven methods
for data analysis based on the progress in ML/AI techniques.
This trend will influence the observability domain, as we
expect the observability data to be input into ML models,
which can drive autonomous decisions of computing sys-
tems and applications. It will require more quality data and
careful development of models. Also, we can expect that
the observability methods and frameworks for Cloud-native
applications will enable new research areas in performance
evaluation, benchmarking, and modeling. To enable this, the
information gathered during observations must be exploited
by the systematic experimental studies of real applications
and systems in a Cloud-native style.
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