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ABSTRACT Packet classification is the core technology that underpins software-defined networking (SDN).
With the rapid development of network applications, the increasing complexity of flow tables in SDN
brings challenges to update and classification time. In order to achieve fast search and update at the same
time, this article proposes a high-performance packet classification method PcmSU based on decision tree.
The method optimizes the search and update process in the traditional decision tree-based classification
method, and the classification efficiency of the constructed decision tree has been greatly improved compared
with that before optimization. Based on the characteristics of the small interval, the reconstruction of
the decision tree is greatly reduced and the rule update efficiency is improved. In addition, based on the
characteristics of the decision tree constructed by this method, there is no need to consider the specific
location and sequence number of rule updates when adding rules, which can avoid introducing rule conflicts.
Experimental results show that the PcmSU method not only supports high-speed packet classification and

linear memory consumption, but also has fast rule update speed.

INDEX TERMS Packet classification, decision tree, SDN, rule update.

I. INTRODUCTION

In the traditional network architecture, routers as core devices
contain functions such as routing and packet forwarding,
however, the rapid expansion of the network has led to a blur-
ring and bloating of the functions and structures they carry.
The core idea of SDN technology is to realize the decoupling
between the control plane of network devices and the data
forwarding plane. OpenFlow, the standard protocol of SDN,
supports the controller to dynamically manage the actions of
each switch, and the core function of OpenFlow switches is
to quickly classify each packet flowing through them based
on the principle of first-rule-precedence. The classification
needs to satisfy two conditions: high-speed packet classifi-
cation (to meet the real-time needs of the client) and fast
update (OpenFlow rules are frequently updated dynamically
by the controller). Rule updating generally includes inserting
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rules and deleting rules. Each OpenFlow switching node has
one or more flow tables, and each flow table is composed of
data items including matches, counters and action sets. The
switching node determines the processing mode of packets
(forwarding, discarding, etc.) according to the matching items
and action sets in the flow table. In addition, OpenFlow
preliminarily realizes the prototype design idea of SDN,
the controller adds, deletes and modifies the flow tables in
switching nodes as required, so as to achieve the purpose of
controlling the network (such as link load balancing, dynamic
networking, etc.).

As a widely studied problem, packet classification in phys-
ical switches still relies on expensive TCAM (Ternary Con-
tent Addressable Memory), because the algorithm solution
implemented in software is difficult to meet the wire-speed
forwarding in traditional network infrastructure. Especially
with the advent of SDN and NFV (Network Function Virtual-
ization), efficient algorithmic solutions using ordinary mem-
ory such as DRAM/SRAM are becoming attractive again.
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TABLE 1. An example of 2-tuple classification rules.

Rule ID F A Action
r [3,9] [3,3] accept
n [7.9] [0,7] discard
n [0,0] [0,9] discard
A [0,4] [6,6] discard
s [2,3] [1,5] discard
7 [0,9] [8.8] accept
” [09] [7.9] discard
s [0,3] [0,6] accept
I [5,6] [0,9] accept

In the existing packet classification algorithms, decision tree
and tuple space search (TSS) are two main methods. In deci-
sion tree-based schemes, the geometric view of the packet
classification problem is adopted and the decision tree is
constructed. They work by recursively dividing the search
space into smaller subspaces until each subspace contains
fewer rules than a predefined threshold. However, if the rule
spans multiple subspaces, there will be a rule replication
problem, and the rules need to be replicated for each over-
lapping subspace. This rule replication problem becomes par-
ticularly serious in small-scale cutting operations. Therefore,
the decision tree-based scheme achieves high-speed lookup
on packet classification, but cannot support fast update due to
rule replication issue. Because when constructing a decision
tree, the rules in the original rule list will be copied to all
intersecting areas, and the rule update needs to reconstruct
the decision tree, which consumes a lot of time, resulting in
slow and complex rule update based on the decision tree.
Different from traditional packet classification, the rule
update process usually needs to be completed quickly online
to ensure the continuous availability of applications such as
VoIP and E-commerce. OpenFlow has higher requirements
for rule update, which makes most decision tree algorithms
unsuitable for this application. On the contrary, TSS divides
the rules into a set of hash tables (i.e., tuple space) according
to the prefix length. In the TSS-based scheme, rule replication
does not occur, and each rule update can only access memory
once on average. Therefore, TSS is the fastest rule update
method at present. It divides the original rule set into several
rule subsets according to the prefix hash value of the rule.
These rule subsets satisfy the easy-to-compute property, and
the rules can be quickly inserted and deleted based on the
hash table lookup method. However, due to the large number
of rule subsets, for each incoming packet, its final match is
the matching rule with the highest priority among all tuples,
so TSS needs to search for each tuple, that is, to calculate
each rule subset, so the classification speed of TSS is slow.
Some of the existing packet classification methods focus
on reducing update time, such as TupleMerge [1], or mini-
mizing classification time, such as SmartSplit [2], or simul-
taneously supporting fast update and classification, such as
PartitionSort [3]. TupleMerge is a fast update method that
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FIGURE 1. Rule mapping forms a set of cell spaces.
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FIGURE 2. Constructing classification decision tree based on PCMigr
method.

focuses on minimizing update time while sacrificing classifi-
cation time. SmartSplit is a high-speed classification method
based on decision tree, which focuses on minimizing clas-
sification time while sacrificing memory consumption and
update time. PartitionSort divides the rule set into smaller
sortable rule sets, and then stores each sortable rule set into a
multidimensional interval tree (MITree) to support both fast
update and high-speed classification. PartitionSort is superior
to TSS and SmartSplit in classification speed and update time,
respectively, which means that the decision tree method can
also achieve rapid update, and points out a new research idea
for the decision tree method.

Based on SDN performance requirements, supporting
fast update and high-speed classification has become an
important research direction in the field of packet classifica-
tion. In order to achieve high-speed classification, we pro-
posed a decision tree-based packet classification method
PCMlIgr [4] in our previous work, which achieved high-
speed packet classification with logarithmic time complexity.
Firstly, according to the rule mapping method of multi-
dimensional cell space [5], the original rules are mapped to
a multi-dimensional matrix in reverse order to obtain the cell
space set with the same semantics as the original rules. Then,
based on the greedy idea, when we need to select a feature
as an internal node to split, we choose the feature with the
highest “information gain ratio” to construct the decision
tree. Taking the nine classification rules shown in Table 1 as
an example, six cell spaces and corresponding classification
decision tree (as shown in Fig. 2) can be obtained after
mapping.

As can be seen from Fig. 2, the interval values of the sub-
nodes corresponding to the roots of the decision tree or any
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FIGURE 3. An example of decision tree with small interval value of
sub-nodes.

sub-tree satisfy the orderly increasing relationship, so the
binary-search method can be applied to packet classification
based on the decision tree. Moreover, each leaf node of the
decision tree uniquely corresponds to a cell space (according
to the definition of cell space [5], the decision is accept).
Therefore, when a packet matches the leaf node, the classifi-
cation result of the packet can be clearly determined as accept.
This property avoids the need for sequential matching in the
rule group associated with the leaf nodes in the traditional
decision tree-based classification method, which effectively
improves the efficiency of packet classification.

However, when updating rules based on the decision tree
shown in Fig. 2, the cost of decision tree reconstruction is
relatively high under frequent rule set changes. For example,
to insert a rule “r: F1€[2,4]A F2€[3,6]— accept” in the
decision tree, the interval value of the rule on dimension F} is
[2,4], and the six interval values of the corresponding decision
tree on this dimension are [1,1], [2,2], [3,3], [4,4], [5,6] and
[7,9]. Obviously, the interval [2,4] covers or intersects with
the three node intervals [2,2], [3,3] and [4,4] of the decision
tree. Therefore, corresponding to the decision tree shown in
Fig. 2, inserting the rule r needs to modify three decision
subtrees at the same time, resulting in low efficiency of rule
update.

However, if the interval value of the sub-node correspond-
ing to the decision tree root is relatively small compared with
the domain value D(F1)=[0,9], as shown in Fig. 3, [1,1] and
[5,6] correspond to the first layer node interval of the two
decision subtrees, respectively. Let’s still add the rule “r:
F1€[2,4]AF>€[3,6]— accept”, obviously, the interval value
[2,4] of rule r on dimension F'| and the two decision tree node
intervals [1,1] and [5,6] on this dimension are independent
of each other. Therefore, when inserting r, it can be directly
added to the decision tree as a new subtree of the root, without
any modification to other subtrees in the decision tree, which
effectively improves the efficiency of rule update.

Comparing the rule update process in Fig. 2 and Fig. 3,
we find that if the packet classification method based on deci-
sion tree wants to meet the requirements of high-speed packet
classification and rapid update at the same time, a feasible
design idea is that the rule interval and the node interval of
the decision tree should be as independent as possible.

Based on the above observations, we propose a high-
performance packet classification method PcmSU based on
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decision tree. The method first divides the original rule map-
ping space to form a series of independent cell space subsets,
each of which has the same characteristic: the cell space map-
ping interval on a certain dimension Fj is a Fj-small interval
(as defined in Section III-B), on this basis, multiple classi-
fication decision trees are constructed, which can perform
packet classification and rule update in parallel. We evaluated
our algorithm using ClassBench [25], and the results show
that the PcmSU method not only supports high-speed packet
classification and linear memory consumption, but also has
a fast rule update speed. Compared with the TupleMerge [1]
algorithm, PcmSU achieves similar rule update performance,
but significantly better than TupleMerge in classification
efficiency, improving by nearly an order of magnitude on
average.

The main innovation of this method include the following
aspects:

1) Constructing the classification decision tree based on
projection interval mapping. Because the node interval values
follow the increasing relationship, the binary-search method
can be used in classification, which has high classification
efficiency;

2) Dividing the cell space set to construct multiple decision
subtrees, which realizes the parallel processing of packet
classification and improves the classification efficiency;

3) Using the characteristics of the small interval to reduce
the reconstruction of decision trees and improve the rule
update efficiency; when adding rules, there is no need to
consider the specific location and sequence number of rule
updates, which avoids introducing rule conflicts.

The rest of this paper is organized as follows: the related
work is introduced in Section II; The third section gives
a description of the problem and the solution ideas, and
elaborates on the technical details of the PcmSU method.
Section IV presents the classification and update results of
PcmSU, TupleMerge, HyperSplit and CutTSS, and followed
by the analysis of experimental results; Finally, the conclu-
sion is drawn in Section V.

Il. RELATED WORK

Packet classification has been actively studied for more than
two decades. But as far as we know, most of them can achieve
high-speed packet classification, but not fast updates, which
seriously limits their scalability in the SDN era. In contrast,
tuple space-based schemes have become the de facto choice
in software switches, because they support fast updates of
linear memory consumption. However, these schemes have
the problem of low classification performance and can not
meet the demand of high-speed classification in the fast-
growing networks.

Generally speaking, the research on packet classification
can be broadly divided into four categories: decision tree-
based methods, partition-based methods, integrated deci-
sion tree and partition-based methods, and hardware-based
methods.
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The algorithms based on decision tree mainly include two
categories: one is based on Trie tree; the other is to construct
a decision tree by cutting the multidimensional space where
the classification rule set is located. The basic idea of Trie-
based algorithm [6] is to establish a hierarchical binary tree
according to the rule set, which divides each dimension of
the rule into one layer, and extends the one-dimensional tree
structure recursively to generate a k-dimensional hierarchical
tree. The advantage of the algorithm is simple and straight-
forward, easy to implement in hardware. The disadvantage
is that the backtracking time is long, is not conducive to
the expansion of rule dimensions, and cannot directly support
range matching. SplitTrie [7] improves on the basic trie algo-
rithm to support multi-field search and avoid backtracking,
but the algorithm still does not support range matching.

There are many algorithms for constructing decision trees
by reasonably cutting multidimensional spaces. Such as
HiCuts [8] and HyperCuts [9], which use local optimization
to divide the search space into multiple subspaces of equal
size until the number of rules in each subspace is less than the
predefined threshold, showing excellent search performance.
But equal-scale cutting will lead to huge storage require-
ments. H. Lim et al. reduced the memory consumption of the
algorithm by boundary-based cutting [10]. HybridCuts [11]
divides rules on a single rule field instead of all fields, reduc-
ing the number of subsets, thereby reducing the frequency
of memory access. BitCuts [12] and PCMIgr [4] cut based
on bit and cell space, respectively, for a better balance of
speed and space. ByteCuts [13] intelligently divides the rule
list into multiple trees by byte slicing, reducing rule repli-
cation. The MBitCuts method [14] reduces the space con-
sumption and memory access by changing the bit selection
method when cutting the geometric space model of each tree
node.

Compared with the cutting-based method, the splitting-
based method divides the search space into multiple iso-
density subsets. “Isodensity” means that the number of
rules in each subset is almost identical. HyperSplit [15] is
a classical splitting method, which divides the search space
into two equally dense subspaces. But this method increases
the memory consumption as the number of rules increases.
As an improved version of HyperSplit, ParaSplit [16] uses
a new partitioning algorithm to reduce the complexity of
the ruleset, and its memory consumption is reduced. Cut-
Split [17] combines the advantages of cutting and splitting
to improve packet classification performance. However, the
performance varies greatly for different rulesets, which is a
common problem faced by most decision tree-based algo-
rithms except “‘rule replication’. Therefore, the decision tree-
based approach can have fast classification speed, but the
disadvantage is that rules may be replicated to many areas
when dividing, resulting in high memory consumption, and
rule updates are slow and complex, because when inserting
or deleting rules, all replicated areas need to be operated on
at the same time.
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The partition-based method refers to quickly narrowing
down the scope of multi-field search by partitioning the rule
set by tuples. A tuple defines the number of bits for a specific
bit in each field of the rule, that is, the bit characteristics of
each domain. According to the tuple, the initial packet clas-
sification rule set can be divided into multiple rule subsets,
and each rule subset establishes a corresponding hash table
based on the bit of each rule domain. The most typical is the
TSS algorithm, which divides the packet classification rule
set into corresponding rule subsets according to the number
of valid bits of each field prefix and stores them in hash table.
When a packet is received, the corresponding rule subset is
first searched by hash key, and then matched in the subset
to obtain the best matching rule. For each group, TSS can
update the rules (inserting or deleting rules) quickly based on
the hash table lookup method, but its main disadvantage is
that the number of partitions or tables will increase over time
to a large number. When classifying packets, each partition
needs to be calculated, resulting in slow packet classifica-
tion. Representative algorithms include TSS [18], CNP3 [19],
Dynamic Tuple [20], etc.

Hybrid methods combining partition and decision tree,
such as EffiCuts [21] and SmartSplit [2], are designed to
reduce the linear space requirements for rule replication and
decision tree management. Specifically, EffiCuts and Smart-
Split first place small or large rules in a field into the same
partition, and then generate a HyperCuts or HyperSplit tree
for each partition. Although these two methods significantly
reduced the space storage consumption of rule replication
and decision tree, they do not eliminate rule replication.
Therefore, the rule update performance of these two methods
is not ideal. By dividing the rules into several sortable subsets
and constructing a MITree for each subset, PartitionSort [3]
simultaneously achieves logarithmic time classification and
update for each subset. However, due to the strict restriction
on partitions, PartitionSort requires more trees than Smart-
Split, resulting in slower classification speed.

Finally, there are a number of hardware-based methods for
packet classification, the core idea of which is to exhaus-
tively search all the rules in the rule set to get a matching
result. Typical hardware-based solutions include ternary con-
tent addressable memory (TCAM) [22], field programmable
gate array (FPGA) [23] and dedicated network processor
chips. The data structure of exhaustive search algorithm is
simple, but the classification efficiency based on hardware
processing is high. For example, the packet classification
algorithm based on TCAM adopts parallel search scheme,
and the time complexity of the algorithm is O(1). At present,
large routers and high-end classifiers mainly use hardware
devices for packet classification based on exhaustive search.
However, the expensive price, long development time and
high energy consumption of dedicated hardware limit their
application and scalability. In particular, hardware-based
classifiers have a long construction time and cannot be used
in dynamic OpenFlow environments. Therefore, whether
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hardware-based classifiers can be well extended to OpenFlow
packet classification remains to be studied and verified.

In summary, one of the fundamental challenges of packet
classification is achieving both high-speed classification and
fast update. Currently, most methods, such as SmartSplit,
focus on minimizing classification time while sacrificing
update time and memory occupation. Some methods, such
as tuple space search(TSS), sacrifices classification time for
fast update. The final result is that high-speed classifica-
tion methods are not competitive in update time, and rapid
update methods do not have high-speed classification effi-
ciency. CutTSS [24] combines the advantages of decision tree
method and TSS method, proposes a two-stage framework
to adaptively utilize the different characteristics of rule sets
at different scales. It is one of the few decision tree packet
classification methods that can use linear space and support
fast update. However, this method is highly sensitive to the
order of rules. Before inserting rules, it is necessary to clarify
the order of position in which rules are inserted. Otherwise,
itis easy to bring rule conflicts to the rule set, thus introducing
security vulnerabilities. In addition, the method is more suit-
able for the rules represented by prefixes, and when querying
the leaf node during classification, it is necessary to continue
to perform sequential matching in the rule groups associated
with the subspace, which reduces the classification efficiency
to some extent.

It should be noted that there is a ““prefix explosion” prob-
lem when using prefix form to represent rules. For exam-
ple, when a k-dimensional rule expressed in the form of
address interval is converted into a prefix form, there are
(2w-2)* rules in the worst case, w is the domain length of the
dimension where the address interval is located. To this end,
we designed a rule representation model based on address
interval in the preliminary work [5], and proposed a new
classification method based on decision tree [4]. The method
achieves logarithmic time classification speed, and com-
pletely eliminates rule conflicts, so there is no need to con-
sider the order of rule insertion position when inserting accept
rules, which lays a good foundation for rapid rule update.
This is also the premise of this article to propose a packet
classification method with both high-speed classification and
fast update.

Ill. THE PROPOSED APPROACH

In this section, we first introduce the idea behind the design of
PcmSU. Then, we propose a cell space set partition algorithm
based on Fj-small interval, which divides all the cell spaces
obtained by the original rules into multiple cell space sub-
sets according to the corresponding dimensions of Fi-small
interval. For each cell space subset, all the cell spaces it
contains have a common characteristic: the cell space map-
ping intervals on a certain dimension Fj are small intervals.
On this basis, we design a decision tree construction method
based on projection interval. The corresponding decision tree
is formed by each cell space subset, and this decision tree
can achieve high-speed packet classification with logarithmic
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FIGURE 4. lllustration of dividing cell space set into subsets.

time efficiency; At the same time, a rapid rule update method
based on spatial relation comparison is proposed. Finally, the
effectiveness of PcmSU method is discussed theoretically and
experimentally.

A. DESIGN IDEAS

According to the analysis of the rule update process based on
decision tree, we know that if the decision tree-based packet
classification method wants to achieve fast rule update,
adesign idea is to make the rule interval to be updated and the
corresponding node interval of the decision tree as indepen-
dent as possible. Specifically, the original decision tree can
be divided into several decision sub-trees with the structural
feature as shown in Fig. 3. In these decision subtrees, the node
interval with one or more dimensions is Fi-small interval.
Therefore, when updating rules, if the rule to be updated is
a small interval on a certain dimension Fj, or the rule interval
and the corresponding node interval of the decision tree are
independent of each other on dimension Fj, the rule update
operation is preferentially performed from Fj.

As shown in Fig. 4 (for ease of understanding, this article
takes two-dimensional rules as an example). Firstly, the cell
space in F| and F, dimensions that conforms to the def-
inition of Fj-small interval is calculated. According to the
calculation results, the entire cell spaces are divided into two
subsets according to the dimension F;j to which the small
interval belongs: ( small_F1, arbitrary_F,) = {subsetl} and
(arbitrary_Fy, small_F,) = {subset2}, here arbitrary_IF;
can be either small_F; or big_F3.

With reference to the decision tree construction method
described in PCMIgr [4], the decision subtrees are respec-
tively constructed according to the cell space subsets in
Fig. 4, as shown in Fig. 5. It can be seen that all subtrees
have Fj-small interval in one or more dimensions, and the
rule spaces corresponding to each branch are independent
of each other, which avoids the rule replication problem of
traditional classification decision trees. However, in order to
achieve high-speed classification and fast update of rules at
the same time, there are still several issues to be considered:
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FIGURE 5. Constructing classification decision tree based on cell space
subset.

TABLE 2. Notations used in this manuscript.

Notation Paraphrase

£ the /th dimension

D(F) domain of A

cs cell space

M k-dimensional matrix

p packet

R classification rule

T decision tree

T the /th decision subtree

(1) What criteria is used to define Fj-small interval? can
we assume that most rules in a ruleset have at least one small
field?

(2) The packet classification method based on decision
tree can realize high-speed classification, but the decision
tree needs to be reconstructed when updating rules, and the
reconstruction is complicated and slow due to rule replica-
tion. Therefore, how to reduce the reconstruction operation
of the decision tree as much as possible when updating rules,
so as to achieve fast update?

Solving the above problems is the design goal of this
article. Our solutions can be summarized as follows:

(1) The domain value characteristics of rules and cell space
are analyzed, the definition of Fj-small interval is given, and
the observation conclusion is drawn based on the statistical
results of the proportion of small intervals.

(2) The rule mapping method based on multi-dimensional
matrix eliminates rule conflicts, and divides the cell
space into several subsets according to the corresponding
dimension of Fj-small interval. Each subset has a common
characteristic: the cell space mapping interval on a certain
dimension Fj is a small interval. Therefore, the node interval
of the decision tree constructed by this subset must be a
Fj-small interval.

(3) The decision subtree is constructed from the subset
of cell space according to the projection interval method.
Because each decision subtree has a node with small interval
in a certain dimension, this characteristic can be used to
accelerate the rule update speed. In addition, because the cell
spaces are independent of each other, there is no need for rule
replication when constructing a decision tree. Therefore, par-
allel processing can be adopted for packet classification and
rule update based on decision tree, which will help to improve
the efficiency of packet classification and rule update.
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B. CONCEPT PREPARATION

In this section, we first briefly explain some of the notations
used in this article (as shown in Table 2), give the definition of
Fj-small interval, and perform statistical experiments on sev-
eral rule sets from ClassBench, and give statistical results and
observation conclusions on the proportion of small intervals.

In the following, we give the definition of small interval
based on the domain value characteristics of the rule and cell
space:

Definition 1: Given a k-dimensional rule R = (Fy,
F>, ..., Fy) and threshold vector T = (T, T, ..., Ty),
the interval scale of each dimension coordinate Fi(i =
1,2, ..., k) of the rule is defined as follows:

(1) If the interval length of F; satisfies: |Fi| > Ti, the
interval is called Fj-big interval,

(2) If the interval length of Fj satisfies: |Fj| < Tj, the
interval is called Fj-small interval;

Accordingly, the definition of interval scale of cell space is
given as follows:

(1) If for any i = 1,2,...,k, the interval of cs in each
dimension is Fj-big interval, the cell space is called a big cell
space;

(2) If forany i = 1,2,...,k, cs contains a total of n
Fi-small intervals, the cell space is called an n-small cell
spaceheren = 1,2, ..., k.

For the classic IPv4 five-tuple rule, since the protocol fields
is limited to a small number of values (such as TCP, UDP,
etc.), this article only considers the four fields of source
address, destination address, source port and destination port.
The corresponding threshold vector is denoted by T =
(Tsa, Tpa, Tsp, Tpp), for example, take 1/2 of the domain
value interval of each dimension as the threshold vector, then
T1/2 — (216, 216, 28, 28)

Based on the above definition, we conducted statistical
experiments on several rule sets from ClassBench. Because
the actual statistics is the ratio of big cell space, we first use
the FDM method [5] to map each rule set before statistics.
Table 3 gives the specific statistical results for each cell space
set under the preset threshold. It can be seen that when the
threshold vector T, = (216, 216, 28 28y i taken, the
proportion of big cell space is less than 0.003, which indicates
that most cell space sets have at least one small cell space
satisfying the threshold 77 >. In practical applications, if there
are a few big cell spaces, we can choose any dimension Fj
and divide the cell space into two sub-cell spaces in this
dimension on average. According to the definition of the
threshold vector T2, the two cell spaces after dividing must
be Fj-small cell space.

C. METHODOLOGY

Based on the problem analysis and the statistical results of
Table 3, we propose a new decision tree-based packet clas-
sification method, PcmSU, which can simultaneously meet
the requirements of high-speed packet classification and fast
update. Next, we will introduce the implementation process
of PcmSU in detail, including the following five steps:
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TABLE 3. Statistical results for cell space sets under preset threshold.

#eell  Threshold  #big cell #n-small cell spaces

spaces  vector spaces =1 n=2 n=3 n=4 n>4
173 0 173 167 82 1 0
366 7;p=(26, 0 366 354 147 5 0
453 216 28 28) 1 452 432 218 2 0
624 0 624 606 295 7 0

STEP 1: Rule Preprocessing

For the input k-dimensional classification rule set R,
the rule mapping method is used to map the rules to the
k-dimensional matrix space My in reverse order, and a series
of independent cell spaces are formed after mapping. In gen-
eral, classification rules can be expressed as “F| € D(F1) A
Fr, € D(Fy) A ... A Fx € D(Fx) — decision”, where each
dimension coordinate Fi(1 < i < k) represents the source
address, destination address, source port and destination port,
etc., D(F;) represents the corresponding domain value inter-
val, and ‘“‘decision” represents the rule’s decision (accept or
discard ). According to the idea of rule mapping [5] based on
multi-dimensional matrix, any k-dimensional classification
rule set R can be mapped to the k-dimensional matrix space
My to form a series of regions whose decision is accept
(also known as the cell space ¢s corresponds to an indepen-
dent k-dimensional rectangle in k-dimensional matrix space),
which can be expressed as [(/1, l», ..., k) (d1,da, ..., dy)],
where [; and d; refer to the minimum boundary value and
range of the region in each dimension, respectively. Fig. 1
shows the six cell spaces obtained by preprocessing the nine
classification rules shown in Table 1.

STEP 2: PFartition Cell Space Set based on Fj-small
Interval

Based on the above experimental statistical results, we pro-
pose a cell space set partitioning algorithm based on Fj-small
interval, which divides all cell spaces into multiple cell space
subsets. For each subset, all contained cell spaces have a
common characteristic: the cell space mapping interval on a
certain dimension Fj is a small interval. Therefore, the node
interval of the decision tree constructed by this subset must
be a Fj-small interval. The specific execution process of the
method is described in Algorithm 1.

Taking the cell space set of Fig. 1 as an example, we cal-
culate the number of n-small cell spaces on two different
dimensions of F and F,, respectively. Because the whole
set of cell spaces does not contain big cell space, that is,
(big_F1, big_F>) = {@}, we can divide the set of cell spaces
into two subsets: (small_F, arbitrary_F>) = {cs2, ¢s3} and
(arbitrary_Fy, small_F;) = {cs1, csa, ¢S5, cSe¢}. The parti-
tioning result of cell space set is shown in Fig. 4.

STEP 3: Construct Decision Tree based on the Projection
Interval

The purpose of this step is to construct a classification
decision tree based on each cell space subset. In general,
on a given dimension Fj, the spatial relation R(u, v, F;) of
any two cell spaces # and v must satisfy one of the six
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Algorithm 1 Partition Cell Space Set Based on F;-Small

Interval
Input: A cell space set {S} consisting of n cell spaces cs
[y, by i) dydy,s s dy)].
Output: & cell space subsets S, S5 ..., Sk.
Begin
1. while(cse{S} & {S}#0)
2. for(t: :dl to k) do
"t = Dy
end for
vi=min{vi{,va, ..., };
6. if (v; < 1/2), send cs to the cell space subset S; and remove cs
from {S};
7. elseif (v; >1/2), divide ¢s into two cell spaces in half on the F;j
dimension, send them to the subset Sj, and remove cs from {S};
8. end while
9. return Sy(t: =1to k);
End

kW

R(u,v.F,)=R(v.u,F,)=crossed Riu,v,F,)=covered R{u,v F,)=included
u I u u

v 2 v
012345 F

012345 F 012345 F

S(uv,F)={10.2][3.4115.51} S{uv.Fy)={0.0][1.2)[3 4} S(uv.FyF(0.1],[2.415.5)

R(u.v.F,)=R(v.uF,)=disjunctive  R(u.v,F,)=R(v,u,F,)=adjacent R(u.v.F\=R(v.uF,)=equivalent
Lu (- u

v v v
Tol123/4 5 F

B — RPN m—
0112345 F 012348 F

S(uv.F)=(0.11.13,5]) S(uv.F{0.2]13.5)} S(uv.F)={34]}

FIGURE 6. The spatial relation and coordinate projection interval of two
cell spaces u and v on dim F;.

relations {crossed, covered, included, disjunctive, adjacent
and equivalent} [26], as shown in Fig. 6. Next, we give the
definition of the coordinate projection interval S(u, v, Fj) of
the cell spaces u and v on the dimension Fj.

Deﬁnifion 2: Let cell spaces u = (li“), el ll((”))(dfu), e,
d", v =", @Y, dM, if

(1) R(u, v, F) = "crossed’, then S(u, v, F;) = [1, 11",
1 1 + a1 + a1 + )

(2) R(u, v, F;) = 'covered', then S(u, v, Fy) = [1\, 11",
[li(V)’ ll(V)+ di(V)]’ [ll(V) + di(V)’ li(u) + di(u)];

(3) R(u, v, Fi) = included’, then S(u, v, F;) = [IV, 1],
1,1 + a1, (1 + a1 + s

4) Ru,v, F) = 'disjunctive’, then S(u,v, F;) =
[ll(”)’ ll(u) + dl("‘)]’ [ll(V)7 ll(V) + dl(V)]’

(5) R(u, v, i) = 'adjacent’, then S(u, v, F;) = [1™, 1" +
dl(u)]’ [ll(V)a ll(V) + dl(V)]’

(()6) R(u, v, Fy) =equivalent’, then S(u, v, F;) = [li(“), li(u)+
da".

1 Based on Definition 2, we will briefly describe the general
process of constructing classification decision trees based on
the subset of cell space, as shown in Algorithm 2. Let the
k-dimensional cell space set contain n cell spaces cs;(i: =1
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Algorithm 2 Decision Tree Construction Based on Projection

Interval
Input: ¢ cell spaces csj(i: =1 to ¢), and the dimension Ft where the small
cell space is located.
Output: the classification decision tree 7.
Begin

1. Calculate n coordinate projection intervals S(cs1q, .. ., csc, Ft) of
¢ cell spaces on the dimension Ft;

2. Add n coordinate projection intervals as child nodes node; (i: =1
to n) to the root in turn, each child node constitutes a subtree 7;(i: =1 to
n) of T, and node; is the root corresponding to the subtree Tj;

3. for (s: =1 to k(s # 1)) do

4. Search all the cell spaces (denoted as { ¢s}) associated with the
root of Tj(i: =1 to n), calculate its coordinate projection interval P({cs},
Fs) on the dimension Fg, and denote the number of projection intervals
as n;.

5. Add n; projection intervals P({cs}, Fs) to T; as child nodes of
the root of 7j. Similarly, each child node constitutes a subtree of 7; and
becomes the root of the corresponding subtree.

6. end for

7. return T,

End

to n), and the dimension of the small cell space is denoted as
Fi. Initially, the decision tree T only contains the root node.

Taking the cell space subset shown in Fig. 4(b) as an
example, two cell spaces (cs2, ¢s3) in the two-dimensional
matrix space form two coordinate projection intervals {[1,1],
[5,6]} on the F| dimension. Each projection interval is added
to the decision tree as a child node of root in turn, and each
child node constitutes a subtree of 7. For the corresponding
interval [1,1] of the subtree root, the associated cell space
cs3 forms a coordinate projection interval [0,5] on the F;
dimension. Add the projection interval to the subtree as a
child node of the root. Similarly, the projection interval [0,6]
is added as a child node to another subtree, and finally the
decision tree 7 is formed, as shown in Fig. 5(a).

Compared with classical decision tree methods such as
HiCuts and HyperCuts, PcmSU has the following character-
istics in the details of constructing decision trees: (1)PcmSU
does not divide the rule space evenly, but adopts a division
method based on the cell space boundary, which can effec-
tively reduce the number of rule subspaces and save storage
space; (2)PcmSU first uses the rule mapping method based
on multidimensional matrix space to preprocess the original
rules, so that the target rules and the original rules have the
same semantics, but the rules are independent of each other
and do not overlap. This is reflected in the classification deci-
sion tree based on target rules, where each branch of the tree
uniquely corresponds to an independent multidimensional
rule subspace. Intuitively, each leaf node of the decision tree
has only one association rule with the decision ‘“‘accept”,
different from the traditional packet classification method,
which needs to continue to perform sequential matching
within the rule group associated with the leaf node. This
property significantly improves the speed of packet classifi-
cation. (3) Each branch in the decision tree corresponds to
the cell space one by one, and the interval value of the same
layer nodes in the decision tree is strictly increasing, so the
binary-search method can be applied when searching, which
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can ensure high classification efficiency. (4) Finally, several
independent decision subtrees with the same semantics as
the original decision tree are constructed, which can process
packet classification and rule update based on decision tree in
parallel, and help to improve the speed of packet classification
and rule update.

STEP 4: Classification Packet based on Decision Tree

Packet classification can be regarded as the problem of
““point location in multidimensional space” in computational
geometry [27]: given some disjoint areas in multidimensional
space, to locate the area containing the specified “point”.
A classifier is a hypercube set with priority, and the packet
header represents a point in k-dimensional space. The packet
classification problem corresponds to the decision tree model
constructed in STEP 3 of this article, which is essentially the
matching process between the packet and the corresponding
node intervals of the decision tree. Because the rule decision
associated with each leaf node of the decision tree is accept,
if the corresponding packet is matched in any decision subtree
(that is, Dj={accept}), the packet decision can be determined
as accept; When all decision subtrees cannot match, the
packet decision is discard.

Taking the decision tree shown in Fig. 5 as an example,
when a packet P is received, it is sent to two decision subtrees
T; (i = 1,2) for matching, and the matching result is recorded
as Di={accept or discard}, i = 1,2. Then, the final decision
of the packet is determined based on the matching result D;
(i = 1,2) of the packet on each subtree. The specific decision

is based on the following criteria:
2

(1) when > (D; = accept) > 1, the decision is accept;
i=1

2
(2) when > (D; = accept)=0, the decision is discard.

It can belgelen that the PcmSU method reduces the size
of the decision tree after dividing the original decision tree
into multiple subtrees, and the packet classification operation
can be performed in parallel, which obviously improves the
packet classification efficiency. In the packet classification
method based on decision tree, the essence of packet clas-
sification is a query operation. Especially for the decision
tree or any subtree shown in Fig. 5, the interval value of the
same layer nodes in the decision tree is strictly increasing,
so the binary-search method can be applied when searching,
which is expected to achieve logarithmic time classification
efficiency.

As shown in Fig. 7, the root node of decision tree T has
two sub-nodes, and the corresponding interval coordinates
are {[1,1], [5,6]}, which satisfies the strict increasing rela-
tionship. Let {p1, p2}={(1,6), (5,3)} be the packet to be
classified. Firstly, we determine the packet p;:(1,6). e;=1
and e;=6. Starting from the root node, e;=1 matches the
interval of the first node a[1,1], so continue to search on
the subtree with a as the root. Because ¢>=6 cannot match
the interval [0,5] corresponding to the child node of the
subtree root node a, the classification decision of p; can be
determined as discard. For the packet p;:(5,3), it is known that
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FIGURE 7. Fast packet classification based on binary search.

Algorithm 3 Packet Classification Based on Binary Search

Input: the packet P:(eq, e3, .. ., ex), the decision tree T.
Output: the packet decision (‘accept’ or ‘discard’).
Begin
/* Assuming that the dimension matrix corresponding to the k-level nodes
of decision tree T is L[k], and the root node of T is root. Bisearch the i-th
metadata e; of P in all the child nodes of the root, if e; is included in the
interval corresponding to the s-th child node Child(root,s) of root, then
continue to search for ej; | in the subtree with Child(root,s) as the root
node. Otherwise, the decision of P is determined as discard. */
1.for (i: = 1tok) do
if (Bisearch (root, e [j_1])==true) do
root = Child( root,s);
continue;
end if
elseif P— discard,
break;
end elseif
9. end for
10. if (i>k)
11. P—accept.
12.  endif
End

©NO LA LN

e1=5, ep=3. Starting from the root node, it can be quickly
determined that e; matches the coordinate interval of the
second child node b[5,6]; Then continue to search on the
subtree with b as the root node, e»=3, which is included in
the corresponding interval of the child node of d[0,6]. So it
can be determined that the classification decision of packet
p2 is accept. The specific process of packet classification is
described in Algorithm 3.

STEP 5: Rule Update based on Decision Tree

In the model of rule mapping and decision tree construction
based on cell space, only rules with a decision of accept are
expressed as cell space, and correspondingly, each branch
of the decision tree constructed based on cell space only
corresponds to a rule whose decision is accept. Under this
model, rule updates can be summarized into two cases:
adding accept rules and adding discard rules. Because delet-
ing a discard rule is equivalent to adding an accept rule in
the corresponding area of the rule; deleting an accept rule
is equivalent to adding a discard rule in the corresponding
area; while modifying a rule can be regarded as deleting the
part that needs to be modified before adding a new rule.
In the following, we discuss the two cases of rule update
respectively.
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Case 1: Adding an accept rule (or deleting a discard rule)

According to the packet classification process and classifi-
cation decision criteria of PcmSU method (if a matching node
is found in any decision subtree, it can be determined that the
packet decision is accept, and when all decision subtrees fail
to match, the packet decision can be determined as discard).
Therefore, different from the traditional packet classification
method that must lookup the entire decision tree, PcmSU
only needs to perform rule update operations in a specific
single decision subtree for the case of adding accept rules
(or deleting discard rules ).

Determine whether there is a Fij-small interval in the accept
rule r to be added, if so, send the rule to the decision subtree
with the nodes on the corresponding dimension Fj are small
intervals, and compare the spatial relationship between the
rule interval of r and the node interval of the decision subtree
on the dimension Fj. If they are independent of each other,
directly add the rule r to the decision subtree as a new
subtree of the root node. If it is intersection or other relation-
ship, the decision tree reconstruction process as described in
Algorithm 4 is performed. In addition, if the rule r is Fj-big
interval on all dimensions Fi(i = 1,2, ..., k) (although the
probability is very small), then we divide r into two rules on
the halsection on the F; dimension, according to the definition
standard of threshold vector 7' /2, the two rules must be small
intervals on dimension Fj, and they can be sent to the subtree
T; to perform similar operations as described above.

The foregoing experimental observation has confirmed
that the vast majority of rules contain at least one Fj-small
interval. If the node intervals of the decision subtree on the
F; dimension are also small interval, the probability that the
rule interval of the rule to be added on the F; dimension
and the decision tree node interval are independent is very
large, so the accept rule to be added (or the discard rule to
be deleted) can be directly inserted, and the rule update effi-
ciency is very high. Of course, it cannot be completely ruled
out that the rule interval and the decision tree node interval
are not independent, and the decision tree reconstruction is
also performed according to Algorithm 4.

Case 2: Adding a discard rule (or deleting an accept rule)

When classifying packets based on the PcmSU method,
the packet is determined as discard only when all decision
subtrees cannot match the packet. Therefore, intuitively, the
rule update in case 2 is equivalent to pruning the branches
of the decision tree, and the update process needs to be
performed simultaneously in all decision subtrees. Its essence
is to search and delete the overlapping part of the discard rule
to be added and the accept rule corresponding to the decision
tree.

Next, we take the classification decision tree shown in
Fig. 5 as an example to illustrate the two rule update cases.
The two decision subtrees are F';-small interval and F-small
interval respectively.

First, consider “case 1”: adding rule “ri: F1 €[9,9]A
F>€[3,6] — accept”. Because the rule decision is accept,
and it is a small interval on the F| dimension, we send it to
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FIGURE 8. An example of rule update (adding rule “r;
F, €[9,9] AF, € [3, 6] - accept”).
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FIGURE 9. An example of rule update (adding rule “r;:
F, €[4,4] AF, € [3, 6] — discard”).

the decision subtree 7. Then compare the spatial relationship
between the rule interval of r; on the F; dimension and the
node interval of subtree T, because the rule interval of r; on
the F; dimension is [9,9], which is independent from the node
intervals [1,1] and [5,6] of subtree 71 on the F| dimension,
therefore, the rule r; can be directly added as a new subtree
to the root node of 7', as shown in Fig. 8.

Then analyze ‘“‘case 2”: adding rule “ry: F1 € [44]A
F> € [3,6] — discard”. Because the rule decision is discard,
it is necessary to search and delete the overlapping part of the
discard rule to be added and all the accept rules corresponding
to each subtree in Fig. 5. First, we search the decision subtree
T}, the rule interval of r, on the | dimension is [4,4], which
is independent of the node intervals [1,1] and [5,6] of subtree
T: on the F; dimension. Therefore, it can be determined that
there is no overlap between them, so no pruning operation is
required for the subtree 7.

Next, we search the decision subtree 75, the rule interval of
rule 7, on the F; dimension is [3,6]. Compared with the node
interval {[0,0],[3,3],[8,8]} of subtree T, on the F, dimension,
there is a “covered” relationship at the interval [3,3]. The rule
interval [3,6] is divided into two parts that are identical and
adjacent to the subtree node interval: [3,3] and [4,6]. At [3,3],
we continue to compare with the next dimension F, where
the rule interval [4,4] on the F'; dimension intersects with the
subtree node interval [3,4], we delete the equivalent interval
[4,4], and the subtree node interval is updated to [3,3] after
deleting the equivalent interval [4,4]. The update result is
shown in Fig. 9.

It can be seen that when adding a discard rule (or deleting
an accept rule), the PcmSU method only needs to perform
up to two rounds of pruning operations on the decision tree,
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Algorithm 4 Rule Update

Input: the k decision subtrees T;(i = 1,2, ...,
updated.
Output: the k updated decision subtrees T'i(i =1,2,...,k).
/% The rule updating can be adding an accept rule or adding a discard
rulesx/
Begin

1.if Ry. decision="accept’ then

2. for(i:=1,2,...,k)do

k), and the rule Ry to be

3. if Ry has a Fj-small interval, then PruningTree(Ry, Tj, 1),
break;
4. elseif for each dimension Fj, Ry is Fj-big interval, then

half-divide Ry into two rules R,y and Ry on the F; dimension,
do PruningTree(Ry1, Ti, 1) and PruningTree(R,;, T;, 1); break;}

5. end for

6. end if

7. elseif Ry. decision="discard’ then

8. for(i :==1,2,...,n)do PruningTree(Ry, T;, 0);

9. end elseif

10. return Ti’(i =1,2,...,k);

End

PruningTree(R, T, d){

/% Let the dimension array corresponding to the decision tree 7' from the
first layer child nodes to the leaf node be denoted as dim[k]. x/

11. for(i: =dim|0], dim [1]...., dim[k—1]) do

12. c¢=Relation(R, T, dim[i]); //c is the spatial relationship
between Rrule interval and T node interval on the dimension dim([i].

13.  switch ¢{

14.  "“disjunctive":

15. if d="1" then add(R,T.i); //Add rule R to the i-th layer of
T from dim[i] to dim[k—1] (denoted by R[dim[i], dim[k—1]]) as a new
subtree of 7’s [k—i] layer.

16. if d="0" then ignore R,

17.  “adjacent™:

18. if d="1" then add(R,T,i);

19. if d="0" then ignore R,

20. “‘equivalent’:

21. if d="1" then continue until i=dim[k-1], ignore R;

22. if d="0" then continue until i=dim[k-1], do delete(R,T);
//Remove the nodes with the same interval as R from T'; and if the node
has no sibling, delete its parent node. The operation is backtracked until
i=dim|0].

23.  “covered’:

24. Divide R into (1) the part that is equivalent with the 7' node
interval is recorded as R.eq; (2) the part adjacent to the T node interval is
recorded as R.ad.

25. ifd="1" then perform steps (21) in the R.eq interval; perform
steps (18) in the R.ad interval;

26. if d="0" then perform steps (22) in the R.eq interval; perform
steps (19) in the R.ad interval;

27.  “included”:

28. Divide the T node interval into (1) the part that is equivalent
with the 7' node interval is recorded as R.eq; (2) the remaining part of the
T node interval after cutting out R.eq is recorded as R.rm. The original
node interval of T is modified to R.rm, and the subsequent nodes on all
dimensions remain unchanged.

29. if d="1" then perform steps (21) in the R.eq interval;

30. if d="0" then perform steps (22) in the R.eq interval;

31.  ““crossed’:

32. Divide R into (1) the part that is equivalent with the 7' node
interval is recorded as R.eq; (2) the part adjacent to the 7' node interval
is recorded as R.ad; At this time, T is also divided into two parts, one of
which is R.eq, and the other part is the remaining interval after dividing
out R.eq, which is recorded as R.rm; The original node interval of T is
modified to R.rm, and the subsequent nodes in all dimensions remain
unchanged.

33. if d="1" then perform steps (21) in the R.eq interval; perform
steps (18) in the R.ad interval;

34. if d="0’ then perform steps (22) in the R.eq interval; perform
steps (19) in the R.ad interval;

} //End of PruningTree(R, T, d)
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and if there is no overlap between the rule interval and the
node interval of the decision tree on a certain dimension, then
no pruning operation is required in subsequent dimensions.
In addition, compared with the traditional decision tree-based
classification method, the PcmSU method has another advan-
tage: as the decision tree is divided into several subtrees,
its scale must be reduced to a certain extent, which on the
one hand reduces the complexity of decision tree reconstruc-
tion when rules are updated, and on the other hand, it also
provides the foundation for distributed packet classification
method [28], and improves the efficiency of packet classifi-
cation. The execution process of the above rule update can be
extended to the general k-dimensional rule case, as described
in Algorithm 4.

D. PERFORMANCE EVALUATION AND ANALYSIS

1) THEORETICAL ANALYSIS

Essentially, the PcmSU method framework consists of the
following three stages: (1)rule preprocessing, (2)cell space
set partitioning and decision tree construction, (3)packet clas-
sification and rule update based on decision tree. Because the
two stages of rule preprocessing, cell space set partitioning
and decision tree construction can be carried out offline,
we will not discuss the time efficiency of these two stages
in detail, only briefly explain their memory consumption.
In the experimental verification part, we will introduce some
experimental results and observation analysis of cell space set
partitioning and decision tree construction. This part focuses
on the time efficiency of PcmSU in packet classification and
rule update.

In the process of algorithm implementation, we use the
linked list structure to store each node in the decision tree.
Specifically, set a child linked list for each node in the tree,
and store these nodes and the head pointer of the correspond-
ing child linked list in a vector, where each linked list ele-
ment corresponds to the node of the decision tree. Assuming
that the number of nodes in the decision tree is V;, when
the linked list structure is used to store the corresponding
decision tree, it is necessary to store N; pointer information
and 2 - Nj node information. On 32-bit machines, the pointer
size is 4 bytes, and each node is represented by an address
interval, corresponding to a maximum of two 32bit addresses.
Therefore, the storage space required for the corresponding
PcmSU method is not greater than ; - 20 /229 MB.

In general, for decision tree-based classification methods,
the storage structure of all dimensional nodes is the same
except for the leaf node in the last dimension. However,
we notice that the traditional decision tree-based classifica-
tion method not only stores the node information, but also
stores all rules in the rule group corresponding to the leaf
node. Let N be the sum of the number of rules corresponding
to the leaf nodes of the decision tree, and a single fire-
wall rule represented in the form of interval corresponds to
28 bytes of storage space, so the total rule storage space is
N - 28/220 MB. Comparatively speaking, in PcmSU method,
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there are only one rule associated with each leaf node in the
decision tree. Therefore, this method does not need additional
space to store grouping rules, which reduces the storage space
requirement to some extent.

In the third stage of this method, assuming that the num-
ber of original rules is n, according to the rule mapping
method [5] based on multi-dimensional matrix, the number of
formed cell spaces is generally not more than n, and the pro-
jection interval of n cell spaces on any dimension is at most
2n-1. According to the decision tree construction process of
the PcmSU method, the number of child nodes of the decision
tree or any of its subtrees will not exceed 2n, so the search
time corresponding to the worst-case is log>(2n). Therefore,
the worst case time complexity of packet classification on the
k-layer decision tree is O(Tyorst) = O(k-logz(n)). In addition,
according to the PcmSU method, the cell space set will be
divided before the decision tree is constructed, so the number
of cell spaces contained in each subset will be less, calculated
according to the average division into k subsets, and the
number of cell spaces in each subset is approximately n/k.
Therefore, from theoretical analysis, it can be seen that the
PcmSU method can achieve logarithmic packet classification
time efficiency.

For the above rule update “case 1, if the rule R, to
be updated contains a Fj-small interval, R, is sent to the
corresponding subtree T; to perform PruningTree(Ry, T;,1)
operation. For PruningTree(R,, T;,1), firstly, the spatial rela-
tionship between the rule interval on dim[i] and each node
interval of T is obtained. if it is “disjunctive’” or “adjacent”,
the rule R, is directly added to the i-th layer of 7; from dim([i]
to dim[k—1] dimension as a new subtree of 7;’s (k-i)-layer,
and its time complexity is related to the number of nodes,
but because the node interval value is increasing, the binary-
search method can be used. If the number of node intervals is
n, the complexity of this operation is O(log»(n)). If the spatial
relationship between the two intervals is “equivalent”, then
continue to determine the next dimension until dim[k—1], and
if the spatial relationship is still “equivalent’”, then ignore
the rule. The process requires k comparison operations, the
complexity is O(k-log>(n)). If it is “covered”, “‘included”,
or “crossed’ relationship, the rule interval or node interval is
cut into sub-intervals with only “equivalent’ or “adjacent’s
relationship, and then the above search and update opera-
tions are performed, and the operations such as cutting and
updating are performed up to k rounds. In addition, compared
with “case 17, which only needs to update rules on one
decision subtree, “case 2’ needs to perform updates in all
decision subtrees, but this process can be operated in parallel
on multiple computing nodes.

Therefore, from the perspective of theoretical analysis, the
effectiveness of PcmSU depends on the spatial relationship
between the rule interval and the decision tree node inter-
val. Although the rule update still needs to reconstruct the
decision tree, some characteristics based on the small interval
can be used to reduce the complexity of rule update. Next,
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FIGURE 10. Comparison between the number of rules vs. the number of
mapped cell spaces.

we give more observations from the perspective of experi-
mental analysis.

2) EXPERIMENTAL VERIFICATION

Firstly, in response to the conclusion mentioned in the the-
oretical analysis section: “According to the rule mapping
method based on multi-dimensional matrix, the number of
formed cell spaces is generally not more than n”, we con-
ducted rule mapping experiments on 10 rule sets (including
2 real rule sets and 8 rule sets generated by ClassBench).
Fig. 10 shows the comparison results between the rule num-
ber and the number of cell spaces after mapping.

As can be seen from Fig. 10, the number of cell spaces
is much smaller than the number of original rules. This is
because the cell space only reflects the rules of decision-
making as accept; On the other hand, the rule mapping
method based on multidimensional matrix will eliminate the
redundancy among the original rules.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we introduce some experimental results of
this method. We first summarize our experimental methods.
Then, we evaluate our algorithm from several key aspects,
such as decision tree construction, packet classification and
rule update. Our experiments were carried out on an Intel
(R) Core (TM) i7-10700 machine running Windows 10 with
16G memory and 2.90GHz processor.

We use ClassBench to generate five-tuple firewall (FW)
rule sets, which range in size from 1k to 100k. Rule sets
are named by their type and size, such as FW_1k referring
to a firewall rule set with about 1000 rules. At the same
time, in order to realize the parallel processing of packet
classification, we build a Hadoop platform with one primary
node and four secondary nodes, because this article only
considers dividing small cell space and constructing decision
subtrees on the four fields of source address, destination
address, source port and destination port. We measure the
classification time by classifying the packets generated when
ClassBench constructs the rule set, and evaluate the rule
update performance by the time required to insert or delete
a rule. In order to reduce the CPU jitter error, we average
the results by running five times for each evaluation cycle.
It should be pointed out that rule preprocessing and decision
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tree construction can be carried out offline in advance. After
each classification decision subtree is deployed to the com-
puting node, online packet classification and rule update can
be performed in parallel.

We compare PcmSU with three algorithms: TupleMerge,
HyperSplit, and CutTSS. TupleMerge is a TSS-based opti-
mization algorithm with high update performance. Hyper-
Split is a classic decision tree method with excellent classi-
fication performance. CutTSS is an advanced classification
method based on split tree, which has a good performance
trade-off between classification and update.

A. EVALUATION ON DECISION TREE CONSTRUCTION

1) CONSTRUCTION TIME

Fig. 11 shows the decision tree construction time for PcmSU,
HyperSplit, and CutTSS. In contrast, PcmSU takes a little
more time than HyperSplit, because it needs to go through
the process of rule mapping and cell space division before
constructing the decision tree. but this process can be carried
out offline in advance, and does not affect online classifi-
cation and rule update. However, even for rule sets up to
100k, PcmSU can still construct decision trees in less than
1.5 seconds, and the decision tree construction time increases
linearly with the size of the rule set, which makes it suitable
for large classifiers.

2) MEMORY CONSUMPTION

Fig. 12 shows the memory consumption of PcmSU, Hyper-
Split and CutTSS. Experimental results show that PcmSU
requires less memory consumption compared to other algo-
rithms, for example, when tested on FW-10K, CutTSS suc-
cessfully constructs a decision tree that occupies 426KB of
memory, while PcmSU only consumes 168KB of memory.
We also found that as the ruleset size increased, the subset
of PcmSU and CutTSS were not greatly affected, especially
since PcmSU was always divided into only four decision sub-
trees. However, with the increase of the number of rule sets,
HyperSplit’s memory consumption increases dramatically.

B. EVALUATION ON PACKET CLASSIFICATION

To evaluate the efficiency of packet classification, we selected
three datasets of different sizes (1IMB, 100MB, and 200MB,
respectively) to compare the time required for packet classifi-
cation using PcmSU, TupleMerge, HyperSplit, and CutTSS.
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TABLE 4. Classification time() when the packet size is 1MB.

FW rule size FW-1k FW-5k FW-10k FW-100k
TupleMerge 24.2 65.7 176.5 1114.8
HyperSplit 36 12.8 18.6 2054
CutTSS 5.8 16.5 30.2 269.3
PcmSU 4.5 11.8 212 183.4

TABLE 5. Classification time() when the packet size is 100MB.

FW rule size FW-1k FW-5k FW-10k FW-100k
TupleMerge 20245 56131 220614 1481506
HyperSplit 03824 14223 29815 242142
CutTss 05282 14384 33083 27.0925
PcmSU 04115 1.6572 31412 19.3005

TABLE 6. Classification time() when the packet size is 200MB.

FW rule size FW-1k FW-5k FW-10k FW-100k
TupleMerge  3.3221 102156  29.1388  222.7685
HyperSplit  0.5376 1.1165 50082 486625
CutTss 0.7264 17525 61328 52.2262
PcmSU 0.6056 13053 51445 303538

TABLE 4, TABLE 5, and TABLE 6 show the average classifi-
cation time of each method. It can be seen that PcmSU takes
less time to classify packets, and the average classification
time of PcmSU improves by nearly an order of magnitude on
average compared to TupleMerge.

The experimental results show that the average acceler-
ation ratio of PcmSU is 1.95 times and 1.58 times that of
HyperSplit and CutTSS, respectively. Especially with the
increase of packet size, the classification speed advantage of
PcmSU over TupleMerge and others becomes more and more
obvious. For example, when the packet is 100MB, the PcmSU
algorithm has a classification time of about 1/11 of the
TupleMerge algorithm. The main reason is that when PcmSU
classifies packets, on the one hand, it can use the binary-
search method to classify packets, and on the other hand,
it can further improve the packet classification efficiency
by sending packets to each decision subtree for distributed
lookup.

C. EVALUATION OF RULE UPDATE

Fig. 13 shows the average update time of PcmSU, Tuple-
Merge, HyperSplit and CutTSS, and we can see that the time
required for PcmSU to update rules is very small, with each
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FIGURE 13. Comparison of rules update efficiency.

type of rule set reaching an average time of 0.322us, 0.293us,
0.381us and 0.727us respectively. In contrast, the HyperSplit
method based on decision tree has lower update performance.
As a result, PcmSU has the comparable update performance
to TupleMerge and CutTSS.

The results show that PcmSU is close to the state-of-the-
art solution in terms of update speed. Considering the parallel
processing capability and fast classification speed of PcmSU,
the method can be a better choice in some specific working
scenarios, such as the changeable SDN environment.

V. CONCLUSION

In order to achieve fast search and update at the same time,
this article proposes a high-performance packet classification
method based on decision tree, PcmSU, which divides the
rule mapping space to form a series of independent subsets
of cell space, and each subset has the same characteristic: the
mapping interval of cell space on a certain dimension Fj is
small interval. On this basis, multiple classification decision
trees are constructed, which can perform packet classification
and rule update in parallel.

The method optimizes the searching and updating process
in the traditional decision tree-based classification method,
and the classification efficiency of the constructed decision
tree is greatly improved compared with that before opti-
mization. Based on the characteristics of the interval, the
reconstruction of the decision tree is greatly reduced, and
the rule update efficiency is improved. In addition, based on
the characteristics of the decision tree constructed by this
method, when adding rules, it unnecessary to consider the
specific location and sequence number of rule updates, which
can avoid introducing rule conflicts. Experimental results
show that PcmSU not only supports high-speed packet clas-
sification and linear memory consumption, but also has fast
rule updating speed.

In our future work, we will develop software-defined net-
working applications that utilized our classification method,
and evaluate the feasibility of our method with corresponding
experiments. In addition, we will explore more applications
of deep learning [29], [30] in decision trees and provide
reference for the study of packet classification.
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