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ABSTRACT As deep learning applications are getting popular in embedded systems, how to support deep
learning applications in the model-based embedded software design methodology becomes a challenging
problem. A previous solution is to represent each deep learning applicationwith amodel. However, it requires
significant efforts to translate specifications and obtain good performance by applying optimization tech-
niques to deep learning applications. In this work, we propose a novelmethodology that leverages the benefits
of using deep learning software development kit (SDK) for performance optimization. In the proposed
methodology, we first obtain the Pareto-optimal mapping solutions of deep learning applications using
the SDK associated with the hardware platform. Afterward, we perform mapping of dataflow tasks and
selection of mapping solutions of deep learning (DL) applications together through a genetic algorithm.
Experiments with a real-life example and randomly generated graphs show that we could reduce at least
5% of the maximum utilization compared to our previous work that maps DL applications and dataflow
applications sequentially.

INDEX TERMS Model-based software design, mapping exploration, deep learning applications, heteroge-
neous processors.

I. INTRODUCTION
Model-based design (MBD) methodology is widely adopted
for embedded software development since it enables us
to specify an application behavior independently of the
hardware platform that is continually evolving over time.
Since appropriate models vary depending on the applica-
tion domain, various models and methodologies have been
proposed. For example, the statechart model is widely used
for control-oriented applications [1], and a timed discrete
event model is used for power-aware real time scheduling
[2]. The works of [3] and [4] adopt the dataflow model
for the specification of multimedia or streaming applications.
In addition, there exist some works that use more than one
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model: a combination of the dataflow model and the finite
state machine is used in [5], [6] and [7], and the work of
[8] deploys both the discrete event model and the dataflow
model.

In this work, we are concerned about the embedded soft-
ware design methodology based on a dataflow model. In a
dataflow graph, a node represents a computation task, and an
arc indicates a data dependency between adjacent tasks. A key
benefit of dataflow models is that it is easy to exploit the
task-level parallelism of an application by simply mapping
nodes to processing elements in a given hardware platform.
If the number of data samples that are transferred on each
arc is known at compile time, a dataflow model is said to be
decidable [9]. For a decidable dataflow, we can determine
the mapping and scheduling of tasks at compile time and
detect some critical errors in the specification, such as buffer
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FIGURE 1. Overall flow of the model-based embedded software design
and the proposed extension.

FIGURE 2. A motivational example.

overflow and deadlock ([10], [11]). In this work, we assume
that a decidable dataflow model is used in the model-based
design methodology for embedded software development.

Figure 1 (a) shows the traditional embedded software
design flow based on the dataflow model. Each application
is represented by a dataflow graph in which the internal
behavior of a task is defined by the task code written in a
conventional programming language such as C or C++. The
hardware platform information on the available processing
elements and communication architecture is given separately
from the application specification. For a given hardware plat-
form, we find an optimal mapping of tasks onto processing
elements by comparing the estimated performance among
various mappings, which is referred to as the design space
exploration (DSE) step. Lastly, the application code on each
processing element is generated based on the mapping deci-
sion made in the DSE step.

Remarkable advances in deep learning (DL) techniques
make DL applications getting popular in embedded systems.
Figure 2 displays a motivational example where DL networks
and other applications are running together. The Image pro-
cessing application is represented by a task graph that con-
sists of eight tasks that process images. After processing the
image, the Det network gets the output data from the Image
processing application and performs object detection. The
object detection network consists ofmany layers for inference
in addition to pre-/post-processing tasks. The example has
four sets of such combinations of a dataflow application and
a DL application as shown in Figure 2.
How to support DL applications in the model-based design

methodology has emerged as a challenging problem. Even
though the layer structure of a DL application looks similar

FIGURE 3. A dataflow graph specification of Resnet152 in [7].

to a dataflow graph, it is challenging to specify it with a
decidable dataflow model. To tackle this problem, previous
studies ([12], [13]) have proposed to specify DL networks
with a specific dataflow model in order to treat them with
other applications in the model-based design framework. The
former work [12] extends a dataflow model to specify loop
structures explicitly, while the latter [13] transforms aDL net-
work into a cyclo-static dataflow (CSDF) graph [11]. Figure 3
displays the Resnet152 network represented as a dataflow
graph using an extended SDF model called SDF/L [12]. The
bold box indicates a loop construct whose internal subgraph
is repeated as many times as the given parameter value.

However, this approach has the following drawbacks. First,
it requires a lot of effort to specify a DL application with
a dataflow model. The number of data samples produced or
consumed per task execution needs to be explicitly specified,
and the internal behavior of tasks may need to be redefined.
Second, the number of tasks grows significantly to make
the DSE step more difficult as a DL network usually con-
sists of numerous layers. Third, the previous works usually
target CPU-GPU heterogeneous processor systems without
including a neural processing unit (NPU). Since recent hard-
ware platforms tend to include an NPU for accelerating deep
learning applications, it is necessary to consider NPUs in the
design methodology. Last but not least, it is not possible to
apply the optimization techniques that are provided by the
deep learning software development kit (SDK). As a result,
the synthesized DL application from the MBD framework is
likely to perform poorly comparedwith the conventional deep
learning application that runs with the deep learning SDK.

To overcome those shortcomings of the previous studies,
we propose a novel technique to support DL applications in
a model-based design methodology, leveraging the optimiza-
tion capability of a deep learning SDK. Figure 1 (b) shows the
proposed extensions highlighted by the slash-pattern boxes.
First, we find the Pareto-optimal mapping candidates for
each DL application onto available processing elements with
multiple objectives, such as cost, latency, utilization of each
processing element, and so on. We explore the design space
of partitioning and mapping of the application for pipelined
execution, similar to the first phase of the work [14], inde-
pendently of the MBD framework. The deep learning SDK
optimizes layers by combining or changing layers, depending
on the mapping decision. Since per-layer profiling might not
be possible on hardware accelerators, it is not appropriate to
explore mappings on a layer-by-layer basis [14]. Therefore,
we select mapping candidates by pipelining the network in
this phase.
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In the DSE step, we explore the mapping candidates
of DL applications and the mappings of dataflow appli-
cations simultaneously. Note that we do not explore the
mapping of DL layers in this step. Instead, we explore the
mapping of dataflow applications for each combination of
mapping candidates of DL applications. In this step, we check
the schedulability of applications with deadline constraints by
the worst-case response time (WCRT) analysis.

The proposed extension is used by a model-based design
framework [7]. In the last step of program synthesis, the
interface code between dataflow applications and the DL
applications is automatically synthesized. The viability of the
proposed methodology is verified with a non-trivial afore-
mentioned motivational example running on a real hardware
platform and randomly generated task graphs.

The main contributions of this paper can be summarized as
follows:

• We propose a novel technique to support DL appli-
cations in a model-based design methodology without
translating DL applications to dataflowmodels, leverag-
ing the optimization capability of a deep learning SDK.

• Differently from our previous work that maps the
DL applications and dataflow applications sequentially,
we propose a mapping technique to consider them
together, using an evolutionary algorithm.

• The proposedmethodology supports heterogeneous pro-
cessor systems that include an NPU, considering the
characteristics and limitations of the hardware platform
and the associated SDK.

• Experiments with a real-life example and randomly gen-
erated graphs show that we could reduce at least 5% of
the maximum utilization compared to our previous work
that maps DL applications and dataflow applications
sequentially.

The rest of the paper is organized as follows. In the next
section, we review the related works. After stating the back-
ground and system model in Section III, we introduce the
proposed methodology in Section IV. After the experimental
results are presented and discussed in Section V, conclusions
are made in Section VI.

II. RELATED WORKS
We review the previous studies in the following three main
subjects related to the proposed methodology: mapping of
multiple dataflow applications, mapping of deep learning
applications, and integrating deep learning applications into
the model-based design.

A. MAPPING OF MULTIPLE DATAFLOW APPLICATIONS
Since the mapping and scheduling of a dataflow graph onto
a multiprocessor system is an NP-hard problem [15], many
approximate methods for finding the optimal solution have
been proposed such as heuristics based on list schedul-
ing ([16], [17]) and [16] explored mappings by heuristics,
meta-heuristics using a genetic algorithm (GA) [18]. While
most of works focus on the mapping and scheduling of a

single dataflow graph, only a few works deal with the
mapping of multiple dataflow graphs onto multiple pro-
cessing elements, to the best of our knowledge. In case
there exist real-time constraints on dataflow applications,
we need to check a mapping solution satisfies those con-
straints by schedulability analysis for throughput constraint
or worst-case response time analysis for latency constraint,
which is recognized as a very challenging problem in
real-time community [19]. A simple solution to avoid this
difficulty is to map each dataflow graph onto a disjoint set of
processors, avoiding interference between applications on the
same processor. Then, we can map each dataflow separately
onto the assigned processors.

Schor et al. [20] proposed an evolutionary algorithm
to find a mapping to minimize the maximum utilization.
Kang et al. [21] proposed a two-step approach. In the first
step, they find a set of Pareto-optimal parallel schedules
of each individual dataflow graph using a multi-objective
evolutionary algorithm. In the second step, another evolu-
tionary algorithm is to used to find the best combination
of Pareto-optimal solutions of all dataflow graphs, aiming
to minimize resource usage. For each mapping candidate,
worst-case response time analysis is performed to check if
the deadline constraint is satisfied for each dataflow graph.

B. MAPPING OF MULTIPLE DEEP LEARNING
APPLICATIONS
As deep learning applications are getting popular in embed-
ded systems, extensive studies have been conducted recently
to find the optimal mapping of DL applications specified by
the associated SDK on a heterogeneous hardware platform.
Xiang et el. [22] partition deep neural networks (DNNs)
into pipeline stages, and map stages to processing elements
by a heuristic. They focus on increasing the schedulability
of multiple DNNs by balancing the utilization among PEs.
While early works, including [22], considered CPU-GPU het-
erogeneous systems as the target hardware platform, recent
works consider the DL hardware accelerators, also called
NPU ([14], [23], [24]). Pujol et al. [23] consider an entire
network as the mapping unit to a single PE without parti-
tioning to leverage the associated SDK with each PE, assum-
ing that the number of DL applications is more than the
processing elements. Kang et al. [24] explore the per-layer
mapping of DNNs with a GA, assuming that the layer-wise
profiling information is given for each DL application. Even
though they considered NPUs in the mapping step, no exper-
iment with the NPU on a real hardware platform was made.
Kim et al. [14] have recently proposed a two-stage mapping
exploration methodology on heterogeneous processor sys-
tems including NPUs. In the first stage, they use a genetic
algorithm to find a set of Pareto-optimalmappings of eachDL
network for pipelined execution, aiming to minimize the end-
to-end latency and average power consumption of each pro-
cessing element. In the second stage, they find a sub-optimal
combination of mapping solutions for all applications. The
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FIGURE 4. An example kernel structure of Yolov2 network.

first step of our proposed technique, shown in Figure 1 (b),
is inspired by this work. Note that all works ([14], [22], [23],
[24]) consider the mapping of multiple DL applications only
without considering other tasks running concurrently.

C. INTEGRATING DEEP LEARNING APPLICATIONS INTO
THE MODEL-BASED DESIGN
Since supporting DL applications in the model-based design
methodology is a recent demand, there exist only a few previ-
ous studies that tackle this problem in the model-based design
methodology. The work of [12] introduces an extended SDF
model, called the SDF/L model, that specifies two types of
loop structures explicitly and shows how to specify a DL
application with the SDF/L model. They leave it as future
work on how to perform task-mapping of the SDF/L graph,
exploiting the data-level parallelism. Minakova et al. [13]
transform a CNN (convolutional neural network) to an SDF
graph and find the mapping of SDF by using the genetic
algorithm. After the mapping decision is made, they translate
the CNN network to a CSDF graph that is partitioned into
sub-graphs that are run on each processing element. In this
work, a CNN network has to be translated into two different
models, the SDF model for mapping, and the CSDF model
for code generation and execution. Such translation requires
considerable effort. Since the translated SDF model has a
wide range of sample rates, finding an optimal mapping onto
multiple processors itself is a challenging problem. Both
works ([12], [13]) do not consider the mapping exploration
of multiple applications.

Recently, Jeong et al. [25] proposed a methodology based
on the genetic algorithm to explore the mappings for multiple
dataflow graphs on CPU-GPU heterogeneous system with a
deep learning application. In their work, they assume that
the mapping for the deep learning application is fixed and
find the mapping of dataflow graphs, aiming to reduce the
worst-case response time for each dataflow application. To
the best of our knowledge, the proposed method is the first
approach that supports multiple deep learning applications
running concurrently with other dataflow applications in a
model-based design methodology on a heterogeneous hard-
ware platform, including NPUs.

III. BACKGROUND AND SYSTEM MODEL
A. NVIDIA JETSON AGX XAVIER BOARD, TensorRT
In this work, we use an NVIDIA Jetson AGXXavier (Xavier)
board as a target hardware platform. It includes one
Volta GPU and two NPUs, called DLAs(deep learning

TABLE 1. Notations used in a system model.

accelerators), in addition to an octa-core ARMv8 CPU.
NVIDIA provides TensorRT as the SDK for fast inference on
NVIDIA devices, including GPU andDLA.While a DLA is a
power-efficient accelerator, its computation ability is weaker
than the Volta GPU. In the Xavier board, there is a unified
memory shared by the CPU and GPU.

TensorRT internally applies some optimization techniques
such as layer fusion. Figure 4 (a) shows the kernel compo-
sition of the Yolov2tiny network [26] when all layers are
mapped to the GPU. Note that a convolution layer is fused
with the following activation layer to form a single kernel by
TensorRT. Suppose we map some layers (layer #8 to layer
#14) to a DLA. Then as shown in Fig. 4(b), two kernels are
added automatically by TensorRT to the sub-networkmapped
to the GPU for interfacing with the DLA.

There are some restrictions imposed by the device and its
SDK. While it is possible to profile the execution time of
each layer on a GPU, per-layer profiling on a DLA is not
supported. The number of sub-networks that can be mapped
to two DLAs is also limited. And TensorRT does not support
a CPU to execute the inference. We need to consider those
restrictions when mapping the DL applications.

B. SYSTEM MODEL
In this section, we describe the system model assumed in this
work using the notations summarized in Table 1.

1) ARCHITECTURE SPECIFICATION
The target hardware platform consists of heterogeneous pro-
cessing elements (PEs), PE . In this work, three processor
types are used in the Xavier board: CPU, GPU, and DLA.
And a set of PEs for each processor type is represented as
PEcpu, PEgpu, and PEdla, respectively.

2) APPLICATION SPECIFICATION
Two types of applications are distinguished. DL applica-
tions are specified by a DL SDK, TensorRT in this work,
while other applications are specified by a dataflow graph.
We denote a given set of applications in each type as D and
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FIGURE 5. Task/Sub-task definition on the deep learning application
specified by SDK.

A, respectively. As shown in Figure 2, an edge between two
applications denotes the data dependency between them. The
connected applications form an application group, denoted
by Gi. Group Gi is defined by a tuple ⟨Ai,Di,E i, pi, pr i⟩.
Aij ∈ A and Dik ∈ D are applications that belong to group Gi.
The last three elements indicate edges between applications,
the invocation period, and the priority, respectively. There
may exist multiple groups, and the set of groups is denoted
as G. A dataflow application Aij is characterized by a tuple
⟨V i

j ,E
i
j ⟩, where V

i
j and E

i
j represent the set of tasks and the

set of edges between tasks, respectively. For the dataflow
application, Aij, task τ

i,j
m is naturally defined by the model.

For instance, in Figure 2, the Image processing application
consists of eight tasks inside.

For a DL application Dik , however, it is characterized by
a tuple ⟨V i

k ,E
i
k ⟩ only after pipelining of the application is

made, where V i
k is a set of tasks and E ik is a set of edges

between tasks. How to pipeline a DL application is explained
in the next section. After pipelining decision is made, the
DL application consists of multiple pipeline stages, each of
which is mapped to a PE. Figure 5 shows an example that
has four pipeline stages colored differently. Each pipeline
stage is defined as a task for DL application, τ i,kn ∈ V i

k .
For the task mapped to the GPU colored yellow, the SDK
forms a set of kernels after optimization. The purple box in the
yellow GPU-mapped task represents a kernel that merges two
layers after layer fusion. Since a kernel is a unit of profiling,
we define each kernel as a sub-task in the GPU.

Since per-kernel profiling is not possible on a DLA, how-
ever, the entire set of layers becomes a single task on a DLA.
A DL application has a pre-processing task that feeds input
data to the inference body and a post-processing task that
processes the output data. Those tasks should be mapped to
the CPU core. Note that a pipelined DL application has a
chain structure of tasks, which is also assumed in [22] and
[14] since there is a dependency between pipeline stages
and the execution order of kernels is set by the SDK [27].
In summary, a DL application consists of chain-structured
tasks (τ i,kn ∈ V i

k ).

3) SCHEDULING SPECIFICATION
We denote the worst-case execution time (WCET) of task
τ i,xy as C(τ i,xy ). The invocation period of task τ i,xy is denoted
as P(τ i,xy ), which is the same as pi, the period of graph Gi.
We assume that the graphs run periodically with the implicit
deadline assumption that the period becomes the relative
deadline. Thus, the deadline of group Gi is its period, pi. The
average latency of a group Gi is represented as L(Gi), and
the execution time on each processing element pe ∈ PE is

denoted by ET (pe,Gi). Similarly, the latency of a DL appli-
cation Dik is denoted by L(Dik ). Meanwhile, R(Gi) indicates
the worst-case response time (WCRT) of a group Gi, and it is
necessary to check whether the WCRT violates the deadline.
The calculation of the WCRT is explained in Section IV-B3.

Even though a group is assigned a priority, pr i, it is appli-
cable only for the tasks mapped on the CPU. Since there is no
way to set the priority of a task on a DLA, tasks mapped on
a DLA are executed in the FIFO order. Even though there are
two priority levels in GPU, they are usually not used. Similar
to DLAs, the GPU executes the mapped tasks in the FIFO
order.

We denote the set of mapped tasks on processing ele-
ment pe ∈ PE as Map(pe). Based on the mapped
tasks on pe, we calculate the utilization of pe, U (pe),
as

∑
τ
i,x
y ∈Map(pe)(C(τ

i,x
y ))/pi. In the proposed methodology,

we choose Pareto-optimal mapping candidates, explained in
the next section. The set of mapping candidates of Dik is
represented by Cand(Dik ) where Dik ∈ D, and the x-th
candidate is denoted by Cand(Dik , x).

IV. PROPOSED METHODOLOGY
In step 1, a set of Pareto-optimal mapping candidates for each
DL application is obtained independently and applied to the
extended model-based design framework as additional input
information. In step 2, we try to find an optimal mapping
of tasks by a meta-heuristic with objectives. For each DL
application, we select a mapping candidate while we decide
on the mapping of dataflow tasks simultaneously in this step.
The last step is to generate the target code for each processing
element, which will not be discussed in this work.

A. STEP 1: FINDING THE PARETO-OPTIMAL MAPPING
SOLUTIONS OF EACH DL APPLICATION
The problem addressed in this step is summarized as follows.

• Input: All deep learning applications inD are provided.
• Objective: We define multiple objectives to minimize
the latency of each deep learning application Dik ∈ D
and the execution time on GPU and DLA, which can be
described in Equation 1.

Minimize : ( L(Dik ),ET (D
i
k , pe) )

where Dik ∈ D, pe ∈ PEgpu and PEdla (1)

• Problem: For each deep learning application Dik ∈ D,
find all Pareto-optimal mapping candidates. i.e. map-
ping of Dik : D

i
k → Cand(Dik ).

• Output: The set of Pareto-optimal mappings of each
deep learning application, Cand(Dik ). A mapping candi-
date indicates how a DL application is partitioned into
pipeline stages and to which PEs the pipeline stages are
mapped.

To solve this problem, the genetic algorithm is used in our
implementation of the proposed methodology, as there are
publicly available GA optimizers that are well-maintained.
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TABLE 2. Mapping options for pipelining of a DL application.

FIGURE 6. Chromosome structures: (a) for step1, (b) for Heuristic+GA
method in step2, and (c) for Entire−GA method in step2.

Other meta-heuristics that support multiple objectives can
also be used.

Similar to [14], we organize the mapping options as shown
in Table 2 when partitioning the object detection application,
Det, in the motivational example. For example, option C
indicates the layers are partitioned into three stages. The
pre-/post-processing tasks are mapped to the CPU while the
inference body is partitioned into three pipeline stages that are
mapped to twoDLAs and GPU, respectively. Note that DLA0
and DLA1 are interchangeable without difference in terms
of performance. The last pipeline stage is mapped onto the
GPU in all mapping options since the last stage contains some
layers that cannot be executed on a DLA. And no stage is
mapped to the CPU. Those restrictions imposed by TensorRT
need to be considered in the organization of the mapping
options. It means that a set of mapping options may vary
depending on the DL applications and the hardware platform.

After mapping options are identified, mapping candidates
of the DL application are represented with the chromosome
structure described in Figure 6 (a). The length of the chromo-
some is decided by the maximum number of pipeline stages.
Since the maximum number of stages is four in Table 2,
we set three genes for pipelining cut-points and one gene for
the mapping option. In the example of Figure 6 (a), layers
#0∼#23 and layers #24∼#144 are mapped to the GPU and
DLA0, respectively, since the mapping option is option B.
And the rest of the layers are also mapped to GPU. If there is
no corresponding cut-point, the gene has a value of −1.
We define multiple objectives for GA fitness evaluation as

described in Equation (1): end-to-end latency, the execution
time on GPU, and the execution time on DLA and find
Pareto-optimal solutions asmapping candidates for each deep
learning application. We use the measured values as fitness
values while running the network on a real board for each
mapping candidate. Analytical performance estimation is not

feasible because the layer-wise execution time could not be
obtained for DLAs and the effect of optimization techniques
of TensorRT on the performance cannot be estimated.

Suppose that a mapping is selected for a DL applica-
tion, Det. Then the DL application can be transformed
into a chain-structured task graph as shown in Figure 5.
The dependency between the Image processing application
and Det remains by grafting task Pre-processing to task
cvtBGRtoNV12-1. Such graph transformation is necessary to
determine the mapping dataflow tasks and check the schedu-
lability in the next step.

B. STEP 2: MAPPING EXPLORATION
In this step, we determine themapping of eachDL application
among Pareto-optimal mapping candidates and the mapping
of dataflow tasks onto PEs. The problem is summarized as
follows.

• Input: All dataflow applications in A and the set
of Pareto-optimal mappings candidates for each deep
learning application, Cand(Dik ) where D

i
k ∈ D.

• Constraint: The WCRT of group Gi should be
less than or equal to its deadline, period. i.e.
R(Gi) ≤ pi where ∀Gi ∈ G.

• Objective: We aim to minimize the maximum utiliza-
tion to balance the utilization of PEs,
Maxpe∈PE (Util(pe)).

Minimize : Maxpe∈PE (U (pe)) (2)

• Problem: Find the mapping of tasks τ
i,j
m to PEs,

or τ
i,j
m → PE , in each dataflow application Aij and select

the mapping candidate of each deep learning applica-
tions. For the selected mapping candidate, we decide
the mapping to PEs of each selected mapping candidate:
Cand(Dik , x) → PE .

• Output: The mappings of dataflow applications and
deep learning applications.

To solve this problem, we propose to use a GA algorithm.
Since the execution time of GA increases as the problem size
grows, two methods are devised. In the first method, denoted
Heuristic+GA, we use a heuristic to determine the mapping
of dataflow applications, while the GA decides the mapping
of DL applications. A solution candidate is represented by
a chromosome whose structure is depicted in Figure 6 (b).
Each gene indicates the index of mapping candidates for each
DL application. For example, 4 indicates the 4-th mapping
candidate belonging to the second application. It contains
as many genes as the number of DL applications. In the
second method, denoted Entire−GA, we use the GA to select
the mapping of dataflow applications simultaneously with
the selection of the mapping of DL applications. The corre-
sponding chromosome structure is shown in Figure 6 (c). The
chromosome is divided into two parts. The left part indicates
the index of mapping candidates for each DL application,
same as the first method. The right part indicates the mapping
of dataflow tasks. For example, in the figure, the gene ofGPU
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FIGURE 7. Procedure of the proposed mapping exploration technique.

Algorithm 1 Pseudo Code of Mapping Heuristic for
Dataflow Tasks
1: procedure mapModelTasks(chromosome)
2: utils = calculateCurrentUtil()
3: for each task in ordered task list do
4: minValue = MaxInt
5: for each mappable processor proc do
6: minPEUtil, core = getMinUtil(proc, utils)
7: value = getUtilIfMappedTo(task, proc, core)
8: if value < minValue then
9: minValue, minProc, minCore = value, proc, core
10: mappingInfo[task] = (minProc, minCore)
11: updateUtil(minValue, minProc, minCore)

means that the corresponding tasks are mapped to the GPU
while others are mapped to the specific core of the CPU.

Figure 7 shows the procedure of the proposed mapping
exploration technique that consists of four main steps in the
evolving process. In the initialization phase, we generate ini-
tial chromosomes randomly. Before entering into the evolv-
ing process, we first check if the combination of mapping
candidates is executable on the target platform. As explained
in Section III, the number of DLA-mapped tasks is limited by
the SDK.1 If it violates the constraint, then the chromosome is
discarded by setting the fitness value to the maximum value.

In the first step of the iteration, we perform mapping of
DL applications to PEs. In this step, we determine which
DLA and which CPU core is used for each DL application.
After the mapping of DL application is determined, we use
a heuristic to determine the mapping of dataflow applica-
tions in the Heuristic+GA method. This step is skipped in
the Entire−GA method since the chromosome includes the
mapping information of dataflow applications.

After all mappings are decided, we check the schedula-
bility of applications through the worst-case response time

1In the version we used, the number of DLA-mapped tasks is limited to
four.

analysis and compute the fitness value to select the dominant
species in the evolutionary process. With the selected domi-
nant solutions, we perform GA operations such as crossover
and mutation, to define the next generation chromosomes.
Such an evolutionary process is repeated until no better solu-
tion, or chromosome, is found during a given number of
iterations.

Since the Entire−GA method explores a wider design
space than the Heuristic+GA method, it is likely to find a
better solution, taking much longer time. We improve the
convergence speed of the Entire−GA method by using the
mapping solutions found by the Heuristic+GA method as
initial chromosomes. Using good initial chromosomes is use-
ful for better exploration [28]. If no mapping is found by
the Heuristic+GA method due to tight real-time constraint,
we loosen the constraint to find solutions to obtain initial
chromosomes for the Entire−GA method.

1) MAPPING DL APPLICATIONS TO PEs
The mapping option in Table 2 indicates the processor type,
not a specific processing element. For instance, we may use
any DLA between two DLAs in the system when mapping
option A or B is taken. Similarly, the pre-/post-processing
tasks of a DL application can be mapped to any core in a
multi-core CPU. To evaluate the fitness value of a chromo-
some, we need to determine which PE to use for each DL
application. Since our objective is to balance the processor
utilization, we use a simple scheme as follows: First, we sort
the mapped tasks on each processor in the decreasing order of
profiled execution time. Next, we perform a greedy mapping
of tasks to PEs in a round-robin fashion starting from the
longest task. For example, if there are three tasks mapped
onto DLA, they are mapped to DLA0, DLA1, and DLA0 in
the order of the execution length if there are two DLAs.

2) MAPPING DATAFLOW TASKS BY A SIMPLE HEURISTIC
Algorithm 1 displays the pseudo-code of the proposed
mapping heuristic for dataflow tasks in the Heuristic+GA
scheme. This heuristic is called for each chromosome that
indicates a candidate mapping combination of all DL applica-
tions. In other words, we determine the mapping of dataflow
tasks after the mapping of pipeline stages of all DL appli-
cations onto processing elements is completed. Since map-
ping is performed for each chromosome during the evolution
process, we use a simple greedy heuristic, sacrificing perfor-
mance for faster execution speed. We first compute the PE
utilization based on the mapping result of DL applications
(line 2). Next, we sort the dataflow tasks in the decreasing
order of the maximum WCET value among the mappable
processors and determine the mapping in the sorted order
(line 3). We find the PE with the minimum utilization for
each mappable processor (lines 5-6). And we compute the
maximum utilization among all PEs in the selected processor
when the current task is mapped to the corresponding PE
(getUtilIfMappedTo function in line 7). To minimize the
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maximum utilization, we select the PE with the minimum
value and map the task to the PE (lines 8-10). Afterwards,
the PE utilization is updated according to the mapping
(line 11).

The time complexity of Algorithm 1 isO(|Vj|·|PE |) where
|Vj| indicates the number of tasks for all dataflow applications
and |PE | is the number of PEs. This is because it checks the
utilization of all PEs to find the PE with the lowest utilization
for each task to map. The space complexity is O(|Vj|+ |PE |)
since the space to store the mapping information of tasks and
PE utilizations depends on the number of tasks and PEs.

3) WORST-CASE RESPONSE TIME ANALYSIS
For each group, the worst-case response time (WCRT) analy-
sis is conducted and the schedulability is checked by compar-
ing the deadline constraint and the estimated WCRT. We use
a compositional performance analysis (CPA) to estimate the
WCRT for each group ([29], [30]). In the CPA, the WCRT
analysis is performed for each PE separately and the depen-
dency between tasks mapped to different PEs is modeled as
an event stream that is specified by a tuple (period, jitter, the
minimum distance between two events). Starting from the PE
that the source task in a group is mapped to, WCRT analysis
is performed one PE at a time up to the PE where the last task
in the group is mapped to, following the task dependency.
In case there exist multiple dependency paths in a group,
we choose the maximum WCRT of all paths as the WCRT
of the group.

Since the scheduling policy of processors is not identical,
we apply a different WCRT analysis method for each pro-
cessor type. For CPU that uses a fixed-priority preemptive
scheduling [31] scheme, we use a well-known response time
analysis formulated as follows:

rm+1
= C(τ i,xy ) +

∑
τh∈hp(τ

i,x
y )

⌈
rm + Jτh
P(τh)

⌉ · C(τh)

where r0 = C
τ
i,x
y

(3)

Equation (3) estimates the WCRT of a task τ i,xy which is
mapped to the CPU. Task set hp(τ i,xy ) is a set of higher or
equal priority tasks that are mapped to the same PE with task
τ i,xy . Jτh is the jitter of task τh. The estimated WCRT of CPU
task τ i,xy becomes the converged value of rm.
In the GPU, the mapped tasks are executed in a FIFO order

without preemption [32]. The WCRT of task τ i,xy mapped to
the GPU can be computed by the following equation.

r = C(τ i,xy ) +

∑
τe∈ep(τ

i,x
y )

B
τ
i,x
y

τe (4)

Task set ep(τ i,xy ) indicates a set of tasks that are mapped

to the same PE with τ i,xy . B
τ
i,x
y

τe represents the maximum
interference from task τe ∈ ep(τ i,xy ) to the target task τ i,xy . If τe
is a dataflow task, the number of interference is bounded by

⌈
P(τ i,xy )
P(τe)

⌉+1. If it is a pipeline stage of another DL application,

TABLE 3. Benchmark networks and the number of mapping candidates
obtained by step 1.

TABLE 4. Mappable processors of tasks in dataflow applications.

we need to consider the number of sub-tasks in the task.
Suppose task τ i,xy and τe are both pipeline stages that have
five and two sub-tasks, respectively. Sub-tasks in τ i,xy can be
interfered at most five times since sub-tasks are scheduled in
the FIFO order. On the other hand, task τe can interfere with

task τ i,xy at most ⌈P(τ
i,x
y )

P(τe)
⌉+1 times. If the task τe can interfere

with at most twice, four sub-tasks (min(5, 2 · 2)) in τe may
interfere with task τ i,xy .
Equation (4) is also applied to DLA since the same

non-preemptive scheduling policy is used as the GPU.
We check whether the estimated WCRT violates the given
deadline constraint. If the estimated WCRT is bigger than
the deadline, the mapping does not satisfy the schedulability
constraint.

4) FITNESS CALCULATION
As the objective function of GA in the second step, we aim
to minimize the maximum PE utilization in order to bal-
ance the utilization of PEs, which is also taken in the
work of [20]. With this objective in mind, we define two
types of fitness values as described in Equation (2). One
is the maximum utilization of each processing element
(Maxpe∈PE (U (pe)))) and the other is the maximum WCRT
value of each group (MaxGi∈G(R(Gi)). Since the implicit
deadline constraint should be satisfied for each group, by set-
ting the latter fitness value, dominant solutions at each gener-
ation are more likely to satisfy the deadline constraint. If the
estimated WCRT does not satisfy the deadline constraint, the
solution is not feasible. Based on the fitness values of each
candidate solution, we select the solution with the minimum
value of the maximum utilization.

Minimize : (Maxpe∈PE (U (pe)),MaxGi∈G(R(Gi)) ) (5)

V. EXPERIMENTS
A. COMPARISON WITH A PREVIOUS WORK
As a preliminary experiment, we evaluate the approach taken
by previous works, which is to translate a DL application to
a dataflow model. The work of [7] provides an example in
which a Resnet152 network [33] is specified by an extended
SDF model, called SDF/L. We implement the same network
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FIGURE 8. Comparison of three methods for the motivational example: Heuristic+GA, Entire−GA, Baseline.

using TensorRT and compare both implementations on the
same target board. The pre-/post-processing parts are mapped
to the CPU, and other parts are mapped to GPU in both
methods. It is observed that the previous approach could
achieve only 18 FPS (frame per second) performance while
the version of TensorRT achieves 81 FPS performance. It con-
firms that transforming a DL application to a dataflow may
suffer from significant performance loss if the same degree
of optimizations is not applied as TensorRT. In addition,
model conversion takes a huge amount of effort. Since the
previous works do not target the system with NPUs, they do
not consider the challenges posed by the NPU and its SDK
described in Section III-A.

B. SET-UP
Since there is no previous work that tackles the samemapping
problem, we devise a GA-based scheme by merging two
recent previous works [14] and [25] and take it as a baseline
technique to compare, denoted by Baseline in the experi-
mental results. The former work is used to map multiple DL
applications on the target board first, and the latter is used
to map dataflow tasks after DL application mapping is com-
pleted. In contrast, two proposed methods, Heuristic+GA
and Entire−GA perform the mapping of DL applications and
dataflow applications simultaneously.

We implement the GA meta-heuristic with the DEAP
library [37]. The GA runs on a host computer consisting
of AMD Ryzen 9 3950X Processor. Experiments are made
with the aforementioned motivational example in Figure 2
and randomly generated graphs.We conduct each experiment
three times and get the average value to measure the mapping
exploration time and the best fitness value. The target system
is the Xavier board with Jetpack 4.6 and TensorRT 8.0.1.
We reduce the available number of CPU cores to four to
observe the effect of resource contention between tasks on
the CPU.

C. EXPERIMENTAL RESULTS: MOTIVATIONAL EXAMPLE
We profile the tasks with TensorRT IProfiler and POSIX
time library. We set the WCET of the task as the value
obtained by adding six times the standard deviation to the
mean of the profiled execution times. We deploy four differ-
ent DL networks, which are provided in [38], as described in
Table 3, each of which corresponds to a Det in Figure 2. For

FIGURE 9. Comparison of three methods with four randomly generated
dataflow applications.

FIGURE 10. Comparison of three methods with eight randomly generated
dataflow applications.

example,Det4, which is connected to Image processing4, is a
Yolov4csp network in Figure 2. Also, we set the priorities of
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FIGURE 11. Comparison of three methods with sixteen randomly
generated dataflow applications.

application groups in the following order:G1(Image process-
ing1 + Det1), G4, G2, G3. The mappable processors of each
task are described in Table 4.

1) FINDING MAPPING CANDIDATES
The number of Pareto-optimal mappings selected from
step 1 for each DL application is shown in Table 3. In this
step, we run theGAwith 65 chromosomes for 1000 iterations.
Multiplying those numbers for all DL applications defines
the design space size for selecting the mapping candidates
in step 2.

2) DESIGN SPACE EXPLORATION
We vary the deadline constraint of all groups from 10 FPS
to 25 FPS, assuming implicit deadlines.2 In this experiment,
we run the GA at most 100 iterations with 2048 chromosomes
by making the GA terminate if there is no better solution
found in 10 iterations.

Figure 8 shows the relative fitness (maximum utilization)
and exploration time over the minimum value in each bundle.
The lower value is better in the figure. For all deadline
constraints, the Entire−GA method shows the best results as
shown in Figure 8 (a). Up to a deadline constraint of 20 FPS,
the Heuristic+GA and Entire−GA methods give a similar
result. But with the deadline constraint of 25 FPS,Entire−GA
gives better results by a large margin. This is because the
size of the design space for Heuristic+GA method is too
narrow to find good solutions. The Baseline method could
not find a feasible solution at a tight deadline constraint of
25 FPS. Also, at lower deadline constraints, it shows 5%∼7%
worse fitness than Entire−GA method. As for exploration

2Implicit deadline means the period is equal to the relative deadline. For
example, 10 FPS means a deadline of 100 milliseconds.

time, theHeuristic+GAmethod took the least amount of time
to perform, as depicted in Figure 8 (b) since it explores a
smaller design space than the other methods. The Entire−GA
method takes the longest time as expected.

3) CODE GENERATION
To check the viability of the proposed methodology, we syn-
thesize the target codes with a model-based design frame-
work [7] and run them on the target hardware platform. The
sample of themotivational example is available on a GitHub.3

D. EXPERIMENTAL RESULTS: RANDOMLY GENERATED
DATAFLOW GRAPHS
In this experiment, we randomly generate dataflow graphs
by the SDF3 [39] while using the same four DL applications
as the motivational example. We assume that all applications
are independent. Each dataflow graph consists of 10 nodes.
We vary the number of dataflow graphs and the average
WCET of the dataflow tasks. The averageWCET of dataflow
tasks is inversely proportional to the number of graphs to
make the total workload of dataflow applications remain sim-
ilar. It means that the averageWCET of dataflow tasks is four
times larger with 4 dataflow graphs than that with 16 dataflow
graphs. In the case that the number of graphs is 16, theWCET
of a dataflow task is randomly set in the range of 10∼100us
on the GPU, and 100∼500us on the CPU. Andwe set a half of
dataflow tasks can be run on GPU only. We make the average
WCET of CPU-mapped tasks be about five times of that of
GPU-mapped tasks.
Figures 9-11 show the results of the experiment when the

number of graphs is 4, 8, and 16, respectively. As expected,
the Entire−GA method shows the best fitness. The fitness
gap between the Entire−GA method and the Heuristic+GA
method tends to increase as the deadline constraint is tight-
ened. In some cases, the Heuristic+GA method could not
find a solution even when the Baseline method found a
solution. But in most cases when the Heuristic+GA method
finds a solution, it finds a better solution than the Baseline
method. Hence these two methods are not dominating each
other in terms of fitness. When no solution could be found
by the Heuristic+GA method when the deadline constraint
is 25 FPS, we loosened the constraint to 10 FPS and found
the solution that is used as the initial chromosome in the
Entire−GA method.

As for the exploration time, the Heuristic+GA method
takes the least time by more than three times than the
Entire−GA method. This experiment clearly demonstrates
the trade-off between two methods in terms of fitness and
exploration time. And it also shows that the proposed two
methods are significantly better than the previous state-of-
the-art method which is the Baseline method.

3https://github.com/cap-lab/HOPES/tree/master/HOPES_UI/schematics/
Test_Examples/ExternalTask/ImgProcessing.files
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VI. CONCLUSION
In this paper, we propose a novel technique to support
deep learning applications in a model-based embedded soft-
ware design methodology leveraging the optimization capa-
bility of a deep learning SDK. We first find a set of
Pareto-optimal mapping candidates for each deep learning
application, independently of the model-based design flow.
Adding the obtained mapping solution to the model-based
design framework, we explore the mapping of dataflow appli-
cations and the mapping candidates of deep learning appli-
cations together with the meta-heuristic. The viability and
efficacy of the technique are confirmed by experiments with a
non-trivial real-life example and randomly generated graphs.
We could reduce at least 5% of the maximum utilization
over the previous state-of-the-art method that separates the
mapping of DL applications and dataflow applications. More
importantly, the proposed technique could find a solution
when the previous method fails to find one. Even though the
current implementation is made for a specific target hardware
platform and its associated SDK, the proposed methodol-
ogy can be applied to other hardware-software platforms,
we believe.
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