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ABSTRACT The use of approximate communication has emerged as a promising approach for enhancing the
efficiency of communication in parallel computer systems. By sending incomplete or imprecise messages,
approximate communication can significantly reduce communication time. In this study, we examine
application-level techniques for approximate communication to enable high portability on high-performance
interconnection networks. Specifically, we focus on lossy compression of floating-point data, which is
frequently exchanged between compute nodes in parallel applications. Our approach involves a simple
application scenario where a source process compresses a communication dataset and a destination process
decompresses it in an MPI parallel program. We use two bitwise procedures for compression: lossy bit-
zip compression and lossless bit-mask compression. Our aim is to transmit the largest possible amount
of approximate data with the least possible compression overhead. Additionally, we explore error check
and correction techniques to ensure bit-flip fault tolerance for the compressed data during transmission.
We implement our scheme in several communication-intensive MPI applications and demonstrate that our
approximate communication approach effectively speeds up total execution time while staying within a
specified quality-of-result error bound.

INDEX TERMS Interconnection network, parallel computing, approximate communication, message
passing interface (MPI), lossy compression.

I. INTRODUCTION
Recent parallel computers in high-performance computing
(HPC) systems face a primary concern with the network
bandwidth, as its annual improvement is modest compared
to the computation power in compute nodes. This high-
lights the strong need to improve the network bandwidth
on high-performance interconnection networks. In parallel
applications, a considerable amount of floating-point datasets
are frequently exchanged between compute nodes via an
interconnection network. Reducing the redundancy of com-
munication data is a way to virtually increase the network
bandwidth. Approximate computing [1] is gaining traction
in this context, as it introduces a new trade-off between the
quality and speed, allowing parallel applications to improve
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system efficiency while retaining an acceptable level of
accuracy.

A significant fraction of applications running on HPC
systems primarily utilize MPI (Message Passing Interface)
parallelism to explore execution efficiency. Figure 1 reports
that a reasonably high number of parallel applications spend
more than half of their time inMPI [2]. Moreover, the fraction
of time spent on communication increases significantly with
the number of processes [3]. This large communication
overhead limits the scalability of parallel applications. Hence,
improving the MPI communication speed enhances the
execution performance of applications.

Some scientific applications in parallel computing produce
similar communication data repeatedly [4], which can be
compressed by each compute node to reduce traffic. This
can be achieved by sending only the difference information
from the previous data. Data compression can result in shorter
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FIGURE 1. Cumulative distribution function (CDF) of resource usage and
time on a large IBM BG/Q supercomputing system (Mira) [2].

communication times. Lossy compression, unlike lossless
compression, is a data encoding method that uses inexact
approximations and partial data discarding to represent the
content. Lossy compression trades off data precision or
quality to further reduce data size for storage, handling,
and transmission. In this work, the compression ratio is
a measure of how effectively floating-point data can be
compressed. It is defined as the ratio of the number of
bits used to represent the original floating-point data to the
number of bits used to represent the compressed data. The
compression ratio of lossy compression is generally higher
than that of lossless compression because of the limited data
precision loss. However, heavy data compression can harm
MPI communication in high-performance interconnection
networks, which are latency-sensitive and have inter-process
communication times less than one microsecond [5].

In this research, we utilize an application-level fast lossy
compression technique on floating-point data to enhance
the effective communication network bandwidth on high-
performance interconnection networks. In this work, we use
the IEEE 754 standard [6] for representing and manipulating
scientific floating-point numbers widely used in recent paral-
lel computer systems. IEEE 754 offers the following advan-
tages in comparison to alternative standards or methods like
Bfloat, Posit, and RNS for digital data representation. Firstly,
IEEE 754 provides a well-defined format for representing
floating-point numbers, which ensures that computations can
be carried out consistently across different platforms and
programming languages. Secondly, IEEE 754 defines a set
of arithmetic operations that are guaranteed to be accurate
and consistent, even in the presence of rounding errors and
other numerical issues. Thirdly, IEEE 754 provides a wide
range of precision options, allowing users to choose the level
of precision that best suits their needs. This flexibility is
important in scientific and engineering applications, where
the precision requirements may vary widely depending on the
problem being solved. The efficacy of our lossy compression
algorithm is higher for floating-point numbers with greater
precision.

Our parallel programs compress the IEEE 754 floating-
point datasets before sending them from the source side, and
then exchange them with relevant processes, and ultimately

decompress them at the receiver side. Note that, the scope
of this work is limited to communication datasets that are
transferred between compute nodes on high-performance
interconnection networks. Our compression method involves
two bitwise procedures: lossy bit-zip compression and
lossless bit-mask compression. The bit-zip compression
relies on value predictions for floating-point values, similar
to the SZ method introduced in [7], which is often the case
for intermediate and final floating-point results generated
by certain scientific programs. The bit-mask compression
explores the bit-level locality to enhance the compression
ratio based on the outcomes of the bit-zip compression.
We offer fine granularity to the MPI implementation,
which generates a bit stream encapsulated in a byte array,
corresponding to an MPI unsigned char type. In the whole
lossy compression process, we maintain a specified error
bound to adjust to the precision requirements of a target MPI
application, which introduces a new trade-off between the
compression ratio and precision.

Additionally, we develop a bit-flip recovery scheme that
is optimized for a specific bit error rate (BER) to provide
fault tolerance for the compressed data transmitted over
high-performance interconnection networks. To achieve this,
we employ application-level error check and correction
techniques such as CRC (Cyclic Redundancy Check) [8] to
detect any bit-flip errors and Hamming code [9] to correct
them, as necessary.

Our main contributions in this work are as follows:
• Wedeveloped and evaluated a lossy bitwise compression
algorithm at the application level for floating-point MPI
communication data on high-performance interconnec-
tion networks.

• We explored application-level error detection and cor-
rection techniques to safeguard compressed data from
precision loss during transmission on high-performance
interconnection networks.

• Our evaluation results demonstrate that our lossy bit-
zip compression method, supplemented by the lossless
bit-mask compression technique, effectively enhances
the execution performance of MPI applications while
maintaining a specified error bound for the compressed
data.

The remainder of the paper is structured as follows: We
review related work in Section II. In Section III, we describe
our lossy bitwise floating-point compression algorithm.
Section IV presents our evaluation methodology and results.
Finally, in Section V, we summarize our findings.

II. RELATED WORKS
One of the most widely used lossy compression algorithms
is the discrete cosine transform (DCT) [10]. It is primarily
utilized to compress multimedia data, such as audio, video,
and images. A well-known lossy compression algorithm of
the transform type is the fast Fourier transform (FFT) [11].
It transforms a signal from its original domain, often time or
space, to a representation in the frequency domain and vice
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versa. FFT offers a compression ratio similar to DCT [12].
Another more complex lossy compression algorithm, called
ISABELA [13], achieves a higher compression ratio by
transforming the data layout, such as sorting, cubic B-spline
fitting, and window splitting. A fast lossy compression
scheme [14] simply truncates the 16, 24, or 32 least signif-
icant bits to save total link energy. However, compression of
near-zero small floating-point values does not guarantee an
error bound.

In recent years, prediction techniques based on preceding
data elements have garnered significant attention for lossy
compression. A predictive type of lossy compression is
applied to differential pulse-code modulation (DPCM) [15].
DPCM serves as a signal encoder that uses the pulse-code
modulation (PCM) baseline but adds functionalities based
on sample prediction of the signal. Linear predictive coding
(LPC) [16] is another lossy compression algorithm that
finds extensive use in speech coding and synthesis. In audio
and speech processing, it uses the information of a linear
predictive model to represent the spectral envelope of a
digital speech signal in compressed form. While primarily
designed for lossless compression, FPZIP [17] also supports
lossy compression to achieve high compression ratios. FPZIP
predicts the data by using a subset of encoded data and
maps the difference to an integer number. To achieve a
higher compression ratio, ZFP [18] divides 3-D floating-
point arrays into small, fixed-size blocks of dimensions.
As a result, it often outperforms FPZIP. FPC [19], [20], [21]
is a proposed high-speed compressor for double-precision
floating-point data. In FPC, the data is predicted using
FCM/DFCM (differential-finite-context-method predictor)
by selecting values closer to the true ones. Bitwise XOR
operations are then performed between the predicted and
true values. Finally, the leading zeros in the result are
compressed to fewer bits (e.g., 4). SZ [7], [22], [23], [24]
is proposed for lossy compression, which predicts data using
three curve-fitting models: preceding-neighbor fitting model,
linear-curve fitting model, and quadratic-curve fitting model.
The primary idea behind SZ is to use linear predictive coding
for predictable data and complicated binary analysis for
unpredictable data. Its compression time is shorter than that
of ZFP. Another work [4] presented a similar idea of floating-
point data compression for FPGA-based high-performance
computing by using a one-dimensional polynomial predictor.
They also showed two different encoding methods, i.e.,
performance-oriented and area-oriented, which can achieve
different compression ratios.

There is typically a trade-off between compression latency
overhead and compression ratio in the aforementioned
lossy compression algorithms. Historically, most of these
algorithms have been optimized for the purpose of saving
compact data in storage. Even for more recent applications
in HPC and cloud computing, the main objective is still to
compress data for storage [25], such as storing checkpoint
images while accepting a minor decrease in the quality of
results [26]. Our objective differs significantly from that of

existing compression algorithms. Specifically, compressing
data for inter-process communication in parallel programs is
much more sensitive to latency than compressing data for
storage purposes. To the best of our knowledge, our study is
the first attempt to apply a lossy data compression algorithm
at a program level to the inter-process communication
datasets generated in parallel MPI applications on high-
performance interconnection networks.

III. LOSSY BITWISE FLOATING-POINT COMPRESSION
This section proposes a lossy bitwise floating-point com-
pression algorithm for inter-process communication data on
high-performance interconnection networks. The algorithm
consists of two stages. In the first stage, it employs a
lossy error-bounded bit-zip compression scheme [27] to take
advantage of the continuity of numerical floating-point data.
In the second stage, it applies a lossless bit-mask compression
technique to the outcomes of the first stage. This technique
explores the bit-level locality to enhance the compression
performance while maintaining the error bound.

Furthermore, we introduce a fault tolerance mechanism to
safeguard the compressed data from precision loss during
transmission, assuming that bit flips may occur on high-
performance interconnection networks. Lastly, we discuss
the integration of our design and implementation into MPI
applications.

A. LOSSY BIT-ZIP COMPRESSION
We utilize distinct compression strategies for two kinds of
data values: predictable and unpredictable. If the data can
be linearly predicted within the error bound, the former is
compressed using a sequence of pre-defined, abbreviated bit-
string symbols. On the other hand, the latter is compressed by
rounding the IEEE 754 floating-point data bits and removing
the least significant bits (LSBs), while keeping the error
bound intact.

1) LINEAR PREDICTION
We use a linear predictor to compress floating-point com-
munication data, subject to a user-defined error bound.
This bound allows for adjusting the balance between the
quality of the results and the compression ratio. Given the
abundance of prior research on data compression, we expand
the linear predictor [4], [7], [28] for our lossy floating-point
compression. Communication datasets that exhibit continuity
typically feature locality, which increases the likelihood of
achieving a high compression ratio. The linear predictor
forecasts each floating-point number, enabling us to attain a
high compression ratio and minimize communication traffic
on high-performance interconnection networks.

Initially, we perform a straightforward conversion of the
input floating-point values’ bit strings as a preprocessing
step such that each element in the converted dataset d =
{d1, d2, . . . , dm} is greater than or equal to zero, i.e.,
di ≥ 0. This conversion flips the sign bits of negative
floating-point values to zero. Subsequently, we associate
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FIGURE 2. Error-bounded linear prediction.

di with a pre-defined, abbreviated bit-string symbol if it
can be predicted by its previous data within the error
bound. We employ a flexible linear predictor for this lossy
compression. For a one-dimensional numerical dataset d ,
the linear predictor predicts each element di using its
n+ 1 preceding elements, i.e.,

{
di−(n+1), di−n, . . . , di−1

}
.

We adopt a standard polynomial prediction, pi, that varies
based on n. Notably, we can designate q bits to express a
maximum of 2q predictions. Because the hit ratios for the
predictions n < 4 are relatively high (see Section IV-A
for detailed analysis), we limit ourselves to the first four
predictions (i.e., q = 2). The predictions for the first four
values of n are as follows:

p0i = di−1 (n = 0) (1)

p1i = 2× di−1 − di−2 (n = 1) (2)

p2i = 3× di−1 − 3× di−2 + di−3 (n = 2) (3)

p3i = 4× di−1 − 6× di−2 + 4× di−3 − di−4 (n = 3) (4)

In Fig. 2, we compute the differences between the true
value di and each of the predicted values (p0i , p

1
i , p

2
i , and

p3i ). We then determine the value of bestfit as argmin(|p0i −
di|, |p1i −di|, |p

2
i −di|, |p

3
i −di|). Next, we calculate |p

bestfit
i −

di| and check if it satisfies the error bound. For simplicity,
we refer to the error bound as the absolute error bound (E).
If the prediction satisfies the error bound, i.e., |pbestfiti −di| ≤
E , we represent the prediction using a predefined bit-string
symbol. Note that we append a flag bit (1) to the beginning
of the bit string to identify a linear prediction.

2) BIT CUT
If a value prediction is successful at a source node, the
corresponding floating-point value is converted into a three-
bit representation. In case of prediction failure, we discard
the least significant bits (LSBs) of the IEEE 754 floating-
point expression of the value to achieve a high compression
ratio while maintaining the specified error bound. In other
words, we only retain the required b bits in the mantissa
to satisfy the error bound, as illustrated in Fig. 3. Using
Equations 5 - 7, we determine the value of b for the floating-
point value di based on the specified error bound E.

2−x ≤ E < 2−x+1 (x > 0) (5)

2y ≤ di < 2y+1 (6)

b = x + y (b = 0 if x + y < 0) (7)

FIGURE 3. IEEE 754 floating-point data format. The bit-cut compression
algorithm retains the necessary b bits while discarding some of the least
significant bits (LSBs) that are negligible.

FIGURE 4. Block diagram of the lossy bit-zip compression/
decompression for 1-D floating-point data array.

For example, for a double-precision floating-point value, the
minimum required number of bits for the lossy error-bounded
compression is 1+ 11+ b = 12+ b, and the corresponding
compression ratio is 64/(12+ b).

3) ENCODING AND DECODING
Figure 4 depicts the block diagrams of lossy bit-zip
compression and decompression. The encoded data bits are
concatenated into a continuous output bit stream, following
their original order in the input dataset. This implies that our
lossy compression scheme does not necessitate displacement
information, thus minimizing communication overhead.

To reconstruct the data from the received bit stream in the
decompression process, we first identify the leading bit of
each data piece as either 0 or 1. We also need to determine the
bit length of the data piece to decode it. If the leading bit is 1,
the data piece corresponds to the linearly predicted data, and
its bit length is always three.We decode the linearly predicted
data by performing a calculation similar to Equations 1 - 4.
On the other hand, if the leading bit is 0, the bit length of
the data piece is 12 + b for double-precision floating-point
values. The value of b is crucial to compute the total bit length
of the data piece for its decoding. Note that b = x + y
(Equation 7), where x is determined by the error bound E ,
and y is determined by the exponent bits. The lost LSBs due
to compression are filled with (1000 . . .)2, and the number of
supplemental bits is 64− (12+ b) = 52− b.
After the decoding phase, we convert the decoded dataset

to the final decompressed dataset through a simple difference
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FIGURE 5. Cooperation of the lossy bit-zip compression and the lossless
bit-mask compression. In this example, a 64-bit floating-point value is
compressed to 11 bits, resulting in a significant reduction in the number
of bits required.

mapping procedure, which is the inverse operation of
the difference preprocessing performed in the compression
phase.

B. LOSSLESS BIT-MASK COMPRESSION
We have observed that even though approximate IEEE
754 floating-point values can be compressed in the bit-
cut step (Section III-A2), they still exhibit some leading
bit sequences that repeat. Building on this observation,
we propose to use a dictionary-based compression technique
to replace these repeating occurrences with a series of
predefined short bit-string symbols.

1) MASK SELECTION
We propose a bit-mask pattern to further enhance the com-
pression ratio while minimizing the cost and decompression
penalty. This technique exploits common bit sequences
by identifying matches based on a few remembered bit
positions. This approach is similar to previous works [29],
[30]. The number of bit changes allowed in a match limits
the effectiveness of the bit-mask compression, as more
bit changes lead to more matching sequences. To balance
cost and benefit, we use the median value of the dataset
to create a matching sequence, which acts as a bit mask.
The bit mask replaces a few bit strings with predefined
shorter bit-string symbols, resulting in a compression tech-
nique that provides both high compression ratio and fast
decompression.

The bit-mask compression technique is dictionary-based,
ensuring lossless compression, and is employed as a sup-
plement to the lossy bit-zip compression scheme. While
the lossy bit-zip compression scheme discards some least
significant bits (LSBs) to maintain the error bound, the
lossless bit-mask compression technique compresses a few
most significant bits (MSBs) without sacrificing any data
precision, as illustrated in Fig. 5. By working together, the
lossy bit-zip compression and lossless bit-mask compression
techniques achieve a superior compression ratio for floating-
point values.

FIGURE 6. The generic encoding scheme in our lossy bitwise compression
algorithm.

2) ENCODING AND DECODING
The compression algorithm we use employs a generic
encoding scheme, which is depicted in Fig. 6. This scheme
applies to both the lossy bit-zip compression and the lossless
bit-mask compression. The first bit of the generic encoding
indicates the compression type: a 0 means either the bit-cut
compression or the bit-mask compression, while a 1 means
the linear-prediction compression. Additionally, the generic
encoding requires at least one flag bit set to 1 to identify
the bit-mask encoding. The number of flag bits (f ) needed
depends on the maximum value (dmax) of the dataset (d). This
ensures that the leading exponent bit(s) of each value in the
dataset do not conflict with the all-1 flag bits. The value of f
is determined as follows:

f =


1 dmax < 22

10
−1023

2 22
10
−1023

≤ dmax < 22
10
+29−1023

3 22
10
+29−1023

≤ dmax < 22
10
+29+28−1023

It is sufficient to use up to three bit-mask flag bits (f ≤ 3)
in most cases (dmax < 2769). Additionally, we use one type
bit to represent two types of the bit-mask compression: 0
indicates that no mismatch occurs for all bits after XORing
the value and the bit mask, while 1 indicates that no mismatch
occurs for initial bits before the bit location where mismatch,
i.e., 1, occurs. The following two position bits represent the
bit location: 00, 01, 10, and 11 indicate that no mismatch
occurs for the initial 12, 12 + 21 = 14, 12 + 22 = 16, and
12+ 23 = 20 bits, respectively.
In general, the lossless bit-mask compression is beneficial

for datasets that have many values around the middle
value, so that their MSBs have more identical bits to
compress.

The algorithm for our lossy bitwise compression is
presented in Algorithm 1. The encoded bits are concatenated
to form a bit stream that will be transferred from the sender
side. Figure 7 illustrates an example of the encoded bits
generated by our compression algorithm, assuming that the
number of flag bits is f = 2. Different compression
types use differential prefix bits in the bit stream, which
are identified for smooth decompression on the receiver
side.
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FIGURE 7. An example of the encoded bits by our compression approach
(the number of bit-mask flag bits f = 2).

Algorithm 1 The Lossy Bitwise Floating-Point Compression
Input:

1-D floating-point (FP) array D[1 . . .m], error bound E
Output:

bit-stream Dbit ▷ encapsulated in a byte array
1: convert D[1 . . .m] into non-negative FP dataset
d[1 . . .m]

2: Dbit ← NULL
3: for i = 1→ m do
4: if i ≤ 3 then
5: bs← bit-cut(di, E)
6: bs← bit-mask(bs)
7: append bs to Dbit
8: else
9: bestfit = arg min (|p0i − di|, |p1i − di|, |p2i −
di|, |p3i − di|)

10: if pbestfiti ≤ E then
11: switch bestfit do
12: case 0: append (100)2 to Dbit
13: case 1: append (101)2 to Dbit
14: case 2: append (110)2 to Dbit
15: case 3: append (111)2 to Dbit
16: else
17: bs← bit-cut(di, E)
18: bs← bit-mask(bs)
19: append bs to Dbit
20: end if
21: end if
22: end for

C. BIT-FLIP FAULT TOLERANCE
In modern high-bandwidth interconnection networks, multi-
level modulations such as pulse amplitude modulation (PAM)
and quadrature amplitude modulation (QAM) are typically
required. Due to their narrow design margin, bit flips often
occur with a non-negligible probability. This necessitates a
costly forward error correction (FEC) logic to ensure error-
free communication.

In this study, we aim to develop fault-tolerant coun-
termeasures against bit flips during transmission on high-
performance interconnection networks.We utilize CRC-32 to
detect bit-flip errors in the communication data and provide

FIGURE 8. Bit-flip check and correction for a piece of 400K-bit
compressed data.

effective protection. In addition, we employ Hamming code
to correct single bit errors on a conditional basis. To account
for the higher probability of bit flips in larger bit streams
during transmission, we divide the entire stream adaptively
into multiple data blocks (DBs) and apply Hamming code
to each DB accordingly. The data block size is determined
by the bit error rate (BER) on the target high-performance
interconnection network andmust be small enough to tolerate
a high BER. A Hamming code is typically defined as
(2n−1, 2n−n−1), where n is the number of overhead bits. All
Hamming codes can detect two errors and correct one error.
For instance, if the BER is 10−5, the data block size is set
to 105 bits.

In case a single bit flip is detected in a DB, the receiver
can directly correct the error. However, if there are multiple
bit flips, such as burst errors with the burst length ≤ 31 bits,
detected in a DB, the sender is required to resend the DB. The
length of the overhead bits is insignificant compared to that
of the data themselves.

To illustrate, a 400K-bit communication stream using
CRC-32 and Hamming code is depicted in Fig. 8, assuming a
BER of 10−5. CRC-32 requires 32 overhead bits for bit-flip
check, while Hamming code necessitates 20 overhead bits
per 100K-bit DB for bit-flip correction, requiring a total of
80 overhead bits for bit-flip correction of the entire 400K-
bit communication data. In this example, the total bit-flip
check and correction overhead is 32 + 20 × 4 = 112 bits,
representing only about 0.02% of the entire communication
bit stream. As the BER decreases below 10−5, the data block
size can be increased accordingly, leading to an even lower
overhead rate.

D. MPI IMPLEMENTATION
Our lossy bitwise floating-point compression scheme is
highly portable across various MPI implementations, as it
employs basic MPI functions and data types. The sender only
needs to transmit the size of the compressed data, constructed
with a single MPI_INT, before transferring the compressed
data, which is constructed with MPI_UNSIGNED_CHAR
arrays. Additionally, the sender transmits the difference
information, constructed with a single MPI_DOUBLE,
generated during the difference preprocessing step.

For point-to-point communication, we use MPI_Isend,
MPI_Irecv, and MPI_Waitall between the corresponding
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processes, while for collective communication, such as
broadcast, we use MPI_Bcast among the involved processes.
Importantly, all the compressed data bits are concatenated
seamlessly at the sender side, and the prefix bits guide smooth
decompression at the receiver side, eliminating the need for
any additional overhead for bit displacement information.

We utilize CRC verification at the receiver side as a bit-flip
error check approach. The compressed data is decompressed
only if the verification is passed. At the receiver side,
Hamming code is conditionally applied to correct single-
bit errors, resulting in successful decompression of the
compressed data after error correction. If multiple bit flips in a
single DB are detected at the receiver side, the corresponding
DB must be resent by the sender.

Figure 9 illustrates the enhanced lossy bitwise floating-
point compression process with the bit-flip check and
correction countermeasures.

IV. EVALUATION
Firstly, we assess the efficacy and efficiency of our lossy bit-
wise floating-point compression algorithm. Next, we evaluate
the algorithm’s performance on interconnection networks,
utilizing synthetic traffic patterns and representative MPI
applications to determine the improvement gained from
our compression technique. Lastly, we conduct an overall
evaluation of the error recovery schemes to address bit-flip
errors occurring during compressed data transmission on
interconnection networks.

A. EFFECTIVENESS AND EFFICIENCY
We conduct the evaluation using two compute nodes
equipped with an Intel Xeon Processor X5690, featuring a
3.47 GHz 12-core processor, and a GbE network interface
using Broadcom NetXtreme II BCM5709 1000Base-T. Inter-
process communication is facilitated byOpenMPI v3.1.3, and
the nodes run on Linux Kernel 4.9.0-8-amd64.

We first describe our lossy bitwise compression algorithm
applied to a Ping-pong MPI program, which consists of
two processes continuously sending messages to each other.
The program uses a ping_pong_count initiated at zero and
incremented by the sending process at each ping-pong step.
The processes take turns being the sender and receiver
while incrementing the ping_pong_count, and the program
stops sending and receiving after a predetermined limit is
reached (10,000 in this case). The input dataset is 65,536
samples of double-precision (64-bit) floating-point data from
Blast2 [31].

Figure 10(a) displays the hit ratios of the first four
linear predictions (n = 0, 1, 2, and 3) in the lossy
bitwise compression algorithm. The total hit ratio increases
from 11.1% to 71.9% as the error bound is relaxed from
10−6 to 10−2, reflecting the acceptable precision quality
of the compressed data. The first three linear predictions
(n = 0, 1, and 2) contribute significantly to the increase
in compression ratio. We use these four predictions in the

FIGURE 9. Diagram of the lossy bitwise floating-point compression
enhanced by bit-flip error check and correction.

lossy bitwise compression algorithm because they compress
the predictable floating-point data to only three bits.

For comparison, we apply the bit-cut compression
algorithm, which rounds bits for both predictable and
unpredictable data. The algorithm does not include linear
predictions even for predictable data. Figure 10(b) compares
the compression ratios of the bit-zip and bit-cut compression
algorithms. The compression ratio of bit-cut is lower than that
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FIGURE 10. Effect of linear predictions in our lossy bitwise compression
algorithm.

TABLE 1. Compound errors for different predefined error bounds.

of bit-zip, and the gap widens for more relaxed (larger) error
bounds. This demonstrates that the linear prediction plays
a crucial role in our lossy bitwise compression algorithm
by providing an extremely high compression ratio for
predictable data.

We ensure that individual floating-point data values meet
the specified error bound in our compression algorithm.
However, compounding errors may occur due to the com-
pression of consecutive values. The results of the eventual
compound errors under different predefined error bounds are
provided in Table 1. The table indicates that the eventual
compound errors remain within the corresponding specified
error bounds.

We turn our attention to the time cost of compression and
decompression in our lossy bitwise compression algorithm,
as depicted in Fig. 11. To provide a reference, we also evaluate
the SZ (v2.1) algorithm [7], which is not directly applicable
to inter-process communication on interconnection networks.

FIGURE 11. Time cost of lossy compression algorithms.

Our results show that our lossy bitwise compression algo-
rithm outperforms SZ in terms of speed, with a compression
speedup of 8.5x and a decompression speedup of 9.1x when
the error bound is set to 10−4. Moreover, we observe
that the bit-cut compression algorithm takes longer to
compress and decompress when compared to the bit-zip
based compression algorithms. This is because bit-cut applies
bit rounding to each floating-point data value without using
linear predictions. Therefore, the linear prediction approach
provides advantages in both compression ratio and speed for
our lossy bitwise compression algorithm.

B. SYNTHETIC TRAFFIC PATTERNS
We evaluate the performance of parallel application bench-
marks using SimGrid (v3.21) [32], a discrete-event sim-
ulation framework. SimGrid is configured such that each
switch has a 100ns delay, switches and compute nodes are
interconnected via links with 200Gbps bandwidth each, and
each compute node has a computation power of 5TFlops.
The built-in version of the MVAPICH2 [33] implementation
is used for MPI collective communications. The simulations
are based on a 3-D torus [34] interconnection network
with minimal routing using the Dijkstra algorithm [35]. The
3-D torus is a representative topology for interconnection
networks in parallel computer systems because it provides
a scalable, low-latency, high-bandwidth, fault-tolerant, and
programmable network structure that is well-suited for HPC
and other data-intensive applications. As an end-to-end
compression framework for floating-point communication
data, our compression algorithm remains unaffected by any
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FIGURE 12. Compression ratio for synthetic traffic patterns.

FIGURE 13. Relative execution time for synthetic traffic patterns.

particular interconnection network topology, as long as the
network latency remains identical. Therefore, we exclude
the discussion of its application to other network topologies
such as traditional mesh and fat trees, as well as emerging
circulant, ring-like, and HyperX topologies.

Synthetic traffic patterns are simulated to determine
the communication node pairs, including Uniform, Matrix-
transpose, and Bit-reversal. These traffic patterns are com-
monly used for measuring the performance of intercon-
nection networks as described in [36]. Data packets are
assumed to be injected into the interconnection networks
independently by each node. Each process exchanges the
same dataset as used in the previous section.

In this evaluation, we simulate the executions of both
unmodified and modified versions of MPI parallel appli-
cations using the lossy bitwise compression algorithm.
Figure 12 illustrates the compression ratio, and Fig-
ure 13 shows the execution time, using bit-zip compres-
sion and bit-zip+bit-mask compression for comparison.
As the error bound becomes more relaxed, we observe
a high improvement ratio of the compressed communi-
cation by our approaches over the original uncompressed
communication for both metrics. Additionally, the bit-mask
compression algorithm further improves the compression
ratio without sacrificing execution time for different traffic
patterns.

C. MPI APPLICATIONS
In this section, we evaluate the lossy bitwise compres-
sion algorithm on several communication-intensive MPI
applications as described below. The datasets used in each
application consist of IEEE 754 double-precision floating-
point values.

MM [37]: The MM (Matrix Multiplication) application
aims to multiply two matrices together. Both matrices used
in this evaluation have 1, 024 columns and 1, 024 lines,
resulting in two 1, 024× 1, 024 matrices.
LU [38]: The LU decomposition application is to decom-

pose a square matrix A (n× n) into a lower triangular matrix
(L) and an upper triangular matrix (U ). We assume that A is
a 256× 256 matrix.
K-means [39]: The K-means clustering program partitions

an input dataset into multiple subsets called clusters. Similar
elements are grouped into the same cluster, calculated based
on distance metrics such as euclidean distance or hamming
distance. We assume 100 clusters and set the maximum
calculation iteration to 1,000. We use the following two input
datasets [40]:
• obs_info: the measurement from scientific instruments
which comprises the latitude and the longitude infor-
mation of the observation points of a weather satellite
(2,366,316 values and 0.3% are unique)

• num_plasma: the result of numeric simulations which
simulate the plasma temperature evolution of a wire
array z-pinch experiment (4,386,200 values and 23.9%
are unique)

The compression ratio and relative execution time of the
bit-zip and bit-zip+bit-mask methods are presented in Fig. 14
for the above MPI applications, with the error bound set
to 10−6. The bit-zip+bit-mask method generally achieves
higher compression ratios than the bit-zipmethod, resulting in
faster execution times for the target applications. Specifically,
for K-means, the bit-zip+bit-mask method improves the
compression ratio by up to 3.4x and speeds up the execution
time by around 59.7% compared to the uncompressed
version.
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FIGURE 14. Effect of integrating the lossy bitwise compression algorithm
into MPI applications (E = 10−6).

FIGURE 15. Error of K-means clustering (num_plasma) using the lossy
bitwise compression for inter-process communication.

The impact of the bit-zip+bit-mask compression on the
clustering result for the num_plasma dataset is presented in
Fig. 15. The plot displays the average error of means in the
clusters, with each cluster represented by the same color in
the output. We observe that the clustering result obtained
with our compression algorithm remains almost identical to
the uncompressed version when the error bound is relaxed
to 10−4. However, the clustering error increases as the error
bound exceeds 10−3.

D. BIT-FLIP CHECK AND CORRECTION
1) TIME COST
We conduct an evaluation of the time cost of the bit-flip
check and correction techniques, namely CRC and Hamming

FIGURE 16. Time cost of bit-flip error check and correction.

FIGURE 17. Effect of bit-flip error recovery on compressed MPI
communication.

code. To create various data sizes, we have utilized the
dataset consisting of double-precision (64-bit) floating-point
numbers obtained from Blast2 [31], and split it accordingly.

Figure 16 illustrates that, for various dataset sizes, CRC
has a lower time cost than the lossy bitwise compression
algorithm itself. On the other hand, Hamming code requires
more time to perform bit-flip correction, particularly for
larger dataset sizes. Such time cost is unacceptable for time-
sensitive communication on high-performance interconnec-
tion networks. Therefore, we recommend using only CRC for
bit-flip check when the dataset size is large. In this case, if any
bit flip is detected on the receiver side, the errorous data block
(DB) will need to be retransmitted from the sender side.

2) BENCHMARK PERFORMANCE
We have integrated bit-flip recovery techniques with the lossy
bitwise compression algorithm into MPI applications such as
MM, LU, and K-means. We use the same datasets as those
utilized in Sec. IV-C. Due to the large size of the datasets used
in these applications, we only rely onCRC and retransmission
for bit-flip check and correction on the target interconnection
network.
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In Fig. 17, we present the total execution times of the
MPI applications, including bit-flip check and recovery.
We observe that the speedup obtained by the lossy bitwise
compression algorithm gradually increases as the error
bound becomes relaxed, which is consistent with our
previous findings. Additionally, while a high BER typically
compromises the speedup, the time overhead is negligible
when compared to an interconnection networkwithBER = 0.
This is because, in such cases, only the data blocks where
bit flips occur need to be retransmitted, instead of the entire
compressed data.

V. CONCLUSION
Optimizing data compression for approximate communica-
tion can enhance the effective network bandwidth on an inter-
connection network of parallel computers. In contrast to using
hardware compression at network interfaces, we developed
an application-level error-bounded lossy bitwise compres-
sion algorithm for floating-point communication to improve
the performance of parallel applications. The compressed
floating-point values are combined into a bit stream and
encapsulated in a byte array, which corresponds to an MPI
unsigned char type to ensure high portability. In addition,
we explored error check and correction techniques to
safeguard the compressed data against bit flips that may
occur during transmission. The evaluation results show that
our lossy bitwise compression algorithm is effective in
enhancing the execution performance of parallel applications
while preserving a specific error bound on high-performance
interconnection networks.
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