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ABSTRACT This paper introduces novel techniques based on Machine Learning (ML) algorithms for a
Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an
efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy
possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-
P&O) algorithm is proposed. The SVM block improves the tracking speed by predicting an initial duty
cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to
upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined
with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM block
generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power
component. In addition, the ability of this design to work with a small learning rate parameter allows an
accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are
highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models
are carried out in order to get the best output prediction for each SVM regression block. Simulations have
been performed to confirm the supremacy of the new strategies over intelligent and classical techniques.
Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an
impressively decrease of the harmonics extraction’s response time (up to 98.8%), and a PVSAPF power
quality enhancement under online intermittent weather conditions and variable nonlinear load.

INDEX TERMS Machine learning, support vector machine regression, photovoltaic integrated shunt active
power filter, maximum power point tracking, harmonics identification.

I. INTRODUCTION
Renewable energy (RE) resources have received increased
global interest in the prior 20 years, and became a promising
alternative toward a sustainable future [1], [2]. From one
viewpoint, there is a worldwide concern and a large pres-
sure over security for the energy supply to reach a higher
level owing to the concentrated feature of oil reserves and
political instability in countries with the greatest deposits.
On the other, the burning of fossil fuel in conventional
electrical power generation systems is considered the main
cause of CO2 emissions in the world [4], contributing to
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Greenhouse Gas emissions and global climate change. The
Intergovernmental Panel on Climate Change (IPCC) predicts
a global increase to 4.5◦C and 900 ppm CO2 by 2100 [5].
As a result, to address these problems, government policies
in many countries have drawn out plans to shift towards
electricity production from renewable energy [6], ensuring
further market certitude as well as less air pollution. In [7],
the global CO2 emission related to the energy production
sector gets to 33 gigatonnes (Gt) in 2018 and stabilizes in
2019 despite a global economic increase of 2.9%. This level’s
stabilization was explained mainly by the proliferation of
renewable energies in the electricity production sector.

Solar photovoltaic (PV) has become a cost-competitive
technology [8] with a significant cost reduction. Between
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2020 and 2021, there was a 12.3% ($0.13/W) reduction in
utility-scale PV system cost benchmarks [9]. This green tech-
nology has also shown exponential growth throughout the
last decade [10]. From 2011 to 2021, global PV spreading
increased from 72 GW to 843 GW [11], [12]. In power sys-
tems, PV panels can be classified into twomain types, namely
the grid-connected system (on-grid), and the standalone sys-
tems (off- grid) [13]. In the ‘off-grid’ systems, PV works
independently from the ac grid and uses storage devices to
accumulate the excess energy for later consumption. How-
ever, batteries bank have shown to be high-cost devices with
relatively low efficiency, making the usage of standalone
systems relatively expensive [14]. Meanwhile, in the ‘on-
grid’ systems, PV panels supply power to the utility grid
and the use of a batteries bank is not required. Nevertheless,
this PV system integration into the existing grid causes many
power quality issues (particularly Harmonic distortions and
reactive power) [15].

Ensuring the power quality has become a vital task in
power distribution systems, owing to the jeopardizing effects
of harmonic currents under the increased use of nonlinear
loads [16]. Harmonics distortion causes several issues in the
surrounding power equipment such as oscillation and over-
voltage in the electrical power system, additional loss and
voltage drop in transformers and motors, and wrong tripping
of protection hardware [17].Within this context, conventional
passive power filters have been installed to upgrade the power
quality in the polluted power system. Nevertheless, despite
their simplicity and their low cost, the passive power filter
still has several drawbacks such as large size, fixed harmon-
ics tuning, and a specific reactive compensation. Therefore,
in order to address these issues, the shunt active power filters
(SAPF) take the place of the passive ones and are considered
the newest technology and the most reliable devices owing to
their ability to improve power factor, mitigate harmonics, and
work under various operating conditions [18], [19], [20].

The combination of the PV systemwith SAPF constitutes a
multifunctional system. Indeed, the PVSAPF system ensures
PV active power injection into the grid and overcomes the PV
on-grid issues by enhancing power quality. In this work PVS-
APF system is studied under a variable operating condition of
the nonlinear load, and/or changing climatic conditions, using
two new methods of control based on machine learning and
artificial intelligence.

On one hand, the maximization of the power extraction
from the photovoltaic arrays is vital for optimal PV-SAPF
system exploitation. PV panels exhibit non-linear current-
voltage characteristics with a unique point named maximum
power point (MPP) for each specific climatic condition [21].
In this regard, it is necessary to design an effective maxi-
mum power point tracking MPPT strategy in order to ensure
a ceaseless PV maximum power generation under various
environmental conditions. Numerous MPPT algorithms have
been presented in the literature. These strategies can be clas-
sified as conventional, novel, and hybrid ones [22]. The core

features sought in all developed MPPT strategies are a good
tracking speed, better accuracy, and a low power ondula-
tion under varying weather conditions with low computa-
tion burdens and implementation cost [23]. The Perturbation
and Observation (P&O) and the incremental conductance
(INC) [24] algorithms are still the most common techniques
employed for commercial applications, thanks to their sim-
plicity in implementation, and their good performance under
constant environmental conditions. Nevertheless, these con-
ventional strategies show poor performances and weak adap-
tation under permanent variations in the weather [25]. In [26],
the tracking speed can be improved by using a large step size
but with the penalty of providing additional power fluctua-
tions at MPP. On the other hand, a small step size upgrades
the steady state response by reducing remarkably the power
oscillations but slows up the response time of MPPT. In order
to meet this challenge, variable step-based MPPT algorithms
have been introduced in [27]. The authors proposed the
derived dP/dV values and scaling factor to generate various
step sizes of the incremental conductance method (DVS-
INC), ensuring the trade-off between low power oscillation
and high tracking speed. Another variable step algorithm
using intelligence artificial has been designed in [28]. The
study proposes an enhanced MPPT strategy combining a
Fuzzy Logic Controller FLC with incremental conductance
algorithm. Five step sizes are generated in accordance with
five areas of the fuzzy controller inputs. However, this tech-
nique has the disadvantage that the performances depend
strongly on the chosen step size, along with the FLC limita-
tion, which depends on experience for rules and membership
functions determination [29]. Another work in [30] presents
a review of various studies over the last six years using
Artificial Neural Networks (ANN) based MPPT algorithms.
This Intelligent controller gives better static and dynamic
performances as further is data gathered. Nonetheless, the
major disadvantage of the ANN controller is the high-cost
solution that it presents owing to the increased computational
load that it requires. In recent years, Machine Learning clas-
sification techniques are progressing at a very fast cadence,
and are widely used for solar irradiance forecasting [31], and
electrical system fault detection [32]. Nonetheless, there are
comparatively few studies using machine learning regression
problems related to maximum power extraction MPPT in
the PV-SAPF system. In this work, a novel hybrid Support
Vector Regression-P&OMPPT algorithm has been designed,
in order to afford an optimized solution ensuring a compro-
mise between cost, tracking speed, and accuracy of theMPPT
strategy.

On the other hand, harmonics detection is considered a
crucial step, in the PV SAPF system control, facing the
power quality issues, caused by the nonlinear load utilization
as well as the PV power injection [33]. Several harmonic
extraction strategies have been proposed such as Fourier
analysis-based techniques in the frequency domain [34],
dq theory and instantaneous power theory-based algorithms
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FIGURE 1. Circuit diagram the studied PV-SAPF system.

in the time domain [35], and artificial intelligence-based
approaches [36].

In the frequency-based techniques, the computational bur-
den caused by the needed time in collecting adequate samples
gives poor dynamic performances in comparison with the
time domain strategies [37]. These latter offer better perfor-
mance in terms of response time, but lack accuracy particu-
larly under varying loads [38]. Hence, Adaline-based neural
network techniques have been designed in order to overcome
the limitations of classical detection strategies, thanks to its
intelligent learning and fast training characteristics [38]. Nev-
ertheless, this neural strategy has limitations as well. Indeed,
the use of a high learning rate parameter in the Adaline-
based technique improves the tracking speed of harmonics
detection, but with the penalty of providing oscillations in
the steady state response. Moreover, a small learning rate
parameter upgrades the steady state response by reducing
remarkably fluctuations, but slows up the response time of
harmonics extraction [39]. Therefore, this paper gives a sig-
nificant improvement in harmonics detection and presents a
new hybrid Support Vector Regression-Adaline neural PQ
strategy for the PVSAPF system.

The contribution of this paper reposes on the main features
mentioned below

• A novel design of a hybrid SVM regression-P&OMPPT
is adopted and compared to Fuzzy MPPT and P&O
MPPT algorithms.

• A novel design of a hybrid SVM Adaline NPQ strategy
for harmonics extraction is developed and compared to
the intelligent Neural Adaline PQ strategy and to the
classical instantaneous PQ method using the Low Pass
Filter (LPF).

• The proposed hybrid SVM-P&O MPPT provides an
accurate and fast MPPT response with low ondulation
under abrupt changes in the weather parameters.

• The proposed SVM regression-Adaline NPQ strategy
offers an important advance in DC active power com-
ponent extraction under a sudden NLL parameters
variation.

• The combination of both proposed new algorithms
presents an efficient PVSAPF’s control strategy in terms
of static and dynamic performance under a variable oper-
ating condition of the nonlinear load and/or changing
climatic parameters.

The article is organized as follows. Section II describes
the PVSAPF system configuration and details the ε-SVR
support vector regression algorithm. The design of the SVM-
P&OMPPT and hybrid SVMAdaline NPQ control strategies
are described in Section III and Section IV, respectively.
The simulation results are discussed in Section IV. Finally,
Section V concludes the article.

II. PVSAPF SYSTEM CONFIGURATION AND ε-SVR
SUPPORT VECTOR REGRESSION ALGORITHM
A. PHOTOVOLTAIC SHUNT ACTIVE POWER FILTER
SYSTEM CONFIGURATION
The proposed block diagram of the SAPF coupled PV panels
system is shown in Figure 1. As indicated, the power transit
of the whole studied system can be categorized, according to
the generated PV active power Ppv, into three phases:
- During the concentrated sunshining period (Ppv> PNLL),

the system supplies power to the nonlinear loads from the PV
panels and transfers the active power surplus to the grid.
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- When the sunshine is not sufficient (Ppv < PNLL), the
nonlinear load is fed from both the PV panels and ac grid.

- At night, during the absence of photovoltaic energy pro-
duction (Ppv = 0), the ac grid provides all the electrical
power demand to the nonlinear load. Further, the PVSAPF
system affords simultaneously reactive power compensation
and harmonics current filtering in all these three phases.

The proposed system controller consists of four principal
blocks:

• MPPT control block, integrated in the boost converter,
for maximum PV power extraction.

• Compensating currents control block for reference cur-
rents generation.

• DC bus voltage control block which is used to keep the
capacitor voltage at its reference value.

• The hysteresis controller based current control block for
generating the switching signals gSAPF to three-phase
inverter based the shunt active power filter.

B. ε-SVR ALGORITHM
Designed by Cortes and Vapnik in 1995, Support Vector
Regression (SVR) is a supervised and non-parametric learn-
ing technique, widely used in regression problems. It gives
high learning performance in nonlinear problems even with
complex distributed data. The SVR algorithm is be described
as following [40].

Consider the sample set of training data:

T = {(x1 , y1), . . . , (xl, yl)}

(xi ∈ RN , yi ∈ R, i = 1, . . . , l) (1)

where xi represents the N-dimensional input vector and yi the
corresponding target value.

Linear SVR function is estimated as the following
equation:

f (x) = ⟨w, φ (x)⟩ + b

φ : RN
→ F;w ∈ F (2)

where ⟨, ⟩ designates the dot product in the feature space F ,
w the weight vector, φ(x) the nonlinear mapping data and
b the intercept vector of hyperplane f (x). In order to find
the optimal regression function, the coefficients w and b can
be determined by solving the convex optimization problem,
expressed as follows:

Min
1
2

∥w∥
2
+ C

N∑
i=1

(ξi + ξ∗
i ) (3)

ST :


yi − wTφ (xi)− b ≤ ε + ξ∗

i

wTφ (xi)+ b− yi ≤ ε + ξi

ξ∗
i , ξi ≥ 0

(4)

where ε is the insensitive error margin, and C the penalty
factor which ensures the compromise between training error
reduction and the complexity of SVM model (flatness of the

function) [41], [42]. ξi and ξ∗
i are slack variables which indi-

cate the absolute deviances above and below the insensitive
error margin ε, respectively.

This convex optimization problem can be reconstructed as
a Lagrangian function, as follows:

L =
1
2

∥w∥
2
+ C

l∑
i=1

(ξi + ξ∗
i ) −

l∑
i=1

(
ξiδi + ξ∗

i δ
∗
i
)

−

l∑
i=1

σi [ξi + ε + yi − (w, φ (xi))− b]

−

l∑
i=1

σ ∗
i

[
ξ∗
i + ε − yi + (w, φ (xi))+ b

]
(5)

where σi, σ ∗
i , δi, δ

∗
i are Lagrangian multipliers.

From the partial derivative of eq. (5), in one hand the
obtained weight vector can be expressed as [43]:

w =

n∑
i=1

(
σi − σ ∗

i
)
φ(xi) (6)

Additionally, the optimization problem is formulated as
follows:

Max−
1
2

n∑
i=1

(
σi−σ

∗
i
) (
σj−σ

∗
j

)
K (x i,xj)

−ε

n∑
i=1

(
σi+σ

∗
i
)
+

n∑
i=1

yi
(
σi−σ

∗
i
)

(7)

ST :


N∑
i=1

(
σi + σ ∗

i
)

= 0

σi, σ
∗
i ∈ [0,C]

(8)

where K (xi, xj) = φ (xi). φ (xj) is kernel function which
satisfy the Mercer condition.

Substitute equation (6) into equation (2), the final obtained
regression function can be written as follows:

f (x) =

n∑
i=1

(
σi − σ ∗

i
)
φT (xi) φ (x)+ b

= ⟨w, φ(x)⟩ + b =

N∑
i=1

βiK (xi, x)+b (9)

Several kernel functions have demonstrated their great
ability to improve SVR performance in the litera-
ture [44], [45]. In this study, Linear kernel function, Gaussian
kernel function, Quadratic kernel function and Cubic kernel
function are used [46].

In addition, a suitable choice of Hyperparameter optimiza-
tion is vital for optimal performance of the ?-SVR tech-
nique [47]. The Grid search, the Random search and the
Bayesian optimization are the most popular ones. In this
study, the appropriate kernel function and the Hyperparam-
eter optimization method are chosen by taking into consider-
ation the following comparing statistical criteria [48]: Root
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mean square errors (RMSE), mean absolute errors (MAE)
and determination coefficient (R2).

III. THE DESIGN OF THE SVM-P&O MPPT ALGORITHM
A. METHODOLOGY
The SVM regression model used in the proposed MPPT
strategy is set to TMPP= {(x1,y1),. . . . . . , (xn, yn)} where
xj is the input sample comprising two features (E(j),T(j));
j = 1. . . n and yj is output sample of SVM regression block
predicting duty cycle DML(j) of the boost converter. The
training data set, represented in Figure 2 is collected from the
simulation history of the PV system under varying irradiance
and temperature levels.

Referring to Figure 3 which illustrates an example of PV
curves under two temperature levels (45◦C and 5◦C), and to
the improved MPPT model detailed in Figure 4, the proposed
SVM regression-P&O algorithm can be described as follows:
At the first stage, the SVM regression block predicts an initial
duty cycle D0−ML according to irradiance E and temperature
T levels of the PV panel. The corresponding PWM is sent to
the boost converter, thereby, the output active power of PV
gets speedily close to MPP.

D0−MPP = D0−ML (10)

The process is then switched to P&O algorithm using a
small fixed step1DP&O in order to accurately track the MPP.

DMPP(k) = DMPP(k − 1) ±1DP&O (11)

When varying parameters E and/or T , the algorithm
switches back to the SVM regression model which generates
a new predicted output DML (k). The difference between the
current predicted SVM output DML (k) and the last predicted
SVMoutputDML (k-1) is calculated and added to the last duty
cycle DMPP(k-1). Thus, the new DMPP(k) is formulated and
accordingly will be situated close to the novel MPP.

1DML = DML (k)− DML (k − 1) (12)

DMPP (k) = DMPP (k − 1)+1DML (13)

After that, if 1DML= 0(this means the output of the SVM
regression block does not change: E and Tare constant), the
P&O algorithm with a small fixed step is started again and
continues until the MPP is followed.

Introducing the switching function λ ∈{0, 1} and combin-
ing Equations (11), (12), and (13) yields to:

DMPP (k) = DMPP (k − 1)+ (1 − λ)1DML ± λ1DP&O
(14)

where λ= 1 when E and T are constant, and λ= 0 when E
and/or T varies. The flowchart of proposed SVM regression-
P&O algorithm is depicted in Figure 5.

B. SVM REGRESSION BASED DUTY CYCLE PREDICTION
In order to select the appropriate kernel function, along with
Hyperparameter optimization method to get the best duty

FIGURE 2. Duty cycle, T, E.

FIGURE 3. SVM regression-P&O MPP tracking method.

cycle prediction by SVM regression model, four kernel func-
tions are tested: Linear R, Gaussian G, Quadratic Q and Cubic
C basis function kernel.

The SVM regression model is trained for each kernel
function with three Hyperparameter optimization methods:
Bayesian optimization B, Grid search G, Random search R.
Therefore twelvemodels have been evaluated and the training
results are grouped and presented by the predicted response
versus record number and the predicted versus actual plot in
Figure 6 and Figure 7 respectively.

In addition, the performance of each model are
evaluated according to the statistical criteria cited in
Section II/Subsection B.

A comprehensive performance comparison is presented in
Table 1. Referring to these training and evaluating results,
it is clear that Gaussian kernel function with Random search
Hyperparameter optimization method (G-R) gives the best
duty cycle prediction. Consequently, G-R is selected and will
be used throughout the rest of this work for SVM regression-
P&O MPPT algorithm.
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FIGURE 4. The improved SVM regression-P&O algorithm based MPPT MATLAB-Simulink model.

IV. THE DESIGN OF SVM REGRESSION-ADALINE
NEURAL PQ STRATEGY
A. METHODOLOGY
The SVM regression-Adaline NPQ strategy, is a novel
method of controlling the PVSAPF system. It combines Sup-
port Vector Regression based prediction approach with adap-
tive Adaline neural network technique, in order to improve
the DC active power component extraction.

The SVM regression model is set to T = {(a1,
b1), . . . . . . , (aM, bM)} where aj is the input sample com-
prising one feature: the ignition angle of the Nonlinear
load NLL (α(j); j = 1. . .M), and bj is output sample of
SVM regression block predictingweight of Adaline (WML(j),
j = 1. . .M). Nine SVM regression blocks are used to predict
nine weights of Adaline neural network: WTML = [WML0,
WML1, WML2, WML3, WML4, WML5, WML6, WML7,
WML8]. Figure 8 depicts the training data set collected from
the simulation history of the PVSAPF system, under varying
nonlinear load parameters.

Referring to Figure 9 which illustrates the proposed SVM
regression-Adaline NPQ strategy for PVSAPF command,
this improved hybrib algorithm can be described as follows:

After converting source voltage Vsa,b,c and nonlinear load
current iNLL−a,b,c into αβ parameters basing on Clarke’s
transform, active power p and reactive power q is calculated
as follows:

[
p
q

]
=

[
vα

−vβ

vβ
vα

] [
iα
iβ

]
(15)

The instantaneous active power is also written as follows:

p = pbar + p̃ (16)

where, pbar is the DC active power component, whereas p is
the fluctuating part of active power component.

In the traditional instantaneous PQ strategy, the fluctuating
part of active power components extraction is ensured by the
use of the Low Pass Filter (LPF). However, this extraction
technique shows poor performance and a weak adaptation
under a fast variation in the nonlinear load parameters [48].
Within this context, a novel hybrid harmonics extraction
technique is proposed, exploiting the characteristics of intel-
ligent learning and fast training of Adaline neural network
combined with machine learning algorithms.

Consider a sinusoidal source voltage expressed by

Vs (t)=Vm.sin (wt+ϕv) (17)

and the distorted nonlinear load current can be written as

iNLL (t) =

∞∑
h=1

Ihsin(hwt + ϕc) (18)

where w is the fundamental frequency, ϕc is the phase angle
of current, and Ih is the amplitude of the hth harmonic com-
ponents. Thus, equations (17) and (18) yield to the following

p = pfund +

[
cos (h− 1)wt
sin (h− 1)wt

]T [
pn−1 cos (ϕc − ϕv)

pn−1 sin (ϕc − ϕv)

]
−

[
cos (h+ 1)wt
sin (h+ 1)wt

]T [
pn+1cos(ϕc + ϕv)
pn+1sin(ϕc + ϕv)

]
(19)
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FIGURE 5. The flowchart of proposed SVM regression-P&O algorithm.

Therefore the estimated active power using ADALINE pro-
cess in the matrix representation can be expressed as:

pestimated (t)=W T .X (t) (20)

with the following input vector of Adaline X(t) and the weight
vector of Adaline,W T ( h = 1, 5, 7, 11 . . . ..N )

X (t) = [1 cos(4wt) sin (4wt) . . . cos ((h− 1)wt)

sin ((h− 1)wt) cos ((h+ 1)wt) sin ((h+ 1)wt)]

(21)

W T
=

[
pfund . . .pn−1pn+1

]
(22)

FIGURE 6. Response plot of duty cycle prediction.

FIGURE 7. Prediction vs actual plot duty cycle prediction.

In the classical Adaline-based harmonic extraction
depicted in Figure 9.a, the neural weights vector is
adapted using LMS algorithm with fixed learning rate
parameter µ [49],

W (k + 1)= W (k)+µ.e (k) .X (k) (23)

where e(k) is the estimation error at k time which represents
the difference between the identified active power p and
estimated active power pestimated .

e (k)= p (k)−pestimated (k) (24)

After several iterations, the estimation error reaches zero
and the estimated active power pestimated (k) becomes close to
the identified active power p (k).

However, this Adaline-based harmonics extraction tech-
nique also does not lack limitations due to the fixed learning
rate parameter [50]. Several studies in the literature propose
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TABLE 1. The SVM regression after training duty cycle dataset: statistics of the corresponding characteristics.

FIGURE 8. Weighs waveform under varying ignition angle of
NLL (Dataset).

an adaptive learning rate parameter [51], while others propose
various techniques for learning rate optimization [52].

In this work, a newweights updating technique is proposed
and detailed in Figure 9.b. The idea is to use the SVM
regression algorithm for predicting the initials weights (blue
line) to get the estimated active power pestimated close to
the identified active power p, thus, reducing speedily the
estimation error. The process is then switched to the LMS
algorithm (red line) using a small learning rate parameter for
accurate convergence.

The flowchart of the proposed hybrid harmonics extraction
approach is depicted in Figure 10, detailing the different
steps of the updating weights and the training algorithm. The
proposed weights updating expression is as follow:

W (k + 1)= (1 −9) .WML

+9 (W (k)+µ.e (k) .X (k))
1α = 0 → 9 = 1
1α ̸= 0 → 9 = 0

(25)

where ψ is switching function ψ ∈{0, 1}, 1α is the differ-
ence between the current ignition angle of the nonlinear load

NLL α (k) and the last one α(k-1), and WML the predicted
weights vector of Adaline expressed as follows:

W T
ML−initiation =

[
pbar−init . . . pN−1,initpN+1,init

]
(26)

Finally, after extracting the DC active power component
the reference currents are determined as follows:[

iNL−α

iNL−β

]
=

1

V 2
grid−α + V 2

grid−β

[
Vgrid−α −Vgrid−β

Vgrid−β Vgrid−α

]
×

[
−pref
−qref

]
(27)

 iref−Fa
iref−Fb
iref−Fc

 =

√
2
3


1 0

−
1
2

√
3
2

−
1
2

−

√
3
2


[
iNL−α

iNL−β

]
(28)

B. SVM REGRESSION-BASED WEIGHTS
VECTOR PREDICTION
In order to select the best kernel function andHyperparameter
optimization method of the nine SVM regression blocks,
the SVM regression model of each weight is trained, and
then evaluated. The training results for the first weightWML0
are grouped and presented by: the predicted response versus
record number and the predicted versus actual plot as shown
in Figure 11 and Figure 12 respectively.

Therefore, based on the comprehensive performance com-
parison of WML0 summarized in Table 2, the Cubic ker-
nel function with Grid search Hyperparameter optimization
method (C-G) is selected and used in SVM regression algo-
rithm for bestWML0 prediction.
The same method of selection is applied to the remaining

predicted weights models. Figure 13 and Figure 14 display
MSE and MAE under various Kernel function-Optimizer for
the nine weights models of prediction, respectively.

Finally, the overall results of the best kenel function and
Hyperparameter optimization method for each SVM regres-
sion block is presented in Table 3.
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FIGURE 9. The proposed SVM regression-Adaline neural PQ strategy for PVSAPF command. (a): The classical weights updating technique
(b): The proposed new weights updating technique.

V. ANALYSES AND VALIDATION
In this section, in order to assess the advantages of the sug-
gested Machine Learning based approaches for maximum
power point tracking and harmonics detection, a comprehen-
sive simulation of the whole PVSAPF system, exhibited in
Figure 1, has been performed in MATLAB/Simulink envi-
ronment. Hence, a comparative study is given for each novel
strategy with other existing ones, under a sudden change of
NLL parameters and/or climate conditions.

The whole characteristics and the stability proof of the pro-
posed machine learning based methods are given in Table 4
and the Appendix, respectively.

A. SVM REGRESSION-P&O APPROACH
PERFORMANCE ASSESSMENT
1) SVM REGRESSION-P&O APPROACH BASED DUTY
CYCLE CONVERGENCE
Duty cycle D and 1D duty cycle variation of the proposed
SVM regression-P&O based MPPT strategy under different
simulation cases is displayed in Figure 15.

First the duty cycle is initialized by the predicted output
of SVM regression block (D0 = D0−ML= 0.56) then the
algorithm switches to P&O algorithm (a) using a small fixed
step 1DP&O = 0.0001.

At t = 0.5s, the temperature changes from 15◦ to 33◦,
therefore the algorithm switches back to the SVM regression
model in order to generate a new predicted output.
1DML which represents the difference between the cur-

rent predicted SVM output and the last one is equal to
0.04 (orange line at 0.5s) and is added to the last duty
cycle D (k-1) to formulate the new one D (k) = D (k-1) +

1DML = 0.562+0.038 = 0.6. The algorithm switches again
to P&O algorithm with 1 DP&O = 0.0001 to track accu-
rately this novel MPP corresponding to (33◦ and 810W/m2):
D (k+1) = D (k) ±1DP&O.

This hybrid algorithm is reproduced again when the irra-
diance varies (from 810W/m2 to 450W/m2; at t = 0.1s):
1DML= -0.18 is added to the last duty cycle of the last MPP
(b) to obtain D(k) = D(k-1) + 1DML = 0.62-0.18 = 0.42
which will be closed to the novel MPP.
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TABLE 2. The SVM regression after training duty cycle dataset: statistics of the corresponding characteristics.

TABLE 3. The SVM regression after training all the weight of adaline DATASET: results of the best kenel function and Hyperparameter statistics of the
corresponding characteristics.

TABLE 4. Proposed ML-based algorithm characteristics.

P&O algorithm with a small fixed step is then
started again and continues until the corresponding duty
cycle of MPP is followed: D(k+1) = D(k) ± 1DP&
O = 0.426.

As a result, it can be concluded that:
- The use of SVM regression block, which predicts an
initial duty cycle, allows P&O algorithm to work with
a small fixed step.
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FIGURE 10. The flowchart of the proposed hybrid harmonics extraction
approach.

FIGURE 11. Response plot SVR_W1.

FIGURE 12. Prediction vs actual Plot SVR_W1.

- The use of P&O algorithm, which finalizes the pursuit
of the MPP, allows to the SVM block to work with a
medium dataset (a very precise prediction of duty cycle
is not required), i.e., with moderate computational load.

In the next simulation cases, the proposed SVM regression-
P&OMPPT controller is compared to the Fuzzy logic MPPT
controller (developed in previous study [58]), and to the
classical P&O strategy in terms of:

- PV energy losses.
- Performance tracking and adaptation ability to tempera-
ture and/or irradiance variations.

2) SVM REGRESSION-P&O APPROACH UNDER G
AND/OR T CHANGING
Duty cycle variation and the corresponding maximum
PV power Pmp, under variable temperature and variable
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FIGURE 13. Prediction MSE under various Kernel function-Optimizer for
different weights of Adaline.

FIGURE 14. Prediction MAE under various Kernel function-Optimizer for
different weights of Adaline.

irradiance are depicted in Figure 16. As it can be noticed,
the proposed machine learning-based MPPT strategy has a
very fast response time compared the other used algorithms.
Indeed, as shown in Figure 17, the Duty cycle converges in
an average of 1ms by SVR regression P&O strategy against
100ms and 50ms by the classical P&O algorithm and the
fuzzy MPPT controller, respectively.

In addition, this fast convergence of duty cycle leads to a
speed maximum power point MPP tracking, which implies
a systematic reduction in PV energy losses. As expected,
Figure 18 and Figure 19 indicate 99% of PV energy decrease
by the proposed by SVR regression P&O strategy compared
to the classical P&O MPPT strategy showing a successful
exploitation of PV panel power.

In order to rate the dynamic response of SVM regression
P&O strategy behavior compared to the above mentioned
MPPT strategies, the system is subjected simultaneously to
both a sudden variable temperature changes (45, 15, 5 and
35 degrees (Figure 20.a)) along with an abrupt insolation
parameters (800,600,150 and 500 W/m2(Figure 20.b)).
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The maximum solar current Imp, the maximum solar volt-
age Vmp, and the PV active power Pmp variation is depicted
in Figure 20.c, Figure 20.d, and Figure 20.e, respectively.
The zoomed waveforms indicate that the novel SVR
regression P&O strategy shows a strong adaptation with
respect to the change of the operating point of the solar
panel.

The dynamic performance of the proposed SVM regres-
sion P&O, the intelligent Fuzzy Logic and the classical
P&O controllers are summarized in Table 5. The analysis of
results shows that the percentage of decrease in overshoot and
response time; by using the proposed method; reaches up to
94.84% and 60%, respectively.

Furthermore, a literature survey is presented in Table 6,
which reviews recent publications on various MPPT strate-
gies using machine learning. It involves various criteria along
with a brief comparative assessment relating to the unique-
ness of the proposed SVM-regression P&O strategy.

B. SVM REGRESSION-ADALINE NEURAL PQ STRATEGY
APPROACH PERFORMANCE ANALYSES
In this second part, various simulation scenarios were
addressed in order to evaluate the performance and the
superiority of this second proposed technique, i.e SVM
regression-Adaline NPQ strategy, for harmonics extraction
speed convergence, accuracy and adaptation ability to sud-
den nonlinear load variation. Within this context, the PQ
technique of control, using Machine Learning block com-
bined with ADALINE network is compared to that based
on ADALINE network, and then to that using the low pass
filter LPF.

Figure 21 displays the results of updating the nine weights
waveforms (W1 to W9) under a variable nonlinear load
parameter (30◦, 80◦, 60◦ and 5◦) using both Machine
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FIGURE 15. The Duty cycle D and 1D duty cycle variation of the proposed SVM regression-P&O based MPPT
strategy.

FIGURE 16. Duty cycle variation and the corresponding maximum PV power Pmp, under variable
temperature and variable irradiance.

Learning based Adaline Neural-PQ strategy (marked ‘ML-
ANN’) and the conventional Adaline Neural-PQ technique
(marked ‘ANN’).

As expected, the proposed novel strategy gives an excellent
waveforms quality in terms of speed convergence, overshoot
and accuracy. In fact:
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FIGURE 17. Duty cycle speed convergence under variable irradiance and
temperature.

FIGURE 18. PV energy losses under different MPPT strategy.

- The nine SVM regression blocks output generate the
predicted initials weights (W1ML,. . . , W9ML) to get an
initial DC active power component close to the identified
one.

- As depicted in Figure 22, the weights waveform does
not present any overshoot, whereas in the weights curve
obtained by the classical neural method the overshoot
peaks reach up to 386.451%.

- The estimation error is then reduced speedily as it can
be noticed in Figure 23 and Figure 24 (the initial error
obtained by the proposed strategy is lower up to 88%
than that obtained by the classical Adaline Neural-PQ
technique).

- After predicting initials weights by SVM regression
blocks, the process is then switched to LMS based
Neural algorithm with a small well as less oscillation
than the classical Adaline based extraction strategy.

Figure 25 and Figure 26 present a comparative study of the
DC active power component extraction under a fixed (30◦)
and variable nonlinear load parameter (30◦, 80◦, 60◦ and 5◦),
respectively, using the proposed hybrid strategy with a small
learning rate parameter µ = 15e-4 (marked ‘ML’), and the
classical Adaline neural based technique; (marked ‘ANN’);
using first the same learning rate parameter µ = 15e-4 and
then a large one µ = 15e-3.
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As it can be noticed, in the classical Adaline based Neu-
ral strategy, the tracking speed of the DC active power
component extraction is improved by using a large learning
rate value (µ = 15e-3) but with the penalty of provid-
ing fluctuations in the steady state. However, the use of a
small learning rate parameter (µ = 15e-4) improves stabil-
ity but slows up the response time of the DC active power
component extraction. Therefore, as it can be seen in the
zoomed waveforms in Figure 25 and Figure 26, the proposed
SVM regression-Adaline based harmonic extraction tech-
nique demonstrates its supremacy compared to the classical
Adaline based Neural strategy and to the conventional one
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using LPF. Indeed, it gives a significant fast convergence
(thanks to the output prediction of SVR regression block),
and accurate steady state response (thanks to the used small
learning rate parameter).

C. PV-SAPF SYSTEM PERFORMANCES USING
ML_SVR-MPPT WITH ML_SVR ADALINE EXTRACTION
1) GRID POWER TRANSIT AND DC VOLTAGE REGULATION
The third part focuses on the grid power transit and DC
voltage regulation of the PVSAPF system. The whole stud-
ied system is simulated under varying nonlinear Load NLL

parameters (from 0s to 0.6s), then under solar variation (from
0.6s to 1s).

The Grid power PG waveform under different har-
monics detection strategies is depicted in Figure 27: the
proposed SVM regression-Adaline neural PQmethod of con-
trol (marked ‘ML-adaline’), the intelligent adaptive Adaline
neural PQ strategy (marked ‘Adaline’) and the classical PQ
strategy using LPF (marked ‘LPF’). P&O algorithm is used
for MPPT controller in all the simulation cases of Figure 28.
Table 4 gives the summary of dynamic performance of the
controlled PVSAPF system.
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FIGURE 19. PV Energy losses distribution by the classical P&O algorithm and the proposed SVR regression-P&O strategy.

FIGURE 20. Dynamic response of SVM regression P&O strategy behavior under G and T changing.

It can be observed that during NLL variation (from 0s to
0.6s), the response is faster in the case of the new SVM
regression-Adaline neural PQ strategy and it also shows

less overshoot than the other compensation methods. How-
ever, during irradiance variation (from 0.6s to 1s), simi-
lar dynamic performances have been exhibited for all the
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FIGURE 21. The nine updating weights waveforms (W1 to W9) under abrupt variation of the nonlinear load parameter (30◦, 80◦,
60◦and 5◦).
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FIGURE 22. Overshoot of the nine weights of Adaline under NNL
variation.

FIGURE 23. The estimation error waveform under a fixed nonlinear load
parameter (α =30◦).

FIGURE 24. The estimation error waveform under variation of the
nonlinear load parameter (30◦, 80◦, 60◦ and 5◦).

compensating strategies of PV SAPF system. It is understood
that:

- the compensation methods act on the dynamic perfor-
mance of the PV SAPF during the variation of the NLL
load.

- the proposed SVM regression-Adaline neural PQ strat-
egy is found to be the most appropriate during the
sudden variation of the operating point of the nonlinear
load.

FIGURE 25. The DC active power component extraction waveform under
a fixed NLL (30◦).

The variation of the Grid power PG under different MPPT
strategies is depicted in Figure 28. The SVM regression-
Adaline neural PQ is selected as compensating strategy of
the studied PVSAPF system, whereas, different simulation
cases have been performed under various MPPT controllers,
namely, the novel SVM regression-P&O strategy (marked
‘ML-P&O’), Fuzzy logic MPPT (marked ‘FLC’) and the
classical P&O algorithm (marked ‘P&O’). From the zoomed
curves and the data presented in Table 7, the novel SVM
regression-P&O during irradiance variation (from 0.6s to
0.8s) presents the better dynamic performance in terms of
overshoot and response time than the other MPPT strate-
gies, while during NLL variation (from 0s to 0.6s) similar
dynamic performances have been showed for all simulations
cases of PV SAPF system. It can be concluded that MPPT
methods act on the dynamic performance of the PV SAPF
during the variation of PV- insolation, and the proposed SVM
regression-P&O strategy is the most appropriate during a
sudden variation of the operating point of the PV panel.

In the last scenario, the PVSAPF system dynamic perfor-
mances are evaluated in Figure 29 and Figure 30 using the
proposed method of control, i.e, the new SVM regression-
P&O strategy for MPPT combined with the new SVM
regression-Adaline neural PQ method of control. It can be
noticed that the DC link voltage waveform maintains per-
fectly its reference under a sudden variation on PVSAPF
system parameters.

In addition, the results summarized in Table 7 and pre-
sented in Figure 31 and Figure 32 clearly demonstrate that
this proposed machine learning based-combination presents
lower overshoot and fast response time than the classical one
whatever the change of NLL parameters and irradiance levels.

2) PV INTEGRATED WITH SHUNT ACTIVE POWER FILTER
PERFORMANCE ANALYSES
In order to investigate all operating modes of the ML-based
integrated PV shunt active power filter, various simulation
scenarios are examined at different functioning points of the
system, as shown in Figure 33.a.
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FIGURE 26. The DC active power component extraction waveform under variation of the nonlinear load
parameter (30◦, 80◦, 60◦and 5◦).

TABLE 7. PVSAPF performance tracking with The proposed ML-SVR-P&O for MPPT combined with the proposed ML-Adaline strategy for harmonics
extraction.

TABLE 8. THD performance under solar and load variations.

The active power transit shown in Figure 33.b exactly
matches the power transit analysis discussed previously in
Part II.A. Indeed:

- From 0s to 0.3s, as Ppv= 0W (E= 0W/m2), the AC grid
delivers the entire requested power to the nonlinear load
(Ppv = 0W; PG = PL).

- From 0.3 s to 0.6 s, the irradiation level increases
from 0 to 200W/m2. The solar panel therefore produces
an active power of 4KW but that is insufficient to meet

the needs of the non-linear load which requires 9KW
(Ppv < PL). Thus, the AC grid provides the required
5KW of power (PG >0), and the non-linear load is fed
in this case by both sources: the solar panel and the AC
grid (PL = Ppv+ PG).

- From 0.6 s to 0.9 s: On the one hand, the ignition angle of
the nonlinear load abruptly changes from 0◦ to 90◦ and
the required power decreases to PL =359W.On the other
hand, the irradiation level raises from 200 to 600 W/m2.
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FIGURE 27. Grid power waveform under varying NLL and irradiance
profile using P&O with different harmonics extraction strategies.

FIGURE 28. Grid power waveform under varying NLL and irradiance
profile using Adaline extraction strategy with different MPPT methods.

FIGURE 29. Grid power waveform under varying NLL and irradiance
profile.

Consequently, the active photovoltaic power production
increases up to 12KW and then becomes higher than non-
linear load’s request (Ppv > PL). The PVSAPF therefore
supplies the active power to the non-linear load and injects the
surplus into the AC grid (PG =-11641W<0; Ppv= PL+PG).
As shown in Figures 33.c, Figure 33.d and Figure 33.e,

in addition to active power generation, the proposed
ML-based system successfully guarantees a sinusoidal
waveform of the grid current as well as reactive power

FIGURE 30. The DC voltage waveform under varying NLL and irradiance
profile.

FIGURE 31. Grid power overshoot under NLL or irradiance variation.

FIGURE 32. DC voltage overshoot under NLL or irradiance variation.

compensation, demonstrating its potential as a multi-
functional device for compensating harmonics and achieving
unity power factor despite the existence of the nonlinear load
(QG = 0VAR; QL = QPVSAPF).
Furthermore, It can be mentioned from Figure 33.e, that

the grid current waveform is in phase opposition with the grid
voltage when Ppv> PG and the sign of the active grid power
is negative (PG < 0). When the Ppv is lower than PL, the grid
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FIGURE 33. PVSAPF performances under three scenarios.
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FIGURE 34. PV-SAPF THD performance (E = 0W/m2; σ = 0degrees): a-Classical strategy.
b-Proposed ML-based strategy.

FIGURE 35. PV-SAPF THD performance (E = 200W/m2; σ = 20degrees): a-Classical strategy.
b-Proposed ML-based strategy.

FIGURE 36. PV-SAPF THD performance (E = 600W/m2; σ = 90degrees): a-Classical strategy.
b-Proposed ML-based strategy.

current waveform is in phase with the supply voltage and the
sign of the grid active power is positive (PG > 0).
The harmonic spectra of the grid current for the three

selected operating points, achieved with the traditional PQ
approach andwith the proposedML-basedAdaline neural PQ
design are presented in Figure 34, Figure 35 end Figure 36.
TABLE 8 recapitulates the THD values from the discrete

Fourier transform (DFT). It can be clearly observed from
Figure.37 that the proposed ML-based approach outperforms
the remaining ones in all three scenarios. The total harmonic
distortion depicted in Figure.38 is performedwithin the limits
prescribed by IEEE-519 using the proposed ML-based PVS-
APF system, under load variation, contrary to that obtained
by the conventional one.
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FIGURE 37. THD comparison in all three scenarios.

FIGURE 38. THD under variable nonlinear load (1000w/m2).

VI. CONCLUSION
This work affords a significant improvement in maximum
power tracking and harmonics detection for PVSAPF sys-
tem command. In fact, two novel ML based algorithms,
named ‘SVM regression P&O-MPPT’ and ‘SVM regression-
Adaline NPQ strategy’ have been designed. The initialized
duty cycle and weights of ADALINE, as predicted outputs of
SVM regression blocks, allow fast response on MPP tracking
and DC active power component identification, respectively.
Further, the ability of the proposed algorithms to work with
a small fixed step for MPPT and with a small learning
rate parameter in the compensating strategy guarantees an
accurate steady-state response. The supremacy of both new
techniques is proved by comparison with other conventional
and intelligent existing ones. The results confirmed that:

- the SVM regression P&O-MPPT algorithm reaches better
solar energy production than other existing algorithms (The
average PV energy losses decreased to 99%with the proposed
strategy against 72.6% with the FLC based one, compared to
the average PV energy losses when the conventional P&O-
MPPT algorithm is used). This allows this machine learning
based MPPT algorithm to become an attractive and powerful
technique for solar energy harvesting, especially when adopt-
ing distributed MPPT configurations.

- the new weights updating technique guarantees an
accurate

TABLE 9. System parameters in simulation.

DC active power component extraction together with
minor oscillations and speed convergence (reduction of the
initial error of extraction up to 88%).

- The combination of both new algorithms constitutes
an interesting PVSAPF control strategy in terms of power
quality enhancement, reactive power compensation and THD
decrease whatever the variation of NLL parameters and irra-
diance levels.

APPENDIX A
SVM REGRESSION-P&O APPROACH: STABILITY PROOF
The Lyapunov function is a positive scalar function for the
system state variables. According to the Lyapunov function,
the variable structure mode control requests that

V =
1
2
S
2
> 0; V̇ = S

dS
dt

= SṠ < 0 (A1)

whereas,

S =
∂P
∂V p

= NpIph − NpIrs
(
exp

(
AVp

)
− 1

)
−NpIrsAexp(AVp)Vp (A2)

where A =
q

nβTC
1

nsNs
.

It is easy to find, from the equation (A2), the following
equation (A3)

Ṡ = −NpIrsA
[
exp

(
AVp

)
+

(
1 + AVp

)
exp

(
AVp

)]
V̇p (A3)

First duty cycle is initialized by the predicted output of the
SVM regression block.

D0−MPP = D0−ML (A4)

At the next itteration,
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if S >0; based on the new algorithm which switches to
P&O:

DMPP (k) = D0ML −1DP&O (A5)

Ḋ < 0 => V̇ p > 0 (the duty cycle is always opposite to
the rate in the voltage)

Ṡ = −AV̇p < 0,=> SṠ < 0 (A6)

if S < 0; based on the new algorithm which switches to
P&O:

DMPP (k) = DMPP (k − 1)+1DP&O = D0ML +1DP&O
Ḋ > 0 => V̇ p < 0 (A7)

Ṡ = −AV̇p > 0,=> SṠ < 0 (A8)

At the next itteration,
if S > 0; the algorithm is still at P&O the reach accurately

MPP:

DMPP (k) = DMPP (k − 1)−1DP&O
Ḋ < 0 => V̇ p > 0 (A9)

Ṡ = −AV̇p < 0, => SṠ < 0 (A10)

if S < 0; the algorithm is still at P&O the reach accurately
MPP:

DMPP (k) = DMPP (k − 1)+1DP&O
Ḋ > 0 => V̇ p < 0 (A11)

Ṡ = −AV̇p > 0, => SṠ < 0 (A12)

It can be concluded that the systemmay reach global stability,
If the E and/or T parameters change, the duty cycle is again
reset by the SVM regression block by DMPP (k) = DMPP
(k-1)+1DML and the similar stability reasoning is repeated.

APPENDIX B
SVM REGRESSION-ADALINE NEURAL PQ APPROACH:
STABILITY PROOF
The update laws of weights used in our study is as follows
W (k + 1) = (1 −9) .WML +9 (W (k)+ µ.e (k) .X (k))
1α = 0 →9 = 1
1α ̸= 0 → 9 = 0

(B1)

Choose the Lyapunov function as follows: Let the positive
definite discrete Lyapunov function is given by:

L (k) =
1
2
e(k)2 (B2)

Now, L (k) is nonzero and positive as long as e (k) is nonzero.
For the discrete-time system, stability is guaranteed if

1L (k) = L (k + 1)− L(k) < 0 (B3)

Eq. B3 can be written as follows

1L (k) =
1
2
1e (k)2 =

1
2

(
e (k + 1)2 − e (k)2

)
=

1
2
(e (k + 1)+ e (k)) (e (k + 1)− e (k)) (B4)

Using Taylor series expansion, Eq. B5 is obtained:

e (k + 1) = e (k)+
∂e (k)
∂w (k)

1w (k) (B5)

Substituting (B5) into (B4), the derivative of the Lyapunov
function is obtained as follows:

1L (k) =
1
2
(
∂e (k)
∂w (k)

1w(k) + 2e(k))
∂e (k)
∂w (k)

1w(k) (B6)

1L (k) =
1
2
(1e (k)+ 2e(k))1e (k) (B7)

where

1e (k) = e (k + 1)− e (k) =
∂e (k)
∂w (k)

1w(k) (B8)

Equation (B7) can be rewritten as follows:

1
2
1e (k)2 + e (k)1e (k)−1L (k) = 0 (B9)

Equation (B9) is the second-order equation of 1e (k). This
equation has a unique solution if the equation (B10) is
satisfied:

e(k)2+21L = 0 (B10)

Equation (B10) leads to the following result:

1L = −
1
2
e(k)2 < 0 (B11)

Inequation (B11) implies that the closed system is stable,
and the estimation errors converge to zero according to the
Lyapunov theorem.
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