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ABSTRACT In recent years, video content has become a significant contributor to Internet traffic, prompting
the development of efficient codecs, such as High Efficiency Video Coding (HEVC) and Versatile Video
Coding (VVC), to reduce bandwidth usage and storage requirements. However, these video coding standards
still exhibit quality degradation and artifacts in the decoded frames. To address this issue, researchers have
introduced several network architectures based on deep-learning algorithms; however, most of them focus
on in-loop filtering, which requires additional bits to transmit filter information from the encoder to the
decoder under a video-coding framework. In this paper, we propose a neural-network-based post-processing
method to enhance the decoded frames. In the experimental result, the proposed model achieves a significant
bitrate reduction, as measured by Bjøntegaard Delta of 4.54%, 4.13%, and 5.21% for random access (RA),
low-delay (LD), and all-intra (AI) configurations, respectively, while also improving peak signal-to-noise
ratio (PSNR).

INDEX TERMS VVC, post-processing, video compression, CNN.

I. INTRODUCTION
The use of video data has increased significantly in daily life,
leading to an increase in the tension between the available
transmission bandwidth and the vast amount of video
content being consumed. Recent advancements in hardware
technology have aimed to enhance the visual quality for users.
For instance, high dynamic range (HDR), high frame rate
(HFR), and ultrahigh definition (UHD) video formats with
4K and 8K resolutions have been introduced to provide a
more realistic viewing experience [1]. Consequently, video
codecs play a crucial role in reducing bitrates and producing
compressed videos to alleviate traffic loads on transmission
lines.

As video content continues to grow, efficient video codecs
are required to ensure the high-quality display of compressed
videos while delivering additional scene details found in new
video formats, despite limited distribution networks. To this

The associate editor coordinating the review of this manuscript and

approving it for publication was Yun Zhang .

end, the joint video exploration team (JVET) developed by
the ITU-T video coding expert group (VCEG) and themoving
picture expert group (MPEG), established a new video coding
standard called Versatile Video Coding (VVC) [2]. This
new codec introduces fundamental compression techniques
that demonstrate significant performance improvements over
their predecessors. Specifically, VVC shows a 50% and 75%
increase in compression efficiency for equal video quality
compared with High Efficiency Video Coding (HEVC) [3]
and Advanced Video Coding (AVC) [4], respectively.

Despite the improved performance of VVC compared with
prior standards through the development of more effective
tools and algorithms, reconstructed videos generated by VVC
still suffer from several artifacts such as blockiness, blurri-
ness, and ringing. The conventional block-based approach
to video coding standards is primarily responsible for these
artifacts. Additionally, the quantization of the transform
coefficients contributes to blurriness and ringing artifacts,
which worsen with increasing quantization parameter val-
ues. To address compression artifacts, recent studies have
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employed handcrafted filters such as the deblocking filter
(DBF), sample adaptive offset (SAO), and adaptive loop
filter (ALF). Although the handcrafted nature of these filters
shows improvement, there is still the potential to enhance the
reconstruction quality.

The use of deep learning approaches, specifically deep
convolutional neural networks (CNN), has significantly
advanced the field of video compression and led to the
development of CNN-based artifact-removal networks. These
networks can be used as either in-loop filters (ILF) or
for postprocessing (PP). Recent studies proposed the use
of CNN-based in-loop filters [5], [6], [7], [8]. Whereas
in-loop filters require consideration of both the encoding
and decoding aspects, post-processing approaches are more
flexible because they are applied after the decoding step.
However, most CNN-based postprocessing architectures are
designed for specific coding configurations, such as random
access (RA), all-intra (AI), and low-delay (LD). Moreover,
the justification for the trade-off between network complexity
and performance remains inadequate.

In this paper, we present a novel CNN-based postprocess-
ing framework for reducing the bit rate while maintaining
the same reconstructed video quality. The proposed method
addresses the problem of coding artifacts that arise in differ-
ent quantization parameter (QP) scenarios by incorporating
a QP map as prior information with the encoded input
image, following the approach proposed in [8]. The main
contributions of this study are summarized as follows:

1) We developed a single CNN-based post-processing
network that can handle all RA, AI, and LD coding
scenarios, thereby improving flexibility and reducing
complexity.

2) We utilize minimal skip connections and a simple
network architecture to further reduce the network
complexity.

3) We optimized the QP map with the encoded input
image to achieve better generalization of multi-QP-
generated artifacts.

The remainder of this paper is organized as follows.
Section II provides an overview of recent contributions to
deep-learning-based postprocessing methods. The proposed
method is described in Section III. Section IV presents
the overall performance evaluation and analysis. Finally,
Section V concludes the study.

II. RELATED WORKS
In the domain of video compression artifact removal, two
approaches have been explored: ILFs that operate at both
the encoder and decoder and out-of-loop post-processing
algorithms designed at the decoder end. Several research
endeavors have been conducted to overcome the limitations
of traditional filters and achieve significant improvements
over conventional video coding standards. In this section,
several major studies on CNN-based filter architectures are
reviewed. Because the approach proposed in this study
primarily focuses on one of the aspects mentioned earlier

(post-processing), these studies are categorized such that they
reflect the overall research contribution flow in the direction
of the proposed design inspiration in this study.

A. CNN-BASED IN-LOOP FILTER APPROACH
The research on the development of CNN-based ILF can
be classified into three types. First, CNN models were
devised as substitutes for the traditional filters. Second,
CNN models are added after traditional filters. Finally,
the CNN models are integrated with traditional filters.
Park and Kim [9] proposed an in-loop filter CNN (IFCNN)
that could replace SAO in HEVC. Their experiment showed
BD rate reductions of 2.6% and 2.8% for the RA and LD
configurations, respectively. Dai et al. proposed a variable
filter size residual learning convolutional neural network
(VRCNN) [10] that can replace both DB and SAO in HEVC.
This variable filter size approach helps facilitate the variable
block size transformation in HEVC, and residual learning is
used to achieve faster convergence. The VRCNN has been
reported to achieve an average BD rate reduction of 4.6%.
Kang et al. proposed a multi-scale CNN (MMS-net) [11],
which consists of two subnetworks with different scales that
can replace DB and SAO in HEVC. This network is deeper
and utilizes skip connections in each subnetwork with coding
parameters to boost the restoration process. Wang et al. [8]
proposed an attention-based dual-scale CNN (ADCNN) to
replace conventional filters in a VVC. In this method, the
quantization parameter and partitioning information are used
as prior information and are adapted to different QPs. This
method showed a gain for both the AI and RA configurations.
A residual highway CNN was proposed in [12], in which the
CNN network was included after the conventional filters in
HEVC. This method consists of several residual units and
convolution layers with a progressive training scheme for
the QP bands. Wang et al. [13] suggested a neural network-
based in-loop filter (CNNLF) consisting of two modules for
image feature extraction and image quality improvement. The
proposed in-loop filter was incorporated after the traditional
filters in the VVC. Jia et al. [14] proposed a content-aware
CNN that incorporates SAO and ALF. The experiment
shows a 10.0% bitrate reduction in HEVC. Huang et al. [15]
suggested a variable CNN (VCNN) that embeds an attention
module into a residual block to extract informative features.
This network can be added between DB and SAO for VVC.

B. CNN-BASED POST-PROCESSING APPROACH
For out-of-loop filters, the post-processing method is
applied after the images are decoded. Several models have
been proposed to increase the quality of the decoded
images. Dong et al. [16] proposed an artifact removal CNN-
based approach (AR-CNN) for JPEG-compressed images.
In addition to a previously created super-resolution CNN
(SRCNN) [17], an AR-CNN was implemented. According
to previous reports, the ARCNN outperformed JPEG images
by more than 1dB. A twenty layer CNN architecture with
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residual learning was suggested by Li et al. [18]. To transfer
the side information associated with video content complex-
ity and quality indicators per frame, an up-to-one-byte flag
was embedded in the bitstream to select a separate trained
model in the post-processing module. Zhang et al. [19]
proposed a CNN-based post-processing architecture for
VVC compressed video sequences that utilized 16 identical
residual blocks and occupied three types of skip connections.
As an extension of [19], in [20], a generative adversarial net-
work (GAN)-based training strategy was applied to improve
the quality of VVC-compressed reconstructed images. Two
training methodologies were applied to obtain a significant
improvement in perceptual quality. The generator was first
trained using the mean absolute difference loss, and both
the generator and discriminator were jointly trained based
on perceptually inspired loss functions. Bonnineau et al. [1]
proposed a multitask learning-based method that influences
the similarity of super-resolution and quality enhancement
tasks by sharing parameters with a single shared network
and task-specific modules. As mentioned previously, the QP
map was concatenated with the encoded image to improve
the generalization of the model with different quantization
parameters.Wang et al. [21] proposed a CNN-based single
model employing QP and partition information to improve
multiquality reconstruction and quality enhancement, respec-
tively. A three-branch network was proposed to process
the three different components. Meng et al. [22] proposed a
quality enhancement network for VVC-compressed videos.
This network consists of a fusion subnet and an enhancement
subnet that exploit the temporal motion and spatial detail,
respectively. In [23], an image restoration network was
proposed in which multi-scale spatial priors were used
to extract multi-scale features. Four residual blocks were
applied to obtain the high-dimensional features.

C. PERSPECTIVE FROM PRIOR WORKS
In our research, our objective was to improve the quality
of the decoded frame while simultaneously reducing the
bitrate. While most previous studies have developed in-loop
filtering networks for the HEVC codec, we propose a network
that can be implemented on the decoder side after frame
reconstruction. This post-filtering approach provides several
advantages over in-loop filtering, including the following:

1) Reduced computational complexity: Compared to
the in-loop filter, the post-processing filter offers a
reduced computational burden as it is applied only
once during the decoding process. This significantly
improves the efficiency of real-time video applications
by lowering the computational requirements and mem-
ory usage.

2) Enhanced visual quality: By applying the post-
processing filter, the visual quality of the video
can be noticeably improved. It effectively reduces
noise, enhances edge sharpness, and improves contrast.
Additionally, it helps rectify any encoding errors,

FIGURE 1. Integrated deep learning based post-processing approach in
typical coding workflow. Yellow color indicates the focus of this research.

resulting in a more faithful representation of the
original scene.

3) Bitrate reduction: The post-processing filter con-
tributes to bitrate reduction by eliminating unnecessary
details and smoothing out noise in the video. This leads
to a more efficient utilization of bandwidth and storage
resources without compromising visual quality.

4) Implementation simplicity: Implementing the post-
processing filter is typically simpler compared to
the in-loop filter. With only a single pass required
during the decoding process, it reduces development
complexity and expedites the time-to-market for video
applications. This advantage allows for faster deploy-
ment and easier integration into existing video coding
frameworks.

It is worth noting that the majority of previous researchers
have focused on developing their networks for in-loop
filtering, which is integrated within the HEVC codec.
In contrast, our network is specifically designed to be
applied at the decoder side, enhancing the frame after the
reconstruction process. Furthermore, we employed the latest
VVC codec for all three coding configurations (i.e., RA, LD,
and AI).

III. PROPOSED METHOD
In this section, the proposed algorithm and architecture are
presented and explained. Figure 1 illustrates a CNN-based
post-processing approach integrated into a conventional
processing pipeline. In this post-processing pipeline, the
transmitted bitstream is decoded to produce reconstructed
frames, and a CNN filter is applied to enhance the video qual-
ity of the reconstructed frames. Based on the conventional
processing pipeline, the proposed algorithm investigates a
method for utilizing QP information and improving the
feature flow through a deep network. Specifically, the
proposed method comprises functions that use QP-based
prior coding information (i.e., QP map) and a network
architecture based on deep learning technology. Detailed
information is provided in this section.
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FIGURE 2. Overview of the proposed framework. (a) Dataset preparation
in YUV format, and (b) Conversion between YUV 4:2:0 format and YUV
4:4:4 format before network input.

A. FRAMEWORK
The initial stage of the proposed framework involves dataset
preparation, as shown in Figure 2(a). To construct the
training dataset, commonly used videos from [24] in the
MP4 format were used. To facilitate the integration of
the proposed method with raw-format videos, MP4 videos
were converted into YUV format using FFmpeg [25].
Following the conversion process, the original videos in
YUV format were subjected to VVenC [26] and VVdeC [27]
to produce reconstructed videos in YUV format. Both the
original and processed images were reconstructed using
FFmpeg. To process videos in a 4:2:0 format, the chroma
components (i.e., U and V channels) of both the original and
reconstructed frames were upscaled and fed into the proposed
postprocessing network. Figure 2(b) illustrates the procedure
for inputting data into the network.

B. QP MAP
Feeding the QP map to the networks is a crucial component
of the proposed method and contributes significantly to
the generation of high-quality outputs. QP determines the
quantization step, which in turn influences the quality of the
reconstructed video frames.

An increase in the quantization parameter leads to a
higher distortion because a coarser quantization step is
applied to transform the coefficients with a larger QP. This
results in the loss of most of the high-frequency information
and a wider distribution range for the compensation value
between the reconstructed and original pixels. To enhance the
network’s ability to compensate for this distribution range,
prior information in the form of a QP map is necessary to
produce reconstructed outputs that are as close as possible to
the input. To significantly filter inputs with varying qualities
and improve the model’s ability to generalize across multiple
quantization parameters, we integrated the QP map as prior
information into the network. When we concatenate QP-
map as prior information with the reconstructed frame with
varying quality, it helps introducing the distortion diversity
associated with each individual QP value to the network. The

network utilizes this prior knowledge to get an idea about the
distortion level associated with each QP value. Thus, QP-map
increases the network’s ability to generalize across multiple
QP values and helps to get the network output as close as
possible to the original frame. The QP map is fed into a
network of the same size as that of the reconstructed input
frame.

The QP map generates a normalized value computed as in
(1).

QPmap (u, v) =
QP (u, v)
QPmax

(1)

where, u = 1, . . .W and v = 1, . . .H denote the horizontal
and vertical pixel coordinates, respectively. For the VVC, the
QPmax value was 63, where QPmax specified the maximum
amount of compression that could be applied to each coding
unit in a frame.

C. NETWORK ARCHITECTURE
Recently, NN-based architectures have played an important
role in enhancing the quality of the reconstructed frames
from various video coding standards. Researchers have
experimented with various network architectures to further
improve frame quality. However, video frames are more
complex than still images in terms of motion and temporal
dependency, making it challenging to achieve the same
quality as that of the original frames after reconstruction.
To address this issue, complex network architectures have
been proposed. However, integrating these architectures
with conventional video codecs and implementing them in
real-world scenarios remains challenging. Based on earlier
studies, this study aims to develop a lightweight CNN model
that satisfies three key criteria: a) easy to implement and
lightweight, b) generalized across different QP values with
varying input information, and c) generalized for different
coding configurations, such as RA, LD, and AI.

The proposed network architecture for enhancing the
quality of the reconstructed frames is shown in Figure 3.
The input comprises a VVC-decoded frame and a QP
map. The proposed network comprises three main parts:
a) Forward block, b) Feature extraction block, and c) Tail
block. Furthermore, the proposed architecture leveraged the
benefits of residual connections. The first part of the proposed
network, that is the forward block, receives the concatenation
of these inputs.

The proposed network utilizes a QP map with identical
dimensions to the reconstructed frame, which is concatenated
with the frame and fed into a forward block. This allows the
QP map to play the role as a form of prior coding information
for the network, enabling it to produce higher-quality filters
despite variations in frame quality.

The proposed forward block of the network comprises
a projection and activation layer. The projection layer was
designed as a 1 × 1 convolution filter with 128 channels,
which reduced the dimensionality and number of feature
maps while retaining essential features. Each channel can
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FIGURE 3. Proposed CNN architecture for post-processing.

capture distinct characteristics from the input, thus enabling
the network to learn global features. The inclusion of
128 channels allowed the learning of multiple feature
representations. A parametric rectified linear unit (PReLU)
was used for the activation layer in this block. The feature
maps generated by the forward block are subsequently
forwarded to the feature-extraction block.

Multiple feature extraction blocks can be utilized in
the proposed network by considering the tradeoff between
model complexity and performance. To extract features more
effectively while minimizing the network parameters and
complexity, we employed 16 feature extraction blocks in our
experiments. These blocks followed the same structure as
the forward block, except for the filter size. A 3 × 3 kernel
was used in the feature extraction blocks to capture more
contextual information from the previous layers. Following
the convolution layer, the PReLU activation function was
applied. Because of the variation in nonlinearity across
different layers, with deeper layers being more nonlinear than
earlier layers, PReLUwas employed to facilitate convergence
in the deeper layers of the network.

In the final stage of the network, which is the tail block, the
architecture is similar to that of the forward block, except for
the activation function. The hyperbolic tangent (Tanh) was
used as the activation function to achieve a more accurate
mapping of the tail block output. Because the proposed
network learns in a residual form, a skip connection between
the input and output is included. This skip connection ensures
an uninterrupted gradient flow and smooth propagation of
information from earlier layers.

The mapping between the input (i.e., reconstructed frame
and QP map) and output (i.e., original frame) is expressed as
follows:

y = Hθ (F̂ ⊕ QPmap) ⊕ F̂ (2)

where y is the output or original frame, Hθ is the operation
of CNN architecture; F̂ is the input or decoded frame; ⊕

expresses the concatenation operation.

The network architecture presented in this study is unique
in that sense it incorporates a 1 × 1 convolution filter at the
outset, followed by a block of 3 × 3 convolution filters, and
ultimately another 1 × 1 convolution filter. The rationale for
this approach was based on careful consideration of several
factors.

1) Non-linearity: Incorporating a 1× 1 convolution filter
alongside the 3 × 3 convolution filter introduces non-
linearity into the model, enabling it to capture complex
features and intricate relationships within the input
data. This integration of different filter sizes enhances
the model capacity to learn and represent more intricate
patterns, resulting in improved performance.

2) Computation reduction: Leveraging the 1 × 1 con-
volution filter allows for a reduction in the number of
input channels while preserving the spatial dimensions
of the input tensor. By decreasing the dimensionality
of the input, the subsequent 3 × 3 convolution filter
becomes computationally more efficient, enabling
faster processing and reduced computational cost
without sacrificing valuable information.

3) Expanded receptive field: Compared to a single
1 × 1 convolution filter, the 3 × 3 convolution filter
has a larger receptive field, enabling it to capture
and integrate more extensive spatial information. This
broader scope facilitates the ability to capture global
features and long-range dependencies, enhancing its
performance in handling complex visual tasks that
require a comprehensive understanding of the input
data.

4) Enhanced accuracy: The combined utilization of the
1 × 1 and 3 × 3 convolution filters enables the model
to learn and incorporate both low-level and high-level
features. This multi-scale feature extraction enhances
the accuracy and effectiveness in various computer
vision tasks, particularly those related to visual quality
improvement. By leveraging the strengths of both
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TABLE 1. Details of the BVI-DVC dataset.

filters, our proposed architecture achieves improved
performance and superior accuracy compared to pre-
vious methods.

D. TRAINING CONFIGURATION
The BVI-DVC [24] dataset was used to train the model. This
dataset comprised 800 videos of varying resolutions ranging
from 270p to 2160p, providing a diverse set of training
data. The videos were compressed under the JVET neural
network-based video coding (NNVC) common test condition
(CTC) [28] using the RA, LD, and AI configurations.
The videos were in MP4 format and converted into YUV
format with chroma sampling 4:2:0 and a bit depth of 10,
as described in Subsection III-A. To simplify the process,
10 frames were extracted from each video, resulting in
a training dataset of 8,000 frames. The chroma channels
were up-sampled by a factor of two to match the spatial
resolution of the Luma channel, because the proposed
network cannot handle different input sizes. A random patch
of size 240 × 240 from each frame was selected as the
input, and horizontal and vertical flips were applied as
data augmentation techniques. Table 1 presents a detailed
description of the training dataset.

We trained five distinct models with the same network
architecture based on different QP values. TheQP values used
were 22, 27, 32, 37, and 42 in accordance with the JVET
NNVC CTC guidelines. These models were then used in the
subsequent evaluation stage for different base QP values, and
the same model-generation strategy was used for the RA,
LD, and AI configurations. Each CNN model was trained for
200 epochs using the Adam optimizer with a learning rate of
10−4, and hyper-parameters of β1 = 0.9 and β2 = 0.999
were utilized for calculating averages of the gradient during
the learning process.

CNN Models =



ModelQp=22, QPbase < 24.5
ModelQp=27, 24.5 ≤ QPbase < 29.5
ModelQp=32, 29.5 ≤ QPbase < 34.5
ModelQp=37, 34.5 ≤ QPbase < 39.5
ModelQp=42, QPbase ≥ 39.5

(3)

The L2 loss function is used as the loss function, which is
given in (4).

L2orMSE =

∑n

i=1

(
yi − F̂i

)2
(4)

where yi and F̂i respectively represent the original and
enhanced pixel values after applying the CNN filter.

TABLE 2. BD-rate for random access configuration.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. EVALUATION PROCESS
To evaluate the effectiveness of the proposed method, the
JVET NNVC CTC sequences were selected for evaluation
andwere not included in the training dataset. These sequences
were excluded from the training dataset and comprised
18 sequences categorized into classes A1, A2, B, C, and E.
The RA, LD, and AI configurations were evaluated using
Class A1, A2, B, and C; Class B, C, and E; and Class A1, A2,
B, C, and E, respectively, as prescribed in the JVET NNVC
CTC. The test QP values for all the configurations were 22,
27, 32, 37, and 42.

B. EVALUATION METRIC
The proposed method was assessed by comparing the quality
of the output generated by the proposed network with that
of the decoded frames produced by the VVenC software
using the peak signal-to-noise ratio (PSNR) as the evaluation
metric. The equation for the PSNR is presented in (5).

PSNR_Y = 10 ∗ log10

(
(255 ≪ (bitDepth− 8))2

MSE

)
(5)

where bitDepth describes the number of bits used to represent
each pixel in an image as well as the color information that is
stored there. MSE stands for mean squared error that assesses
the average squared difference between the observed and
predicted values. The≪ represents a left-shift operator which
is used to calculate the maximum value at the given bitDepth.

C. EXPERIMENTAL SETUP
The test was conducted using PyTorch [29] as the deep-
learning framework on an Ubuntu operating system. The
hardware configuration comprised twoAMDEPYC 7513 32-
Core CPUs, 384 GB of RAM, and an NVIDIA A6000 GPU.
The training process for each QP value with 200 epochs
required approximately 28 h.
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TABLE 3. BD-rate for low delay configuration.

TABLE 4. BD-rate for all intra configuration.

D. COMPRESSION PERFORMANCE ANALYSIS
Tables 2, 3, and 4 summarize the compression performance
of the proposed architecture for the RA, LD, and AI
configurations. The Bjontegaard Delta bit rate (BD-BR) [30]
metric is employed by JVET to assess the reduction in bit
rate. This metric proves valuable for comparing the coding
efficiency of various video codecs or encoding settings since
it considers both the bitrate and video quality. By quantifying
the disparity in bitrate required to achieve an equivalent
quality level between two different codecs, the BD-BRmetric
enables an objective evaluation of compression efficiency.
A lower BD-BR value indicates a superior coding efficiency.
The results in the tables indicate that the proposed method
consistently achieved significant coding gains for all test
sequences. Specifically, Table 2 shows that the proposed
method achieves overall coding gains of 4.54%, 13.00%,
and 14.86% for the Luma (i.e., Y component) and Chroma
(i.e., U and V components), respectively, compared with the

TABLE 5. Comparison with state-of-the-art method for RA configuration.

VVC compressed contents. Notably, Class B and Class C
sequences showed significant BD rate savings, particularly
at lower resolutions. For example, the BQTerrace sequence
with a resolution of 1920 × 1080 and the BQMall sequence
with a resolution of 832 × 480 exhibited BD-rate savings of
7.05% and 6.47%, respectively, for Luma.

Table 3 lists the coding performances of the proposed
architecture for the LD configuration. The results showed
overall BD-rate reductions of 4.13%, 19.94%, and 20.13%
for the Luma and Chroma components, respectively. The LD
configuration performs well in Class C sequences with lower
resolutions, while also showing improved results in high-
resolution sequences. Specifically, the BQMall sequence
in Class C exhibited a coding gain of 6.30% for Luma,
demonstrating the adaptability of the proposed network to
lower-resolution sequences.

Table 4 lists the coding performances of the proposed
architecture for the AI configuration. The results showed
improved coding gains of 5.21%, 6.50%, and 9.58% for Luma
and Chroma components, respectively, compared to the VVC
compressed content. This significant performance improve-
ment highlights the effectiveness of the proposed method.
Moreover, the proposed method achieves considerable BD-
rate reduction for both high-resolution and low-resolution
image sequences.

To evaluate the effectiveness of the proposed method,
we compared it with the latest research introduced in [20],
and the results are presented in Table 5. Specifically, the
comparison was performed in the RA configuration, aligning
with the CTC of JVET. In terms of coding efficiency mea-
sured by BD-BR, the proposed method outperformed [20]
with a value of −4.54% using a less complex deep learning
model architecture, while [20] reported a BD-BR value of
−3.43% for the Y channel. Notably, the strength of the
proposed method was evident in the results for class D,
which represents the most challenging class due to its low
resolution (i.e., 416 × 240). In this case, our proposed model
surpassed [20], achieving a Y channel bit reduction of 6.64%
compared to the reported rate of 5.80%. Furthermore, it is
worthmentioning that our proposedmethod comprehensively
addressed all three channels (i.e., Y, U, V) using a single
network, while the network presented in [20] could only
handle the Y component.

E. VISUAL QUALITY EVALUATION
Figure 4 to 6 show the comparative visual quality for the RA,
LD, and AI configurations between the VVC-compressed
content and the network results, with the visual quality
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FIGURE 4. Example sequence of BQTerrace (a) original, (b) VVC compressed and (c) proposed approach for RA configuration with QP 42.

FIGURE 5. Example sequence of BQMall (a) original, (b) VVC compressed and (c) proposed approach for LD configuration with QP 42.

FIGURE 6. Example sequence of KristenAndSara (a) original, (b) VVC compressed and (c) proposed approach for AI configuration with QP 42.

FIGURE 7. PSNR curves of selected sequences for RA configuration. Orange curve stands for VVC while blue curve stands for the proposed method.

assessment being conducted at a high QP value of 42. The
proposed network output in Figure 4 displays smoother edges
for the BQTerrace sequencewith a resolution of 1920× 1080,
exhibiting a 0.29 dB PSNR gain over VVC. In Figure 5, the
LD configuration shows more textural detail than the codec,
particularly in the white skirt of the BQMall sequence, with a

0.35 dB PSNR gain. Figure 6 shows that the AI configuration
achieves a 0.7 dB gain and displays less noticeable blocking
artifacts than the VVC. Notably, the results for the RA,
LD, and AI configurations were observed at the highest
compressed parameter of QP 42, which presents challenging
coding compression. Despite this, the proposed network
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FIGURE 8. PSNR curves of selected sequences for LD configuration. Orange curve stands for VVC while blue curve stands for the proposed method.

FIGURE 9. PSNR curves of selected sequences for AI configuration. Orange curve stands for VVC while blue curve stands for the proposed method.

significantly reduces coding artifacts and enhances quality
while reducing the bitrate.

F. RATE-DISTORTION PLOT ANALYSIS
To assess RD performance, we present video sequences from
the RA, LD, and AI configurations in Figure 7 to 9. Figure 7
shows four sequences with varying resolutions for the RA
scenario, indicating that the proposed network performed
well for lower-resolution sequences. Similarly, Figures 8
and 9 show three and five sequences from the JVET CTC
for the LD and AI scenarios, respectively. In both cases, the
proposed method showed improved results across the five
QP levels and different-resolution video sequences. When
examining Figure 7 to 9, it becomes evident that the rate-
distortion (RD) curves of the proposed method and the
original codec overlap at higher bitrates. This occurrence can
be attributed to the increased available encoding space for the

video, resulting in reduced compression and, subsequently,
diminished distortion. Consequently, at high bitrates, the
RD curve of the proposed method aligns with that of
the original encoder. This phenomenon arises because the
proposed method excels in enhancing the decoded frames
at low to moderate bitrates, where compression artifacts
are more pronounced. However, at high bitrates, where the
original codec already produces high-quality videos, the need
for enhancement diminishes, leading to the overlapping of
RD curves. Notably, our network demonstrates its strength
in further improving the reconstructed frame, particularly for
higher QP values.

G. DISCUSSION
The results of the proposed post-processing filter approach
demonstrated a significant reduction in artifacts associated
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with the latest video coding standard, VVC, across various
QP values ranging from 22 to 42. Specifically, the proposed
method exhibited coding gains for the RA, LD, and AI
scenarios. Moreover, the single postfilter architecture utilized
in our approach maintained a simple and hardware-friendly
design, which led to faster inference times. Although we
used the YUV format as the input in our proposed method,
there was a limitation in the conversion process during the
preparation of the training data. In future work, we intend to
enhance the ability of the network to handle the YUV format
more efficiently by considering the formatting conversion
process during the network design, while maintaining its
simplicity.

V. CONCLUSION
In this study, we propose a novel CNN-based post-
processing filter approach for reconstructed videos. The
proposed method utilizes a QP map to generate inputs with
varying frame qualities and derives the optimal number of
feature extraction blocks with minimal skip connections for
faster inference on low-end hardware. To demonstrate the
effectiveness of the proposed approach, a single network was
tested on three different video configurations (i.e., RA, LD,
and AI) with five QP values for each configuration. The
experimental results show that the proposed single-network
architecture outperforms VVC in terms of BD-rate reduction
for all three configurations with five different QP values,
while maintaining a simple network architecture.
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