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ABSTRACT Scoliosis, spinal deformity and vertebral spondylolisthesis are spinal disorders with high
incidence, which seriously affect people’s lives and health. CT is an important medical tool for the detection
and diagnosis of spinal disorders and provides a large amount of pathologically valid information in various
clinical practices such as spine pathology assessment and computer-assisted surgical interventions. As the
spine presents long span, complex shape of biological curve and high multi-stage similarity in the sagittal
plane of CT images. Therefore, fast and accurate spine segmentation technology has become an important
research direction for computer-aided diagnosis.We proposed an RUnT network based on the combination of
residual U-Net feature extraction network and Vision Transformer structure for fast and efficient automatic
segmentation of multiple vertebrae of the spine. The deep vertebral features are first extracted using the
residual U-Net network to prevent gradient diffusion while improving the accuracy of vertebral contour
segmentation. Then the multi-scale feature maps extracted by the residual structure containing rich vertebral
superficial information are input to the edge segmentation module.We designed the vertebral contour feature
extraction structure to refine the segmentation boundaries and ensure the segmentation consistency of each
vertebra by combining the operations of deconvolution and convolution for three different scales of deep
features.Finally, the global information extraction module based on Transformer structure is combined with
the local feature extraction module to achieve the blending of global location information of vertebrae
with local features through the self-attentive feature map of multi-scale volume. By mixing edge features
with semantic features, the semantic confusion arising from the high similarity between vertebrae when
the decoder extracts vertebral features is reduced. The model proposed in this paper is experimented
on the CTSpine1K and VerSe 20 public datasets. The results show that the model proposed in this paper
obtains the state-of-the-art segmentation performance with the average DSC scores of 88.4% and 81.5% on
CTSpine1K and VerSe 20, respectively, while reducing the average distance of HD95 from 4.86 to 3.88.

INDEX TERMS Spinal vertebral segmentation, vision transformer, residual U-net, vertebral edge segmen-
tation.

I. INTRODUCTION
The spine is an extremely important skeletal structure in the
human body that carries and conducts the combined load of
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the body’s mechanical movements [1]. As the central load-
bearing structure of the torso, the spine is responsible for
the posterior support of the torso while protecting the central
spinal cord pathways from sudden impact injuries, and is
formed from top to bottom by the cervical (C1-C7), thoracic
(T1-T12), lumbar (L1-L6), and sacral vertebrae through the
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bone joints. The cervical and thoracic vertebrae are subject to
long-term mechanical stress and local injury resulting in dis-
abling deformities due to scoliosis, which in the late clinical-
stage can continue to squeeze internal organs and lead to
death from pulmonary heart disease [2], while continuous
compression of the spinal nerves in the lumbar spine can lead
to severe pain with continuous spasms, resulting in paraplegia
and deafness and blindness. Although the prevalence of spinal
disorders is extremely high, early diagnosis cannot detect
significant focal areas [3], so non-invasive detection of the
spine using a computer-aided diagnostic system is of great
clinical diagnostic value.

In recent years, clinical research on medical images of the
spine has become increasingly important. In order to detect
pathology in a timelymanner for prevention and clinical treat-
ment, surgeons mainly use digital radiography(DR) technol-
ogy, computed tomography(CT) technology, and magnetic
resonance(MR) technology to screen and make preliminary
judgments about the spine [4]. The use of computer-aided
diagnosis(CAD) systems based on medical imaging tech-
nology to extract 3D anatomical structures from patients’
spine images can provide effective diagnostic information
for clinical decisions such as vertebral fracture detection and
identification of spinal deformities, allowing clinicians to
precisely localize the patient’s pathology and make timely
surgical treatment plans, combining basic medicine with clin-
ical medicine to provide individualized treatment strategies
[5]. It also reduces the time of manual segmentation of the
vertebrae and reduces the rate of misdiagnosis and missed
diagnosis by radiologists. MR technology focuses on soft
tissue imaging in the spinal canal, such as nerves and spinal
cord, for the detection of spine-related diseases, and CT tech-
nology is preferred for the observation of high density skeletal
lesions. The full-length CT image of the spine containing
24 vertebrae is reconstructed in 3D in the imaging worksta-
tion by multiple scans of the cervical, thoracic, and lumbar
spine, and automatic vertebral segmentation from the CT
image of the spine is of great clinical value in the diagnosis
of vertebral diseases.

The spine presents a long span, complex shape of a bio-
logical curve, and high multi-stage similarity in the sagit-
tal plane of CT images. The number of vertebrae in each
site is large, and the vertebrae within the site are similar
in height, while the vertebrae between sites are relatively
different. Thus the following problems exist in the study of
automatic segmentation of the spine: high-precision segmen-
tation is difficult, and there is a high degree of similarity
between vertebral instances in the same part, whichmakes the
segmentation network semantically confused, over-reliance
on the cross-sectional area of vertebrae to infer contextual
information, but the human sacral vertebrae have a small
cross-sectional area and the segmentation network cannot
make judgements based on references. The robustness of the
segmentation network is poor. The current network is good
for healthy or slightly deformed vertebrae segmentation, but

FIGURE 1. Bone tissue density is large relative to other organs, and CT is
an important way to detect spinal diseases. Due to the obvious
differences between A (metal implant) and B (bilateral fracture of
vertebrae) relative to the characteristics of healthy vertebrae, the deep
learning model is challenged, while C (lumbar sacralization) and E (sacral
lumbarization) produce semantic segmentation confusion and cannot
accurately segment the last vertebrae of the lumbar spine, and D
(multiple fractures) appearance changes have a great impact on vertebral
segmentation accuracy.

it cannot perform high-precision boundary segmentation for
samples with metal implants or severe spinal deformities [6].
As shown in Figure.1, there are many abnormal features in
CT imaging of human vertebrae that affect the segmentation
results.

A. RELATED RESEARCH WORK
At present, the research methods of spine and vertebrae seg-
mentation are divided into three categories. The first category
is based on digital image processing methods to propose a
vertebral segmentation network, the second category is based
on machine learning theory to segment the vertebrae, and
the third category is mainly based on convolutional neural
networks (CNN) and U-net network to segment the vertebrae.

1) DIGITAL IMAGE PROCESSING VERTEBRAE
SEGMENTATION
Researchers Klinder et al. first proposed a fully automated
framework based on statistical shape model to localize the
relative position of vertebrae and biomorphic curve informa-
tion acquisition from spine images, using spine volume for
curve reorganization and then generalized Hough transform
to achieve spine detection function, using multi-level pro-
cessing to identify and segment vertebrae, but this framework
requires a large number of high-quality spine data set training
and relatively high computational complexity is difficult to
apply to clinical practice [7]. Korez et al. proposed an auto-
matic spine localization and vertebrae segmentation model
based on statistical model, using interpolation technique for
maximum filling of missing vertebrae, using morphological
operations for an initial segmentation of vertebrae, achieving
individual detection of vertebrae by locating spine geometric
positions, and finally using shape statistical model for high
precision segmentation, which can process high resolution
spine CT images to obtain full spine segmentation results,
but the use of interpolation technique for filling leads to par-
tial noise and false positive regions in the processed images
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affecting the segmentation results [8]. Štern et al. proposed to
simulate the three-dimensional curve parameters of the spine
through a geometric model, using 25 clinical parameters with
6 geometric parameters to approximate the vertebral shape;
this method uses specific parameters for spherical model to
fit the vertebral shape and has the problem of not fitting
for deformed vertebral geometry [9]. Ibragimov et al. pro-
posed a new lumbar spine segmentation framework based
on transporting theory and strategic advantages reducing the
computational complexity from 2D to 3D segmentation [10].
Castro-Mateos et al. similarly proposed an active contour
model based on the biological curve of the vertebrae, which
used the statistical interspace model(SIM) to model the inter-
vertebral discs between adjacent vertebrae and then realized
the segmentation of the vertebrae by calculating the relative
position information of the discs combined with the vertebral
biological curve information, but it relied too much on the
manual selection of the central region features of the discs and
manual initialization of the vertebral contour to provide clin-
ical information in for spinal deformity and surgical planning
[11]. Kadoury et al. used the markov random field(MRF) to
divide the spine into intervertebral disc sets, by measuring the
geometric characteristics between adjacent vertebrae, import-
ing the intervertebral disc sets to achieve the consistency of
the regional curve fitting of the spine, and improving the
local curve of the vertebrae by constrained mesh relaxation
technology [12]. In 2013, Kadoury et al. proposed spinal
joint segmentation using stream embedding and higher-order
MRF for CT and MR imaging on the original study, mapping
foreground region pixels into low-dimensional stream space
using higher-order MRF to localize and segment the underly-
ing vertebrae, which requires a large number of higher-order
MRF models with high computational complexity and lacks
robustness to abnormal sensitivity to data noise [13].

2) MACHINE LEARNING VERTEBRAL SEGMENTATION
The second type of research is based on the theory of
machine learning for vertebral segmentation. With the in-
depth research of machine learning in image processing, seg-
mentation models combining digital image technology and
machine learning have been continuously proposed. In 2015,
Suzani et al. first proposed a multi-layer perceptron-based
lumbar segmentation region, statistically analyzed the voxel
intensity and generated the original lumbar model, and gradu-
ally approached the real lumbar parameters through continu-
ous iteration of local thresholds [14]. Chu et al. used random
forest regression to locate and detect vertebrae, and used a
hidden Markov model to generate a voxel distribution prob-
ability map to eliminate the segmentation ambiguity caused
by the highly similar shape between vertebral bodies [15].

3) CONVOLUTIONAL NEURAL NETWORK VERTEBRAL
SEGMENTATION
With the introduction of deep learning models, the third
type of model is mainly based on CNN and U-net net-
works for vertebral segmentation. In 2016, Korez et al. used

a convolutional neural network CNN for automatic verte-
bral segmentation of MR spine images, using multiple 3D
convolutional layers with pooling layers to extract vertebral
features, and mapping vertebral features to the mask of the
spine through two fully connected layers to improve the
robustness and accuracy of individual vertebral segmentation
[16]. Sekuboyina et al. proposed a two-stage network for
multi-label labeling of the lumbar spine. In the first stage, they
used multilayer perceptron (MLP) to achieve local lumbar
region localization, while in the second stage, they used the
U-net classification model to classify the vertebrae. However,
due to the relatively small training and validation datasets,
there might be potential overfitting or underfitting problems
with this model, thus requiring verification of experimental
performance under different combinations of hyperparame-
ters [17]. Janssens et al. proposed a cascaded fully convo-
lutional networks (FCN) vertebral segmentation framework
based on positioning FCN and segmentation FCN. In the
first stage, training regression 3D FCN to realize the local-
ization of the lumbar region, and in the second stage, 3D
U-net was used to achieve multi-class segmentation for the
lumbar region [18]. Lessmann et al. improved the two-stage
vertebral segmentation network, using the low-resolution U-
net network to identify each vertebra, and then using the
CNN network to learn the refined low-resolution labels [19].
In 2019, Lessmann et al. proposed an automatic vertebral
bone recognition and segmentation network based on an
iterative fully convolutional neural network, which gradually
refines the segmentation results by concatenating multiple
FCNs, while introducing depth supervision and spatial upper
and lower layer information to improve the segmentation per-
formance, iterative instances to segment vertebrae and taking
the maximum likelihood method to refine the boundaries of
the segmented individual vertebrae, but the model requires
multiple FCN training models in series, with significant
improvement in training time and the number of parameters,
and high computational complexity and model inference time
[20]. Vania et al. used a 3DU-net network that fuses CNN and
FCN to achieve fully automatic segmentation of the spine,
and used category redundancy as a constraint to improve
the accuracy of vertebral boundary segmentation [21]. Payer
et al. proposed a segmentation method based on FCN in
2020, through the three stages of spine recognition, vertebral
positioning, and vertebral segmentation to achieve sequential
segmentation from spine to vertebrae, and used U-net to
perform high-resolution segmentation on the identified verte-
brae [22]. Nazir et al. proposed an embedded clustering and
slicing U-net network, namely the ECSU-Net network, which
consists of three modules: segmentation, intervertebral disc
extraction, and image fusion. The segmentation module uses
the embedded clustering method to perform rough segmen-
tation on the spine, the intervertebral disc extraction module
performs spine classification on rough segmentation and cap-
tures the spatial information between different vertebrae, and
the fusion module stacks the segmented 2D images into 3D
images [23]. Huang et al. proposed to use the Ortho2Dmodel
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FIGURE 2. A: normal T1-12 vertebrae in the segmentation of the thoracic
spine, B indicates that less than 5% of the population has the thirteenth
thoracic vertebrae, i.e., T13, C indicates normal lumbar vertebrae L1-5,
and D: the sixth block of lumbar vertebrae L6 that affects the
generalizability of the spine segmentation model.

composed of two independent fast R-CNN networks to detect
vertebrae and classify the sagittal and coronal planes of ver-
tebrae in 2021 [24]. Pang et al. used the DGMSNet network
on the MR spine image to generate the prediction path of the
spine segmentation prediction and the detection path of the
key point heat map, and weighted the segmentation loss and
detection loss as a mixed supervision loss function to train
the model to generate high-precision segmentation prediction
[25]. Wu et al. proposed a 3D lumbar spine localization
and segmentation network based on a 2D hybrid visual pro-
jection image fusion envelope (LVLS-HVPFE), which uses
X-ray and CT scans to obtain 2D visual projection images
and achieves 3D lumbar spine localization and segmentation
by region growing algorithm with multi-distance weighted
averaging strategy [26]. Zhao et al. proposed a Residual-
atrous attention network (RA2-Net) lumbar spine segmenta-
tion network model, using atrous encoder to learn multi-scale
contextual information inMR images to improve lumbosacral
from segmentation performance, and fusing deep features of
the encoder with shallow features of the decoder to enhance
local features of vertebrae through residual jump connec-
tion [27]. Meng et al. used graph optimization and statistics
before localizing, segmenting and identifying the spine in CT
images. The authors used a 3D U-net model to initialize the
location information of the spine, and then applied a graph-
cut algorithm to encode the processing and improve the seg-
mentation accuracy through anatomical consistency cycles.
However, the model requires large computational resources
and multiple iterative cycles for encoding, and the inference
time is too long, which makes it difficult to be applied in
clinical settings [28].

The traditional vertebral segmentation model mainly
locates the vertebral sites through the field-of-view (FOV)
of the spine, and then stacks the obtained 2D segmentation
labels into 3D vertebral shapes, ignoring the spatial location
information of the vertebrae relative to the overall organ.
As shown in Figure.2, the conventional segmentation model
that does not fully consider the global position information
of the vertebrae cannot accurately locate the 25th and 26th
vertebrae by relying on the regions of interest(ROI) area
obtained from the relative positions of the vertebrae, which
reduces the generalization performance of the spinal vertebral
segmentation model.

4) TRANSFORMER-BASED VERTEBRAL SEGMENTATION
MODEL
In 2020, as the ViT [29] model first proposed to use the
Transformer structure to process the imagematrix, the combi-
nation of the Transformer structure and the CNN network has
become a new research direction. The proposal of the Swin
Transformer [30] further consolidated the potential of Trans-
former structure in image processing, and the image seg-
mentation model based on the combination of Transformer
structure and U-shaped network was further developed in the
field of medical images. Syed Furqan Qadri et al. proposed a
patch-based deep learning spine CT automatic segmentation
method that divides CT data into small fast and obtains ver-
tebral discriminative feature information from unsupervised
data using stacked sparse autoencoder (SSAE) and used CNN
for classification prediction and post-processing of image
blocks on VerSe, CSI-Seg and lumbar spine datasets. The
model segmentation performancewas verified onVerSe, CSI-
Seg and lumbar spine datasets. However, this method only
considers the local information of vertebrae, ignoring the
effect of global position information on the high similar-
ity between vertebrae [31]. In contrast, our proposed seg-
mentation model based on residual U-net and Transformer
utilizes the Global Transformer structure of local volume-
based multi-head self-attention (LV-MSA) and shift local
volume-based multi-head self-attention(SLV-MAS) tandem
in the Global Transformer structure can reduce the com-
plexity of the computer while achieving the acquisition of
global location information of vertebrae through the self-
attentive feature maps at multiple volume scales, reducing
the semantic confusion generated by the network when seg-
menting highly similar vertebrae instances. Tao et al. pro-
posed a Transformer-based vertebral CT image automatic
detection and positioning model Spine-Transformers, using
the ResNet-50 network to process the input spine CT image,
and using the lightweight Transformer to obtain different
vertebral local feature maps for the extracted shallow features
to form Multi-scale feature pyramids. However, the Spine-
Transformers network only realizes partial detection and
positioning of the vertebrae of the spine, and cannot realize
the 3D segmentation of 24 vertebrae [32]. We propose a mul-
tiscale boundary fusion module to inverse fuse the multiscale
featuremaps sampled by the encoder, up-sample the local fea-
tures containing multiscale shallow information to the same
size and then use the convolutional layer to extract vertebral
boundary information to constrain the vertebral deep features
extracted by the decoder to ensure the consistency of each
vertebral contour edge segmentation. You et al. proposed a
3D EG-Trans3DUNet vertebral segmentation model based
on the TransUNet network, using the 3D U-Net network to
obtain vertebral depth features and fusing the global position
information of vertebrae captured by the Transformer model
to improve vertebral segmentation accuracy [33]. However,
the authors used the relatively small VerSe 20 spine dataset
for training and evaluation without detailed comparison of
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the generalization ability of the model. We used the largest
publicly available spine CT dataset, CTSpine1K [34], to input
into the RUnT model for training, and added a residual
structure to the encoder to increase the shallow vertebral
information contained in the extracted depth features, and
input the depth features containing multi-scale rich shallow
information into the multi-scale edge segmentation module
to extract vertebral contour features, which improved the
vertebral contour feature segmentation accuracy.

Therefore, we propose a spine vertebrae CT image seg-
mentation model based on the combination of Transformer
structure and residual U-net network to address the current
problems, using the residual Conv structure to obtain a multi-
scale feature pyramid of vertebrae, inputting shallow features
into the parallel vertebrae boundary region, using the CNN
structure to obtain the spine fuzzy boundary region features,
and fusing the vertebrae edge features containing rich shallow
information vertebral edge features are fused with the deep
local features of vertebrae to further constrain the incon-
sistency of vertebral segmentation. The Global Transformer
encoder is used to fuse with the Local Transformer encoder,
and the global position information of 25 vertebrae captured
by the Global Transformer is superimposed with the local
features of vertebrae extracted by the Local Transformer to
reduce the semantic confusion of the vertebral segmentation
network for the highly similar local features of multiple
vertebrae.

In summary, our main contributions can be summarized in
the following four points:

(i) The combination of residual structure and encoder
superimposes the deep features of vertebrae extracted from
the convolutional layer with a layer of convolutionally fil-
tered shallow information, which prevents gradient diffusion
while inputting the edge segmentationmodule containing rich
shallow vertebrae information to improve the accuracy of
vertebrae contour segmentation.

(ii) The LV-MSA and SLV-MAS are connected in tandem
in the Global Transformer module, which can reduce the
computational complexity of high-resolution vertebral CT
images while achieving the acquisition of global position
information of vertebrae through self-attentive feature maps
at multi-volume scales and reducing the semantic confusion
caused by the high similarity between vertebrae when the
decoder extracts vertebral features.

(iii) Using Global Transformer structure and Local Trans-
former structure channel information superposition, deep
local features of vertebrae are superimposed with global
position information to improve the accuracy of vertebral
smooth region segmentation, and the vertebral edge features
extracted by the vertebral edge module are spliced with
the deep smooth region features of vertebrae extracted by
the decoder to ensure the segmentation consistency of each
vertebra.

(iv) To address the non-convex loss due to small datasets,
we used the CTSpine1K large vertebral dataset with rich
individual samples with the VerSe 20 dataset input model for

training to improve the Query, Key, and Value matrix fitting
speed in the multi-head self-attention(MSA) mechanism. It is
demonstrated experimentally that our vertebral segmenta-
tion model outperforms other models in Dice metrics [6]
and HD95(in mm) metrics [6]. The accuracy of our model
in multi-label segmentation of spinal vertebrae with model
robustness is demonstrated.

II. MATERIALS AND METHODS
The network we proposed is shown in Figure 3, and the
overall structure is mainly composed of five parts: (i) The
ResNet encoder structure for extracting vertebral depth fea-
tures; (ii) The Local Transformer structure that captures the
depth feature information of vertebrae and the Global Trans-
former structure that extracts the position information of
25 vertebrae; (iii) Multi-scale feature fusion vertebral Edge
Segmentation module; (iv) A decoder structure for decon-
volving deep features; (v) A predictive segmentation module
that fuses vertebral contour information and depth features to
ensure the consistency of multiple vertebral segmentations.

A. RESIDUAL U-NET STRUCTURE
The CTSpine1K dataset is preprocessed into the vertebral
local dataset DL = ISi ∈ R

H
4 ×

W
4 ×C (i ∈ ZL) and the vertebral

global datasetDG =
{
ISi ∈ RH×W×C

} (
i ∈ ZG

)
,DL extracts

the local depth features of the vertebrae through the residual
U-net encoder, and inputs the visual converter Local Trans-
former to capture the dependent information of the vertebral
depth features, DG is preprocessed by clipping and relative
position encoding, and then input into the Global Transformer
structure to extract the position information of 25 vertebrae,
after the Global and Local Transformer output vertebral posi-
tion information and local features are added, it is input to the
decoder module for deconvolution operation. The residual U-
net structure is divided into four stages Stagei (i = 1, 2, 3, 4) ,

as shown in Figure.3.
ResNet_Block extracts vertebral multiscale features

FSil∗ (i = 1, 2, 3, 4)mainly by 3D convolution kernel, l∗ repre-
sents the number of layers of convolution in ResNet_Block,
using ReLu function activation with GroupNorm for Batch
dimension normalisation to obtain the output. Our pre-
vious research found that as the number of convolution
layers deepens, the convolution kernel is used as a high-
pass filter to continuously extract the boundary contours of
vertebrae, which is likely to cause loss of contour curve
information and enhanced filtering of features. The local
depth features of vertebrae increase with the feature chan-
nel dimension, but the loss of local vertebral informa-
tion is serious. Through the residual structure, the shallow
input features containing rich information and the extracted
depth features are added to the matrix to obtain FSi+1

l∗ =

FSil∗ +
∑Si−1

i=2 F
(
FSil∗ ,W Si

l∗

)
(i = 1, 2, 3, 4) ,W Si

l∗ represents
the training weight of the l∗ layer convolution kernel of
ResNet_Block_i(i = 1, 2, 3), which adds the feature infor-
mation of the hidden layer feature map.
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FIGURE 3. Overview of the architecture of the vertebral segmentation network based on Transformer and residual U-net networks. The RUnT network
consists of five main components: (i) Encoder, which is formed by adding residual structure between each layer based on the U-Net encoder. (ii) Edge
Segmentation module unifies the dimension and size of shallow features of different sizes using the deconvolution operation, and segment the vertebral
edge curve by convolutional layers. (iii) Global Transformer module and Local Transformer module capture global position information and focus on local
features for deep features of different scales. (iv) Decoder based on U-Net structure recovers the deep features extracted by the transformer module and
constrains the vertebral bone boundary information extracted by the Edge Segmentation model for consistency. (v) The predictive segmentation structure
classifies 25 classes of vertebrae for prediction.

Due to the high semantic similarity between the vertebrae
in the vertebral segmentation process, so to constrain the
segmentation consistency of each vertebrae, we extracted
shallow feature maps containing rich vertebral information
from Stagei1,2,3 as multi-scale feature pyramids and input
them into the Edge Segmentation module, the basic CNN
structure is used to realize the information segmentation of
the boundary contour of the vertebrae. The encoder based on
the residual structure extracts the deep features containing the
multi-scale information of the vertebrae and performs skip
connectionwith the deep features diluted by the decoder, so as
to realize the extraction of the deep abstract features of the
vertebrae while containing sufficient semantic information.
The output of the residual U-net structure is spliced with
the contour features of the vertebral boundary segmentation
to further integrate the local features of the vertebrae with
the global information, and improve the segmentation effect
of the contour information and structural features of the
vertebrae.

B. LOCAL INFORMATION AND GLOBAL INFORMATION
EXTRACTION MODULE
The ResNet structure in the encoder proposes vertebral depth
features, but studies have shown that the ResNet network
is not robust to high-frequency signal processing, and high-
frequency signals are continuously amplified as the number
of convolutional layers deepens. The Transformer module
based on the MSA mechanism has good high-frequency sig-
nal filtering ability and gathers the deep features extracted
by the ResNet structure. Therefore, we proposed to use a net-
work combining ResNet and Transformer modules, and input
the deep features extracted by the encoder into the Trans-
former module to smooth the spatial features and enhance
the receptive field. Since the Local Transformer structure
(Figure 4(a)) can only extract vertebral features and cannot
capture the relative global position information of vertebral
local features, we refer to the nnformer [35] network frame-
work and proposed a Global Transformer structure as shown
in Figure 4(b). It is used to extract the relative position
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FIGURE 4. (a) The input in the Local Transformer structure is the deep
vertebral feature set χLTl (l represents the index of the layer in the
Transformer structure) after ResNet downsampling, and the local feature
attention of the spine is calculated using the MSA mechanism. Norm
represents the layer regularization. MLP stands for multilayer perceptron
composed of two layers of neural networks. (b) The input of the Global
Transformer structure is the vertebral global feature χGTl , which contains
more vertebral superficial semantic information than the deep feature
χLTl , and the complexity of the traditional MSA calculation is too high,
so we used LV-MSA and SLV-MSA tandem to extract the vertebral global
position information while reducing the computational complexity.

information between the vertebra features and the whole.
Using LV-MSA and SLV-MAS to calculate the different self-
attention characteristic maps under the multi-volume scale
in series. Since the input χGT

l (l represents the index of the
layer in the Transformer structure) of the Global Transformer
module is the original data of the 3D CT image, using the
traditional multi-head attention mechanism for calculation
will take up too many GPU resources. On a patch with a
volume of {h× w× c}, the computational complexity based
on LV-MSA (Equation 2) and SLV-MSA (Equation 3) is
reduced by about 97% and 98% compared to the computa-
tional complexity of MSA (Equation (1)).

Ω (MSA) = 4hwC2
+ 2(hw)2C (1)

Ω (LV −MSA) = 4hwcD2
+ 2ShSwSchwcD (2)

Ω (SLV −MSA) = 4hwcD2
+ 2VhVwVchwcD (3)

where D represents the length of the data sequence input
into the Global Transformer structure, {Sh, Sw, Sc} repre-
sents the local image volume size of the input LV-MSA-
based Transformer structure, {Vh,Vw,Vc} represents the local
image volume size of the input SLV-MSA-based Transformer
structure, (V h,Vw) = α (Sh, Sw)Vc = βSc,we empirically
set the hyperparameters α, β = 0.5 to alternate the attention
information under the two volume sizes.

The calculation process of the Local Transformer structure
and the Global Transformer structure is as follows:

χLT
l+1 = MSA(Norm

(
χLT
l

)
+ χLT

l l = 0, 1, 2 . . . . . . L

χLT
l+2 = MSA

(
Norm

(
χLT
l+1

))
+ χLT

l+1 (4)

χGT
l+1 = LV −MSA(Norm(χGT

l )) + χGT
l l = 0, 1, 2 . . . ..L

χGT
l+2 = SLV −MSA(Norm(χGT

l+1)) + χGT
l+1 (5)

In Equation (4)(5), χLT
l is the input of the Local Trans-

former module, and χGT
l is the input of the Global Trans-

former module, where l represents the number of layers of the
Transformer structure, and L = 11 represents that the Local
Transformer module and the Global Transformer module
each have 12 floors.

C. MULTI-SCALE FEATURE EDGE SEGMENTION MODULE
In order to accurately segment the 3D biological curve con-
tours of the vertebrae, we proposed to use the hidden layer
features extracted from the downsampled residual module in
Figure 3 to segment the boundary contours of the verte-
brae. As the number of downsampling layers deepens, the
feature information extracted by the convolution operation
contain more abstract vertebral features, and the loss of deep
feature semantic information leads to the poor segmentation
accuracy of the current convolution operation-based verte-
bral segmentation network for vertebral boundary contours.
While the shallow features extracted by the residual con-
volution operation of the shallow layer contain the bound-
ary contour detail information of the vertebrae, we used
ResNet_Block_i(i = 1, 2, 3) to propose 3 scales of shallow
features to input into the Edge Segmentation module, the
structure diagram of the boundary segmentation module is
shown in Figure 5.FSi represents featuremaps extracted from
different depths, FS2 and FS3 due to the size difference of
HSi ,WSi in

{
BSi ,CSi ,HSi ,WSi

}
need to pass the upsampling

module to restore the size, through the 3 × 3×3 convolution
kernel extracts the local details of the shallow vertebrae and
then using the 1× 1×1 convolution kernel controls the num-
ber of feature channels, and through the Concat operation
realizes the splicing of feature channels at the edge of ver-
tebrae. The spliced multidimensional features are reduced in
dimension to FS1 by convolution kernel 1 × 1×1, the output
vertebral edge feature map is fused with the vertebral fea-
ture after upsampling by the decoder, through the boundary
of a single vertebra constrains the scale range of vertebral
segmentation, and the deep fusion of local information and
overall features is realized to ensure the consistency of single
vertebral segmentation.

D. LOSS FUNCTION
This paper proposed a vertebral segmentation model loss
function L such as Equation (6), which is mainly composed
of two parts of the loss function, the overall label loss function
Ls and the vertebral edge segmentation loss function Le.

L = αLs + βLe (6)

Among them, we used the vertebral Edge Segmentation
loss function as a supplement to the overall segmentation loss
function, because of the weight parameters α = 0.7, β = 0.3.
Since vertebral segmentation is a multi-label task, the number
of vertebrae labels contained in a single training sample
varies greatly, so there is a serious label category imbalance.
Therefore, we used a loss function combining cross entropy
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FIGURE 5. (a) Structure diagram of Edge Segmentation module,
FSi (i = 1,2,3) represents the hidden layer features output from Stage i
in the encoder residual module, and the feature map downsampled from
the upper layer contains more semantic information of the vertebrae, and
the fine boundary contour segmentation of the vertebrae is performed by
using multi-scale feature map stitching fusion. (b) represents the
predictive segmentation structure diagram, Fec represents the shallow
features of the vertebrae obtained by upsampling on the encoder, Fes
represents the vertebral edge information output by the Edge
Segmentation module, and the feature channel is segmented by a filter
with a convolution kernel of 1 × 1×1. The 25 class labels of the vertebrae
are obtained using the softmax activation function.

and Dice loss function for training (Equation 7).

Ls = γLCE + δLdice

LCE = −
1
N

∑
i

M∑
c=1

yiclog(ŷic)

Ldice = 1 −
1
M

M∑
c

2
∑N∗

i yicŷic∑N∗

i yic+
∑N∗

i ŷic
(7)

Among them, LCE is the multi-class cross entropy loss
function, N is the total number of samples, M is the total
number of label categories, yic represents the value of 1 when
the real label of sample i is c, otherwise the value is 0,
ŷic represents the probability value when the predicted label
value of sample i is c. N ∗ in Ldice represents the total number
of voxels in the sample, and the remaining parameters have
the same meaning as LCE .

For the vertebral edge loss function, we used a deeply
supervised approach to train the vertebral Edge Segmenta-
tion module, which segmented the semantic information of
the shallow vertebral edge contours into binarized labels,
so to reduce the voxel expansion of the vertebral edges and
improve the boundary accuracy of the shallow segmenta-
tion of the vertebral edge contours, we used the binary loss

function BCE for training, as shown in Equation (8).

Le = −λ

∑
i

yilogyi − µ
∑
i

(1 − yi) log(1 − yi) (8)

Since the proportion of voxels in the vertebral edge con-
tours is much smaller than in the background, we set the
foreground hyperparameter λ to 0.8 and the background
weight parameter µ to 0.2 to reduce the Le loss value.

E. EUALUATION METRICS
In this paper, the accuracy of vertebral segmentation is mea-
sured by using the DSC to calculate the segmentation effect
of 25 vertebrae. The overall segmentation result of the spine
is evaluated by the average DSC. The calculation of the DSC
score of the vertebra is shown in Equation 9, T represents the
expert segmentation result, P represents the model prediction
result, and i represents the index value of the spinal vertebra.

Dice (P,T ) =
1
N

N∑
i=1

2 |Pi ∩ Ti|
|Pi| + |Ti|

(9)

At the same time, the HD95 evaluation index is used to
calculate the spatial distance between the vertebrae predic-
tion segmentation result set and the real vertebrae set. The
calculation formulas of the prediction set and ground truth
set are shown in Equation 10.

HD(P,T ) =
1
N

N∑
i=1

max
{
supp∈Pi inf t∈Tid (p, t) ,

supt∈Ti inf p∈Pid(p, t)
}

(10)

Among them, Pi represents the surface distance set of
the vertebral prediction segmentation mask whose index is
i, Ti represents the vertebral surface distance set whose real
label index isi, and d(p, t) represents the Euclidean distance
between point p and point t in the set of Pi surfaces and the set
of Ti surfaces. Although HD95 produces large outliers in the
calculation of the thoracic T13 vertebra and the lumbar L6
vertebra, the calculation results of the remaining vertebrae
can be analyzed to obtain the average performance of the
model segmentation performance results.

III. EXPERIMENTS
A. DATA PREPARATION
In order to solve the problem of slow fitting rate during
the training of small data sets for the Q, K and V matrix
parameters in the Local Transformer module of the vertebral
segmentation model and the Global Transformer module of
the MSA calculation Equation 11.

Attention (Q,K ,V ) = Softmax(
QKT
√
d

+ R)V (11)

In the formula, Q, K, and V represent Query, Key and
Value, and R represents the relative position code.

We selected the large spine dataset CTSpine1K released
in 2021 for training. Compared with the traditional small
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TABLE 1. Overview of the status of each spinal vertebral CT dataset.

datasets CSI-Seg 2014, Dataset-5 2014 and xVertSeg 2016,
the CTSpine1K dataset contains 1005 training samples and is
stored in NIFTI format the training set contains 419 cervical
vertebrae, 5942 thoracic vertebrae, and 4712 lumbar verte-
brae. A comprehensive comparison between the CTSpine1K
dataset and other datasets is shown in Table 1, compared with
the previous three data sets, the amount of annotated training
data has increased by 60, 60, and 39.66 times, respectively.
Compared with the CTSpine1K data set, although the VerSe
19 and VerSe 20 data sets are currently the most popular
datasets, the training samples of the VerSe series data sets are
only 15.92% and 31.74%, and some samples of the VerSe
se-ries dataset are regionally cropped to contain only CT
images of the spine, lacking the information of the surround-
ing organs and tissues of the spine, leading the MSA-based
Transformer structure has a relatively small receptive field
when calculating global attention and cannot learn the global
position information of the vertebra.

B. DATA PRE-PROCESSING
The CTSpine1K dataset consists of four sets of verte-
bral data sets (COLONOG, HNSCC-3DCT-RT, MSD T10,
COVID-19), and the training set, validation set, and test set
are divided in a ratio of 3:1:1. The input data is divided into
two parts, the local vertebra dataset is trained through the
residual U-net structure, and the global vertebra dataset is
input into the Transformer structure for learning.

Our preprocessing step for the vertebral CT image dataset
is mainly divided into two parts, the first step is the
batch resampling of the dataset, and the second step is the
normalization operation of the resampled dataset. In our
experiments, we found that when resampling the data into
1mm × 1mm × 1mm voxel space, we found that when the
size of a single sample reached 256 × 256 × 180, the video
memory size was insufficient when inputting into the GPU
server for training, and for this reason, we proposed to
perform resize operation to compress the vertebral images
after the resampling operation, but after several experiments,
we found that the combination of resampling and resize
operation. However, after several experiments, we found that
the combination of resampling and resize operation resulted
in a serious loss of the original data information and the
model could not learn the foreground region information.To
reduce the loss of original data information, we improved
the resize operation to a crop operation but the random crop
led to a serious imbalance in the foreground data categories,

and the model could only fit the local features of the ran-
dom categories during training, resulting in some vertebrae
with less category information could not be learned. Finally,
we compressed the resampled data directly to a fixed size
without changing the voxel spacing to allow the network
model to learn all the category information in each training
session.

The CT values of the vertebrae in the local vertebral
dataset range from 100 to 3000, and background CT values
of peripheral tissues are relatively small. Therefore, we used
the threshold segmentationmethod to preserve the bone tissue
in the original dataset, and cut out the irrelevant background,
retaining a size of 160×160×96 vertebrae image. The resam-
pling method of linear interpolation was used to unify the
image resolutions of different scanning devices into a voxel
space of 1mm × 1mm × 1mm, and the vertebral labels
were resampled to a voxel space of 1mm × 1mm × 1mm
by nearest neighbor interpolation. The resampled image is
denoised by bilateral filtering to ensure the detailed features
of the vertebral edge contour, and the contrast of the vertebral
image is enhanced by window adjustment. After many tests,
we selected the window width of 1100Hu and the window
level of 550Hu. Due to the slow training process of the
Transformer structure, to improve the hyperparameter fitting
rate, the z-score normalization method is used to normalize
the input data to [0,1]. In the vertebral Edge Segmentation
module, to obtain the real edge label of the vertebra, we used
the Canny operator to perform contour segmentation on the
ground-truth labels of vertebrae, used the non-maximum
value to suppress the width of the edge voxel, and realized
the detection and connection of the vertebra outline through
the double threshold.

Due to the relatively high computational complexity of
the Global Transformer structure, using the original spine
dataset to input into the Global Transformer structure would
lead to a continuous increase in model training time. Because
we preserve the global position information of the origi-
nal image by pre-experimentation, the original image and
labels of the global vertebrae dataset are resampled to a
uniform resolution of 1mm × 1mm × 1mm, voxel space,
and then the superficial information of the vertebrae is
extracted by two convolution operations (k=3) while chang-
ing the size of the image, which is processed by relative
position encoding(RPE) and input into the Global Trans-
former structure to learn the superficial information of
vertebrae.
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TABLE 2. Training information for 8 vertebral segmentation networks.

TABLE 3. RUnT-Eg & GT achieved the highest mean DSC (%) for a single
spine on the CTSpine1K dataset.

C. EXPERIMENTAL DETAILS
In order to verify the segmentation performance of the net-
work on the vertebrae, using 8 kinds of segmentation net-
works were to train and test the segmentation performance
of the CTSpine1K dataset and VerSe series dataset, including
4 state-of-the-art vertebral segmentation networks (namely
Chen D [6], Payer C [6], Zhang A [6], nnU-net [36]), and
our proposed Residual U-net combined with Transformer
model (hereinafter referred to as RUnT) and its 3 variants.
The information of the 8 segmentation is shown in Table 2.

IV. RESULTS AND ANALYSIS
A. SEGMENTATION RESULT ANALYSIS
1) SEGMENTATION RESULTS OF CTSPINE1K DATASET
To shorten the training and inference time of the RUnT
model, we divide the CTSpine1K dataset into a training set,
a test set and a validation set according to 3:1:1 by randomly
selecting 300 cases as a small-scale pre-training dataset.
We use the population-based training (PBT) training method
to initialize the random hyperparameters, perform informa-
tion interaction and strategy optimization during the parallel
training of the model, replicate the weights according to the
obtained optimal hyperparameter training combinations and
add random noise for iterative training. The Verse 20 dataset
is trained in parallel based on the training results of other
segmentation models as the initialized hyperparameters.

We trained on the CTSpine1K training set and verify the
vertebral segmentation performance on the test set, using
an A100-PCIE-40GB device for training, the optimizer uses
AdamW, the initial lr is 0.01, the default weight_decay is
0.001, and using the evaluation indicators DSC (%) and

TABLE 4. RUnT-Eg & GT obtained the minimum HD95 (mm) of a single
vertebra in the CTSpine1K dataset.

HD95 (in mm) described in Section II-E to evaluate the
segmentation results. The segmentation results of the 8 net-
works are presented in Table 3 and Table 4. Among them,
RUnT-Eg & GT obtained the highest average DSC score of
88.4 among all networks, Compared with the current highest
segmentation model Chen D [6], it has increased by 0.6%,
and has increased by 14.9% in the segmentation of special
label 25, which improves the robustness of the model. In the
HD95 (in mm) score, the RUnT-Eg & GT model shortened
the mean HD95 distance by 0.37 and improved it by 6% over
the current optimal model Chen D [6], achieving optimal per-
formance in the mean DSC score in the cervical (C1-C7) and
thoracic (T1-T12) regions. In contrast, in the lumbar spine
(L1-L6) region due to the voxel fusion of the L6 vertebrae
with the sacral spine, it is relatively difficult for the training of
label 25 to achieve complete contour segmentation, resulting
in a relatively low DSC for the RUnT-Eg & GT model in
the lumbar region. The experimental results show that the
variant model RUnT without the Global Transformer module
and the edge detection module Eg outperforms all models in
the lumbar spine test, and we will elaborate on the findings
in Section IV-B of the ablation experiment. In Figure 6 we
show six typical samples of the model RunT-Eg&GT with
the highest mean DSC scores in the experiment, with the six
samples mainly targeting the thoracic and lumbar spine sites.
In general, compared with the four models of Chen D [6]
Payer C [6] Zhang A [6] nnU-net [36], the DSC score and
HD95(in mm) of our proposed network have been improved
by an average of 3% and 21.5%, proving that our network
outperforms other segmentation networks on the CTSpine1K
dataset.
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FIGURE 6. Six typical samples segmented by the RUnT-Eg & GT model in
the CTSpine1K dataset, with red boxes representing regions different
from GT (False-Positive regions or False-Negative regions). The box
indexes represent the names of the vertebrae in the spine where the FN
or FP areas are located.

TABLE 5. RUnT-Eg & GT achieved a DSC (%) on par with the current
state-of-the-art segmenta-tion model in the VerSe20 dataset.

2) SEGMENTATION RESULTS OF VERSE 20 DATASET
In order to verify the robustness and universality of the net-
work, we used the VerSe 20 dataset to verify the robustness
of the model, and used the same equipment configured in
Section I) to conduct experiments. The experimental seg-
mentation results of the 8 networks are shown in Table 5
and Table 6. Due to the small amount of data in the VerSe
20 dataset and the foreground of some training samples being
cropped, due to the improvement of 3D residual U-net struc-
ture and Global Transformer structure of the RUnT-Eg&GT
model, leading there is currently no pretraining network
parameters to learn. Therefore, on the test set of the VerSe
20 dataset, the RUnT-Eg&GT model did not achieve the
optimal DSC score, which is close to the score of the current
optimal segmentationmodel ChenD [6]. However, the RUnT-
Eg&GT and its variant models achieved an average shortest
distance of 4.86 on the HD95 distance, which verified that
the RUnT-Eg&GT model has a good segmentation effect
in small vertebral datasets, and tested the universality and
robustness of our proposed model in vertebral segmentation.

FIGURE 7. Six typical segmentation samples of the RUnT-Eg & GT model
on the VerSe 20 dataset.

TABLE 6. RUnT-Eg & GT obtained the minimum HD95 (mm) of a single
vertebra in the VerSe20 dataset.

The visual segmentation results of the VerSe 20 test set are
fully displayed in Figure 7.

B. EXPERIMENTAL ABLATION STUDIES
In order to evaluate the effectiveness of the proposed mod-
ule, we conducted ablation experimental research through
16 experiments, and the experimental results are clearly
shown in Table 7. The backbone network uses the UnTmodel
with a pure U-net structure combined with the Transformer
structure and its three variants as a control experimental
group.The experimental data of the residual U-net network
and the three variant networks use the experimental data of
Section I) and Section II).

In the CTSpine1K dataset test, the RUnTmodel is superior
to the UnT model in terms of DSC score and HD95 distance,
which can prove the effectiveness of the residual structure
in extracting deep features of vertebrae. Compared with the
RUnT model, RUnT-Eg increased the average DSC scores
of the cervical spine (C1-C7) and thoracic spine (T1-T12)
by 0.5% and 1.5%, respectively, and shortened the average
HD95 dis-tance by 5.6% and 7.8%, respectively, with a 1.2%
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TABLE 7. Analysis of experimental results of RUnT-Eg&GT ablation.

FIGURE 8. Three typical segmentation samples from the CTSpine1K test set were selected for the eight models, and the third sample contains the 25th
label, with the red border indicating the FP and FN regions, and the visualization results show the improved performance of our proposed model
RUnT-Eg&GT in vertebral segmentation.

increase in the overall segmentation average DSC score and a
2.2% reduction in the average HD95 distance, indicating that
the Edge Segmentationmodel Eg extracted the shallow fusion
information of the vertebra through multi-scale features is
effective in vertebral segmentation. From the visualization
results in Figure 8, (d)UnT-Eg segmented lumbar spine has
a large number of false positive areas and false negative areas
on the edge of the vertebrae compared to (c)UnT segmented
results, and the edge of the vertebral contour is smoother,
while the (g)RUnT model segmentation results compared
with (h)RUnT-Eg model, there are more false negative areas
at the edge of the outline of the vertebra, verifying that
after adding the Edge Segmentation module, it is helpful

to supervise and constrain the edge area of the vertebrae,
ensuring the consistency of each vertebral segmentation.

For the UnT-GT model and the RUnT-GT model that
include the Global Trans-former module, although they lag
behind the UnT, UnT-Eg, RUnT, and RUnT-Eg mod-els in
terms of DSC score and HD95 distance, but on the segmenta-
tion result of the special label 25(i.e.L6), the UnT-GT model
and RUnT-GT perform well only second to the UnT-Eg&GT
and RUnT-Eg&GT models. Therefore, it can be concluded
that although the Global Transformer structure is not sig-
nificantly helpful for deep feature extraction of vertebrae,
the Global Transformer structure is conducive to extracting
the global position information of vertebrae for the model
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to establish global dependencies, which can help determine
the number of vertebrae and improve thesegmentation accu-
racy of special vertebrae. By combining the vertebral Edge
Segmentation module and the Global Transformer model,
the comprehensive model UnT-Eg&GT and RUnT-Eg&GT
obtained the highest score of 86.9 and 88.4 respectively on
the overall average DSC index of the vertebrae, and obtained
the shortest HD95 distances of 4.01 and 3.88.

On the VerSe 20 dataset, due to the difference in data
foreground clipping and data volume, the average DSC score
of the RUnT model compared with the UnT model decreased
by 2.9%, and the HD95 distance increased by 6.7%, indicat-
ing that the U-net structure has a stronger ability to extract
deep features and a larger area of local receptive field than
the residual U-net structure in the small dataset. However,
the UnT-Eg and RUnT-Eg models including the Edge Seg-
mentation module still have higher DSC scores and shorter
HD95 distances than the UnT model and the RUnT model,
indicating the effectiveness of the vertebral edge module
in improving the accuracy of vertebral segmentation. The
segmentation results of Label 25 demonstrate the effective-
ness of the Global Transformer module in extracting location
information. While the comprehensive model UnT-Eg&GT
and RUnT-Eg&GT, compared with the CTSpine1K dataset
segmentation test results, have decreased by 3.6% and 8.4%,
but are still better than other models.

Overall, we believe that although the improved segmenta-
tion accuracy is limited, it still demonstrates the generaliza-
tion and robustness of our model in vertebral seg-mentation.

V. CONCLUSION
Our proposed multi-label vertebral segmentation network
based on Transformer and residual U-net structure was
trained and tested on CTSpine1K and VerSe 20 datasets, and
the experimental results demonstrated that our proposed seg-
mentation network outperformed current publicly available
segmentation networks in terms of accuracy of multi-label
vertebral segmentation. The depth features of the vertebrae
are extracted through the residual structure, using multi-scale
shallow information fusion to extract the boundary contour
information of vertebrae, using the clipped local spine dataset
and the global spine dataset to input the Transformer structure
respectively to fuse the local deep feature of the vertebra and
the global shallow position information of the vertebra, after
fusion and splicing with vertebral boundary contour features
to achieve the consistency of vertebral segmentation.

In our work, we found that the training cost of the experi-
mental network proposed in this paper is relatively high, due
to the sample diversity of the CTSpine1K dataset leads to a
relatively long inference time for the network in the training
process, and the segmentation accuracy is not significantly
improved compared to the VerSe series dataset. Due to the
reason of the network architecture, the pretrained Trans-
former model cannot be used, so the hyperparameter fitting
speed is too slow when calculating the attention distribu-
tion of the vertebrae compared to the pretraining network of

ImageNet-1K, ImageNet-22K, and Synapsemedical datasets,
inference time is significantly increased.

Future work is mainly aimed at improving the MSAmech-
anism in Transformer, reducing the computational complex-
ity and the number of parameters, and studying the impact of
pretraining based on general datasets and medical datasets on
the accuracy of vertebral segmentation.
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