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ABSTRACT This paper proposes a novel augmented Kalman filter-based attitude reference system (ARS)
that uses an inertial sensor comprised of a tri-axial gyroscope and a tri-axial accelerometer. For accurate
estimation of attitude using an inertial sensor, effective compensation of the non-gravitational acceleration
is crucial. The proposed method resolves this issue by using a novel rotational motion detector to adaptively
eliminate non-gravitational acceleration. The types of motions that the system experiences are accurately
distinguished by augmenting center of rotation to the state vector. Due to our unconventional augmented
state vector, the reformed filter properties have been thoroughly examined, and an observability analysis
has been carried out. An extensive experimental validation was conducted under six diversified scenarios
from the author-collected and open-source datasets, including both rotation-only and translation-rotation-
combined motions. The results demonstrate that the proposed method accurately estimates attitude with
sub-degree errors for most trials, proving robustness and accuracy under various motions. A comparative
analysis reveals that our method outperforms the conventional method and the MTx algorithm.

INDEX TERMS Accelerometer, attitude reference system, center of rotation, gyroscope, inertial measure-
ment units, Kalman filter.

I. INTRODUCTION
Since the development of Micro Electro-Mechanical Sys-
tems (MEMS) technology, inertial measurement units (IMUs)
has been widely utilized on various applications, including
indoor navigation [1], motion capture [2], unmanned aerial
vehicles (UAVs) [3], and many more. Thanks to their small-
sized, low-cost, and low power consuming nature, IMUs have
very little restrictions on which platform they are mounted
on, namely smartphones, quadrotors, and wearable devices.
Using measurements from the gyroscope, the inertial nav-
igation system (INS) algorithm can deliver orientation (roll,
pitch, and yaw) through integrating angular rates, when initial
angles are known. However, gyroscopes are vulnerable to a
drift which rapidly increases over time. Hence, to achieve
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long-term stability and accuracy, other sensors are often used
together. The most common one is the accelerometer, which
outputs specific force. When stationary, the accelerometer
can be used to estimate gravity vector, and thus provide
attitude (roll and pitch) information of the platform. A system
which fuses measurements from gyroscope and accelerome-
ter to estimated attitude is called Attitude Reference System
(ARS). When outputs from magnetometer is combined with
ARS, the system is now able to estimate heading (yaw), hence
called Attitude and Heading Reference System (AHRS).
Though the scope of this paper is ARS, previous works we
cover in this paper are not limited to ARS, since many works
of AHRS still propose methods to deals with acceleration.

A. RELATED WORK
Plentiful works have addressed the means of sensor fusion
with respect to ARS and AHRS. The most common
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approaches, by far, are complementary filter [4], [5], [6],
[7], [8], [9], [10] and Kalman filter or its variants [1], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29]. Complementary filter
is a simple data fusion technique which combines comple-
mentary information from two different sensors in the fre-
quency domain. Reference [4] showed that the gyroscope and
accelerometer to have complementary frequency response,
making them suitable candidates for complementary filter.
Generally, gyroscopes and accelerometers are passed through
a high-pass filter and a low-pass filter, respectively, as the
former experience a drift in the low-frequency domain, and
the latter are susceptible to noises of high-frequency domain.
Mahony [5] proposed a design of nonlinear complementary
filter on special orthogonal group. Madgwick [30] adopted
Gradient Descent Algorithm (GDA) to estimate orientation
in a computationally efficient manner. More recently, Liu
and Zhu [6] proposed an attitude estimation algorithm of
multi-sample equivalent rotation vector using angular rates
rather than angular increments. Wu [7] contributed with a
quaternion-based fast complementary filter (FCF) that has
much less convergence time than the previous works. Despite
many advantages including efficiency, above works of com-
plementary filter still suffer from lack of adaptability as their
parameters, namely gains, are usually fixed and performance
deteriorates quickly when circumstances regarding motions
change. To resort to a more robust fusion technique, our
proposed method is based on Kalman filter.

When the outputs of gyroscope and accelerometer are
fused together, it is imperative to correctly estimate the grav-
ity vector from the accelerometer measurements. Ideally, the
system should experience little to no acceleration compared
to accelerometer noise to achieve so. However, handheld
devices such as smartphones and smartwatches are subject
to dynamic motions, making it difficult for accelerometer
to estimate a pure gravity vector. To deal with such non-
gravitational acceleration, or external acceleration, numerous
approaches have been proposed, and most can be catego-
rized into two: adaptation [1], [10], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [31], [32] and modelling
[3], [24], [25], [26], [27], [28], [29], [33]. Works that adopt
adaptation methods usually distinguishes motion as static
and dynamic, and adapts accordingly. Li and Wang [14]
proposed a Kalman filter-based AHRS that adaptively tunes
the measurement noise covariance depending on three dif-
ferent scenarios of non-acceleration, low-acceleration, and
high-acceleration modes. Munguía and Grau [15] presented
an extended Kalman filter-based (EKF) AHRS in a quater-
nion form that detects static mode with the well-known
Stance Hypothesis Optimal Detector (SHOE) [34]. Makni
[1] proposed an energy-efficient quaternion-based adap-
tive Kalman filter with a hybrid detector that completely
switches off the gyroscope when static. Tong [16] imple-
mented a hidden Markov Model (HMM) recognizer to a
multiplicative extended Kalman filter (MEKF) to adaptively
tune noise covariance depending on disturbance caused by

motion. While stated works show satisfactory results, using
adaptation method alone will result in large attitude error
when the system is under dynamic situation for an extended
period of time. Furthermore, information on the nature of
the motion are not fully exploited, since modelling of the
non-gravitational acceleration and/or the kinematics itself is
absent.

Dealing with external acceleration through modelling is
also a frequently used method in the field of ARS/AHRS.
Lee [24] proposed a Kalman filter-based ARS that models
the external acceleration as a first-order low-pass filtered
white noise process. Though such modelling approach is
adopted by several works that followed [11], [25], [26], yet,
the model is not based on the actual nature of the non-
gravitational acceleration, lacking justification behind the
approach. [27] adopts the model of [24] and employs an aug-
mented Kalman filter to describe the dynamics, similar to our
proposed work. However, [27] is limited to a ball-and-socket
joint application, contrary to our work which can be applied
to complex motions with varying center of rotation. Kim [3]
studied attitude estimation on a small aerial vehicle, where
the external acceleration has certain frequency profile as it is
induced by the platform vibration of the actuators, and hence
implemented second-order infinite impulse response (IIR)
notch filter. Maliňák [28] proposed an EKF-based AHRS
with a newly developed concept of synthetic acceleration that
models the non-gravitational acceleration differently depend-
ing on whether the dynamics of the body is in a nominal
or a rare-normal situation. Park [29] presented an indirect
Kalman filter-based AHRS where the measurement noise
covariance was modelled using ellipsoidal method, rather
than modelling the external acceleration itself. Takeda [35]
estimated attitude by placing inertial sensors on specific
points on limb segments, modelling human gait as a series
of rigid body rotation. However, such modelling demanded
many parameters that must be measured prior to motion.
Although numerous attempts have been made to accurately
model the acceleration or the kinematics, the results are still
unsatisfactory. The models are either unrealistic with no basis
on the actual dynamics, too tailored to a specific application,
or in need of predetermined parameters.

B. MOTIVATION AND CONTRIBUTION
After surveying on existing attitude estimating methods,
we have gathered a few insights and motivations towards
developing our novel method proposed in this paper. First,
sensor fusion technique combining outputs of gyroscope and
accelerometer that enables robust estimation of attitude is in
need. Second, a system should deliver excellent performance
under changing circumstances through an adaptation method
that withstands dynamic motions with severe acceleration
for a prolonged time. Third, appropriate modelling of the
kinematics should be in place to not only facilitate a more
accurate attitude estimation but also improve versatility of the
system regarding various scenarios and platforms ARS may
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be utilized. When doing so, using predetermined parameters
should be shunned.

Hence, in this paper we present a novel indirect Kalman
filter-based ARS that estimates attitude and gyro bias along
with center of rotation. The state vector of the filter is aug-
mented to include center of rotation, which not only improves
accuracy of attitude estimation but also robustness towards
various types of dynamic not limited to rotation-only or
translation-only motions. To adaptively cope with chang-
ing dynamics, a rotational motion detector is developed to
efficiently equip our system with appropriate measurement
model consistent with current dynamics. The structure of
the filter is thoroughly explained, with a detailed derivation
of newly devised measurement noise covariance matrix and
an observability analysis. The performance of the proposed
ARS is verified experimentally against the MTx algorithm
by Xsens and a conventional method based on the work of
Li and Wang [14]. The tested scenarios consist of six cases,
four of which are from the author-collected dataset and the
rest from the open-source dataset Berlin Robust Orientation
Estimation Assessment Dataset (BROAD) [36]. To highlight
the accuracy and robustness of our proposed algorithm, the
tested datasets are comprised of differing values of accel-
erations, centers of rotation, and types of motion, including
rotation-only and rotation-translation-combined motions

The main contributions of this paper are restated as
follows:

1) An indirect Kalman filter-based ARS estimating center
of rotation online is proposed. Estimation of the rota-
tional arm improves accuracy as well as the versatility
of our system.

2) A rotational motion detector is proposed to robustly
adapt to ever-changing dynamics with a corresponding
measurement model and a noise covariance.

3) The unconventional measurement noise covariance
matrix pertinent to the proposed system is meticulously
derived.

The paper is organized as follows. In Section II, we give
a simple formulation of the Kalman filter-based Attitude
Reference System, and a brief summary of previous meth-
ods that deal with external acceleration. In Section III,
we propose a novel indirect Kalman filter-based ARS,
with a rotational motion detector, that estimates center of
rotation online. In Section IV, we evaluate the perfor-
mance of the proposed method by comparing with conven-
tional methods against several different scenarios, including
highly challenging motions. The paper concludes with Sec-
tion V. Notations used throughout this paper is presented
in Table 1. Less frequently used notations and abbrevia-
tions are defined separately when they first appear in this
paper.

II. KALMAN FILTER-BASED ARS
An ARS usually employs the Kalman filter for the fusion
of gyro and accelerometer information. The relationship
between attitude and accelerometer measurements when the

TABLE 1. Notations.

sensor is static is as follows.

γ = arctan
(
fy
fz

)
(1)
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θ = arctan

 fx√
f 2y + f 2z

 (2)

The nominal state vector x is defined as

x =
[
γ θ | bg,x bg,y bg,z

]T (3)

where bg,x , bg,y, and bg,z are the gyro bias in the x-, y-, and
z-axes, respectively. The error state vector δx is defined as

δx =
[
ϕN ϕE | δbg,x δbg,y δbg,z

]T (4)

where ϕ =
[
ϕN ϕE ϕD

]T is known as the Psi-angle error,
used by numerous previous works including [14], represent-
ing the difference between the true navigation frame and the
computed navigation frame.

Cn
b is expressed in terms of Euler angles as follows.

Cn
b =

 cψcθ cψsθsγ − sψcγ cψsθcγ + sψsγ
sψcθ sψsθsγ + cψcγ sψsθcγ − cψsγ
−sθ cθsγ cθcγ


(5)

The small case letters ‘‘c’’ and ‘‘s’’ stand for ‘‘cosine’’
and ‘‘sine’’, respectively. The relationship between the Euler
angle error and the Psi-angle error is defined as follows.[

ϕN
ϕE

]
=

[
cψ −sψ
sψ cψ

] ([
cθ 0
0 1

] [
δγ

0

]
+

[
0
δθ

])
=

[
cθcψ −sψ
cθsψ cψ

] [
δγ

δθ

]
(6)

The Euler angle errors shown in above equation are defined
as follows.

δγ = γ − γ̂

δθ = θ − θ̂ (7)

As for the gyro bias, the relationship between the nominal
value and the error is as follows.

δbg = bg − b̂g (8)

The indirect Kalman filter corrects the nominal state x with
the error state δx using equations (7) and (8).
In the absence of external acceleration, the nonlinear con-

tinuous system and measurement models adopted from [37]
are as follows.
System model (nonlinear, continuous):

γ̇ = ωx + ωy (sγ tθ)+ ωz (cγ tθ)+ bg,x + bg,y (sγ tθ)

+ bg,z (cγ tθ)+ wx + wy (sγ tθ)+ wz (cγ tθ)

θ̇ = ωycγ − ωzsγ + wycγ + bg,ycγ − wzsγ − bg,zsγ

ḃg = wg (9)

where the small case letter ‘‘t’’ stands for ‘‘tangent’’.
Measurement model (nonlinear, continuous):

z = f̃ b = Cb
n
[
0 0 −g

]T
+ v

= Ĉb
n (I − [ϕ×])

[
0 0 −g

]T
+ v (10)

The relationship between Ĉb
n and Cb

n is adopted from [38],
which also provides a detailed derivation.

From abovemodels, the linearized discrete error statemod-
els can be shown as follows.
System model (linear, discrete):

δxk = 8k−1δxk−1 + wk−1 (11)

8k = I5×5 + Fk1t, Fk =

[
02×2 C1,2r
03×2 03×3

]
(12)

where C1,2r is the first two rows of Ĉn
b. The discretization

method of 8 is explained in Section III-B.
Measurement model (linearized, discrete):

δzk = f̃k + Ĉb
n
[
0 0 g

]T
= Hkδxk + vk (13)

Hk =
[
C1,2c 03×3

]
(14)

where C1,2c is the first two columns of Ĉb
n [g×], δzk is the

measurement residual, and f̃k is the measurement specific
force.

However, in the presence of dynamic motion, the
accelerometer measurements also measure non-gravitational
acceleration, and hence the force measurement equation is as
follows.

f̃k = Cb
n
[
0 0 −g

]T
+ dk (15)

Note here that the measurement noise vk is incorporated in
external acceleration dk . To deal with such external acceler-
ation, previous studies adopt methods such as adaptation and
modeling, as mentioned in Section I-A.

III. PROPOSED CENTER-OF-ROTATION BASED ARS
This section presents the proposed center-of-rotation based
ARS that uses a rotational motion detector to estimate atti-
tude, gyro bias, and center of rotation. The structure of our
indirect Kalman filter-based system and a detailed deriva-
tion of the measurement noise covariance matrix are also
described in depth.

A. SYSTEM OVERVIEW
The structure of the proposed algorithm is illustrated as a
schematic block diagram in Fig. 1. The system is based on the
indirect Kalman filter, where accelerometer measurements
with the priori values from time propagation go through
our rotational motion detector. Depending on which step
of the detector the system is determined to be dynamic,
the filter adaptively adopts specific measurement model and
noise covariance apt for each circumstance. The details of the
adaptive algorithm are explained thoroughly in the following
subsection.

B. PROPOSED SYSTEM DESCRIPTION
We propose a kinematic modelling method where the model
parameter, center of rotation, is estimated online. The param-
eters to be estimated are the x, y, and z positions of center
of rotation in the sensor frame. The center of rotation vec-
tor with respect to sensor frame is denoted as rb, while its
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FIGURE 1. Schematic overview of the proposed algorithm.

x, y, z, positions are denoted as rx , ry, and rz, respectively.
The estimated center of rotation is augmented to the nominal
state vector as follows.

x =
[
γ θ | bg,x bg,y bg,z| rx ry rz

]T
(16)

The error state, which we use for our indirect Kalman filter
is as follows.

δx =
[
ϕN ϕE | δbg,x δbg,y δbg,z| δrx

δry δrz
]T (17)

The roll, pitch, and gyro bias errors are defined the same as
shown in Section II. The augmented center of rotation error
is defined as follows.

δrb = rb − r̂b (18)

By including center of rotation into the state vector, the
nature of the dynamics can be estimated and explained in
terms of any rotational movement that the system might be
experiencing. More importantly, the expected effect of such
augmentation is improvement in the accuracy of estimating
attitude, which we prove experimentally in Section IV.

The Kalman filter equations, including those of time prop-
agation and measurement update, are adopted from [39].
To practice economy, we only present filter properties and
equations that deviate from [39].

Expanded from equation (9), the nonlinear continuous aug-
mented state system model is as follows.
System model (nonlinear, continuous):

γ̇ , θ̇ , ḃg from equation (9)

ṙb = 0 (19)

The augmented error state system model is as follows.
System model (linearized, discrete):

δxk = 8k−1δxk−1 + wk−1 (20)

8k = I8×8 + Fk1t, Fk =

[
02×2 C1,2r 02×3
06×2 06×3 06×3

]
(21)

with process noise covariance matrix,Q, as a diagonal matrix
consisted of noise standard deviation of each state. The noise
standard deviation for the augmented δrb is assumed as
10−3m/

√
Hz. Some literatures suggest that methods such

as Runge-Kutta ensure a more accurate discretization than
the method we chose in equation (21) [40]. Yet, we use
equation (21) instead for three reasons: in the context of a
low-grade IMU (such as the IMU used for our experiments in
Section IV), the numerical error from the discretization is far
smaller than errors from other sources; the discretization error
is kept small with a small time-step,1t [40]; the Runge-Kutta
method is computationally heavier than the chosen method.

The priori values from performing time propagation
of the Kalman filter with above system model, together with
the accelerometer measurement, faces the static detector. The
static detector determines whether the system is static by
comparing the acceleration measurement with the gravity
vector with respect to a threshold. If the system is deemed
static, the measurement noise covariance matrix is set as
Racc, which is R originating from accelerometer only. Then,
measurement update is performed to update only the attitude
and the gyroscope bias. The adaptive determination of the
measurement noise covariance and the measurement model
when deemed static by the static detector are as follows.

55848 VOLUME 11, 2023



M. S. Lee et al.: Center-of-Rotation-Augmented Kalman Filter for Adaptive ARS

Adaptive R:

Rk =

{
go to rot. detector if

∣∣∣f̃k + Ĉb
n [0 0 g]T

∣∣∣ > σz

Racc otherwise
(22)

Measurement model (linearized, discrete):

δzk = f̃k + Ĉb
n
[
0 0 g

]T
= Hkδxk + vk (23)

Hk =
[
C1,2c 03×6

]
(24)

where σz is the measurement noise standard deviation. The
above measurement model is similar to the linearized discrete
measurement model of equations (13) and (14) from Sec-
tion II, with the difference being the new observation matrix
for our augmented error state vector. As for the threshold of
the detectors, we heuristically set it as the measurement noise
standard deviation, σz, but the value is a user-determined
parameter that may be chosen differently. If the threshold
is set too low for any of the detectors, it would inflate the
measurement covariance matrix; if the threshold is set too
high, it would deflate the measurement covariance matrix.
Both cases of false detection would hinder the filter from
accurately capturing the true dynamics, and thus deteriorate
the performance of the proposed algorithm.

However, if deemed dynamic, the system goes through
our rotational motion detector. The rotational motion detector
checks whether the system is rotationally dynamic by com-
paring gravity vector with acceleration measurement com-
pensated for the acceleration with respect to the estimated
center of rotation. When deemed rotationally static, R is set
as Racc + R′, where the definition and derivation of R′ is
presented in Section III-C. Conversely, when deemed rota-
tionally dynamic,R is set as s

(
Racc + R′

)
. The parameter s is

a user-set parameter, which we chose as 107 for experiments
carried out in this paper. Though very large, the results in
Section IV shows that the measurement was still able to
influence attitude estimation. The optimal value was chosen
through a set of trials. We also confirmed that the degradation
of performance due to using other values that are not widely
different from the optimal value is minimal. As the system
undergoes the rotational motion detector, the measurement
update performs an update on not only the attitude and the
gyroscope bias, but also the center of rotation. The adaptive
determination of the measurement noise covariance and the
measurement model of the second step are as follows.
Adaptive R:

Rk =


s
(
Racc + R′

)
if

∣∣∣(f̃k + Hr r̂b
)

+ Ĉb
n [0 0 g]T

∣∣∣ > σz

Racc + R′ otherwise

(25)

Measurement model (linearized, discrete):

δzk = f̃k + Ĉb
n
[
0 0 g

]T
+ Hr r̂b = Hkδxk + vk

(26)

Hk =
[
C1,2c 03×3 Hr

]
(27)

where r̂b is the current estimate of the center of rotation in
the sensor frame. Also, Hr =

[
ω̃k×

]2
+

[
α̃k×

]
, and α̃k =

ω̃k−ω̃k−1
1t , where ω̃k is the tri-axial gyro measurements at time

k with following relation.

ω̃k = ωk + δωk (28)

From themeasurementmodel shown in equation (26), the cen-
tripetal acceleration due to rotational motion about the fixed
point at rb corresponds to − [ωk×]2 rb, whereas the tangen-
tial acceleration corresponds to − [αk×] rb.

C. DERIVATION OF MEASUREMENT NOISE COVARIANCE
MATRIX
With the presence of an error inHr from the gyroscope error,
the measurement noise covariance matrix Rk is now larger
than conventional measurement noise covariance matrix,
Racc. We define the increment as R′, such that

Rk = Racc + R′ (29)

To derive R′, we first define polysemous notations l, m,
and n. The notations correspond to numbers 1, 2, or 3 when
denoting components ofHr , and correspond to x, y, or zwhen
denoting the axes of gyroscope measurement, ω. To elabo-
rate, in case ofHr (2, 3), l and m are assigned to y and z axes,
and n is automatically assigned to the x axis. Let us define
δHr (l,m) to be the error in the (l,m)-th component of Hr .
Then, using the definition of Hr , following error expressions
can be derived:

δHr (l, l) = −

(
δω2

m + δω2
n

)
(30)

δHr (l,m ̸= l) = δ (ωlωm)+ δ (αn)

= (ω̃l ω̃m + α̃n)− (ωlωm + αn)

=

(
ω̃lω̃m +

ω̃n,t − ω̃n,t−1t

1t

)
−

(
ωlωm +

ωn,t − ωn,t−1t

1t

)
= δωlδωm + ωlδωm + ωmδωl

+
δωn,t − δωn,t−1t

1t
(31)

With such derivations of each component of the error
matrix, the expectations of squared-error terms are drawn.
Their derivations are spanned out for all six cases as followed.
In this section we only show the final outcome of each
case, and the full process of the derivations are presented in
Appendix A.
Case 1:

E
[
δHr (l, l)2

]
= 8 (PSD)21t2 (32)

Case 2:

E
[
δHr (l,m ̸= l)2

]
= (PSD)21t2 +

2 (PSD)2

1t2

+ (ω2
l + ω2

m)(PSD)1t︸ ︷︷ ︸
dependent on motion

(33)
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Case 3:

E [δHr (l, l) δHr (l,m ̸= l)] = 0 (34)

Case 4:

E [δHr (l, l) δHr (m ̸= l,m)] = 6 (PSD)21t2 (35)

Case 5:

E [δHr (l,m ̸= l) δHr (l, n ̸= l&m)]

= ωmωn(PSD)1t + 2ωl(PSD)︸ ︷︷ ︸
dependent on motion

(36)

Case 6:

E [δHr (l, l) δHr (m̸=l, n ̸= l&m)] = 0 (37)

Assuming that the rotational rate is much smaller than
1/1t , which corresponds to 100 rad/s for a sampling rate
of 100Hz, above six cases can be approximated and reduced
down as follows.
For case 2 from above:

E
[
δHr (l,m ̸= l)2

]
≈

2 (PSD)2

1t2
(38)

For all other cases:

E [δHr (l,m) δHr (n, o)] ≈ 0 (39)

Hence, R′, measurement noise covariance matrix induced
from the gyroscope error, can be represented as follows.

R′
≈

2 (PSD)2

1t2

 r2y + r2z rxry rzrx
rxry r2z + r2x ryrz
rzrx ryrz r2x + r2y

 (40)

A detailed derivation of R′ is presented in Appendix B.
For a gyroscope with amplitude spectral density (ASD) of

0.05 deg/
√
Hz sampled at 100Hz,

√
2(PSD)2

1t2
≈ 0.01 rad/s2.

When r =
∣∣rb∣∣ = 1m, this value is comparable to an

accelerometer noise with standard deviation of 0.01 m/s2.
Note that R′ increases as the rotational radius increases.

Since the rotational radius during translational motion is
conventionally considered infinite, R′ would become infinite
under such assumption. This implies that the measurement
update of the Kalman filter has practically no effect as Rk
is infinite. Instead, the rotational radius is set to zero, in the
sense of resetting the value until the system is under a rota-
tional acceleration again. In the implementation aspect, this is
much more practical asRk equals to sRacc under translational
motion, meaning the filter still performs an update, just with
a larger measurement noise covariance matrix to reflect the
dynamicity of themotion. Kinematically speaking, setting the
rotational radius to zero does not imply a pure translation,
but rather a pure rotation. However, despite the rotational
radius being both zero, the proposed algorithm is still able
to distinguish between the two motions with its static detec-
tor: in a purely translational case, an external acceleration
is present, whereas in a purely rotational case, it does not.
Furthermore, the outperforming results shown in Section IV
also corroborate the validity of our assumption.

D. OBSERVABILITY ANALYSIS
Since proposed algorithm assumes handheld device appli-
cations, where dynamics is limited by the maximum speed
of human motion, the Piece-Wise Constant System (PWCS)
assumption is employed to analyze the observability of the
proposed system. The observability matrix for a PWCS [41]
is as follows.

O =


O1
O2
...

Or8
n−1
r−18

n−1
r−2 · · · 8n−1

1


T

(41)

where

OT
j =

[
HT
j |

(
Hj8j

)T
| · · · |

(
Hj8

n−1
j

)T ]
(42)

The proposed system is fully observable for rotations about
two or more axes. However, for rotations around a single axis,
it is only partially observable. In the latter case, the position
of center of rotation along the rotation axis is unobserv-
able. We provide detailed derivation and explanation of the
observabilitymatrix inAppendix C. Despite the unobservable
case, we believe the stability of the system would not be
compromised as a circumstance where the rotation axis aligns
perfectly with one of the axes is highly unrealistic. We further
explain the case with regards to our rate table experiment in
Section IV-B.

IV. EXPERIMENTAL RESULTS
To verify the accuracy and robustness of our algorithm,
we conduct an extensive evaluation on total of six scenarios,
four collected by the authors and two from the benchmark
dataset BROAD [36]. In this section, the setups and results of
each scenario are presented.

A. SENSOR SETUP AND SCENARIO DESCRIPTIONS
1) AUTHOR-COLLECTED DATASET
The inertial measurement unit (IMU) used to evaluate the
proposed attitude estimating algorithm is the Xsens MTx,
with its specifications [42] listed in Table 2. As a reference,
the VICON infrared camera motion capture system was used
to track threemarkers 10cm apart from one another. However,
since VICON only provides attitude values, MTx output was
used as acceleration reference. Hence, DCM from VICON
attitude multiplied by the gravity vector was deducted from
the MTx acceleration value to derive the reference values of
the external acceleration. The external acceleration reference
is calculated as below:

dref ,k = f̃k − Cb
nVICON

[
0 0 −g

]T (43)

A static calibration of gyroscope bias was performed prior to
each motion for 20 seconds. The remaining gyro bias after
Talign seconds of calibration is as follows.

δbg =
σgyr

√
T align

≈ 0.01deg/s (44)
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FIGURE 2. Schematic view of (a) the rate table, (b) ‘‘Handheld Yaw’’, and (c) ‘‘Handheld Eight’’ scenarios. The orange objects are the IMUs in use.

where σgyr is the noise standard deviation of the gyroscope.
Above value was used in setting the initial gyroscope bias
error covariance.

FIGURE 3. Setup of (a) the rate table and (b) the handheld experiments.

TABLE 2. MTx specifications.

Of the four tested scenarios, the first two were rate table
experiments with different rates. The setup of the rate table
experiments is as shown in Fig. 3 (a).We call the first scenario

FIGURE 4. 3D motion paths of (a) the ‘‘BROAD Combined 360s’’ and
(b) the ‘‘BROAD Disturbed Mixed’’ experiments.

as ‘‘Rate Table Slow’’ and the second scenario as ‘‘Rate
Table Fast.’’ Both scenarios involved periodic bang-bang
maneuvers, depicted in Fig. 2 (a), with trapezoidal velocity
profiles. For ‘‘Rate Table Slow,’’ the average and maximum
norm deviations from static acceleration was 0.54m/s2 and
1.03 m/s2, respectively. For ‘‘Rate Table Fast,’’ the average
and maximum norm deviations from static acceleration was
1.25 m/s2 and 1.95 m/s2, respectively.
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FIGURE 5. Results of a single trial of ‘‘Rate Table Fast’’. (a) Errors of estimated attitude, (b) estimated external acceleration, and
(c) estimated center of rotation. From (a), the conventional method, MTx output, and the proposed method are colored in green, blue, and
red, respectively, denoted as ‘‘Li & Wang’’, ‘‘MTx’’, and ‘‘CR-ARS’’ (short for Center-of-Rotation based ARS), respectively.

TABLE 3. Myon Aktos-t specifications.

The latter two were handheld experiments to demonstrate
performance in actual usage. The setup of the handheld
experiments is as shown in Fig. 3 (b). The third scenario
involved high-dynamic forearm rotations about the vertical
axis, as in Fig. 2 (b). We call this scenario ‘‘Handheld
Yaw.’’ The average norm deviation from static acceleration
was 7.46 m/s2, and at times it reached up to 31.18 m/s2.

The fourth and last scenario involved high-dynamic swings in
figure-of-eight curves, as in Fig. 2 (c). The motion is similar
to putting an elbow on a table and drawing and ‘‘X’’ with the
fist, resulting in a trajectory comprised of two arcs with the
center as the elbow. We call this scenario ‘‘Handheld Eight.’’
The average acceleration norm deviation from the gravity
was 3.87 m/s2, and at times it reached up to 12.39 m/s2.
All four sequences have fixed center of rotation and are
comprised of primarily rotational motion to highlight the effi-
cacy of our contribution. We present quantitative results for
all sequences, but only provide full graphical representation
for ‘‘Rate Table Fast’’ and ‘‘Handheld Eight’’ to practice
economy.

2) BROAD DATASET [36]
BROAD dataset [36] is comprised of 39 trials that vary
in types of motions, the speeds of motions, and existence
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of accelerometer and/or magnetometer disturbances. All tri-
als were recorded with 9-axis IMU Myon Aktos-t from
Myon AG, Switzerland, with its specifications [36] listed in
Table 3. For the ground truth data, an Optitrack OMC system
of eight cameras was used, providing angular accuracy of
0.2 degrees [36].

Of the 39 trials, we chose two, the 20th and the 39th,
to evaluate our algorithm on real-world scenarios of complex
motions and with varying center of rotation. The former
is an undisturbed trial with combination of rotational and
translational motions lasting 360 seconds, named ‘‘BROAD
Combined 360s’’ hereafter. The sequence goes under average
acceleration norm of 4.00 m/s2 and maximum of 11.70 m/s2.
The latter, named ‘‘BROADDisturbed Mixed’’ hereafter, is a
trial of 280 seconds with disturbed and undisturbed phases
coexisting. The trial is comprised of several segments of
combinedmotion of rotation and translation with short breaks
in between. The sequence goes under average acceleration
norm of 3.25 m/s2 and maximum of 40.22 m/s2. Unlike our
author-collected datasets, the chosen BROAD trials present
more complex motions closer to real-world situations with
varying center of rotation, shown by their 3D motion paths
in Fig. 4, thus appropriate for evaluating robustness of our
proposed algorithm.

For all experiments, the performance evaluation was con-
ducted in terms of root mean square error (RMSE). For
fair comparison, an algorithm, referred to as ‘‘conventional’’
hereafter, was devised, adopting measurement noise covari-
ance adaptation scheme based on the work of Li and Wang
[14], combined with the states and filter structure described
in Section II. Hence, for attitude estimation, the proposed
algorithm was compared with the conventional algorithm
and the MTx output, whereas for external acceleration esti-
mation, it was only compared with the conventional algo-
rithm as the MTx output was used to derive the reference
value, as explained earlier in this section. Since the BROAD
dataset does not provide attitude output by Myon Aktos-t,
we compare only with the conventional algorithm for the two
BROAD trials.

TABLE 4. RMSE results of Rate Table Slow.

B. RATE TABLE EXPERIMENTS
The results of ‘‘Rate Table Slow’’ scenario are summarized
in Table 4. The proposed algorithm outperforms both the
conventional algorithm and MTx in most cases of attitude

TABLE 5. RMSE results of Rate Table Fast.

estimation, the former by 20-30%, though the conventional
algorithm also shows satisfactory results of sub-degree error.
For external acceleration estimation, the proposed outper-
forms the conventional algorithm in all trials by far, showing
80% less error.

TABLE 6. RMSE results of Handheld Yaw.

TABLE 7. RMSE results of Handheld Eight.

Table 5 summarizes the results of ‘‘Rate Table Fast’’ sce-
nario. Similar to the previous scenario, the proposed algo-
rithm outperforms both the conventional algorithm and MTx
in most cases of attitude estimation. For external accelera-
tion estimation, the proposed outperforms the conventional
algorithm in all trials by an even greater discrepancy than the
previous scenario. Fig. 5 (a) shows a full graphical compar-
ison of attitude estimation of a single trial. Estimated exter-
nal acceleration of a single trial compared to the reference
value, magnified to show results of 5 seconds, is shown in
Fig. 5 (b). Similar to previous scenario, it can be seen that
our proposed algorithm presents superb performance of 88%
less error on average. The estimated center of rotation is
shown in Fig. 5 (c). The sensor was indeed attached 10cm
from the center of the rate table, indicating that the algorithm
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FIGURE 6. Results of a single trial of ‘‘Handheld Eight’’. (a) Errors of estimated attitude, (b) estimated external acceleration, and
(c) estimated center of rotation. From (a), the conventional method, MTx output, and the proposed method are colored in green, blue, and
red, respectively, denoted as ‘‘Li & Wang’’, ‘‘MTx’’, and ‘‘CR-ARS’’ (short for Center-of-Rotation based ARS), respectively.

has successfully estimated the center of rotation. Though
accurate estimation of center of rotation itself is not the focus
of this research, such accuracy undoubtedly improves the
performance of the filter.

TABLE 8. RMSE Results of BROAD dataset.

Our rate table experimentsmight be considered as rotations
around a single axis, which is the unobservable case men-
tioned in Section III-D. Yet, as seen in Fig. 5 (c), the rotation

axis and the z-axis are not perfectly aligned, and the results
prove that the stability of the system is not compromised by
the partially observable nature of the system.

C. HANDHELD EXPERIMENTS
The results of ‘‘Handheld Yaw’’ scenario are summarized in
Table 6. For roll estimation, our proposed algorithm demon-
strates the best results of near sub-degree error, while MTx
shows comparable performance. The proposed algorithm also
shows best performance on pitch estimation, while all three
methods show performance of sub-degree error. In case of
external acceleration estimation, the proposed greatly outper-
forms the conventional method with 68% less error. Con-
sidering that ‘‘Handheld Yaw’’ is the most dynamic of all
four scenarios, it is proven that our algorithm indeed delivers
superb performance, withstanding such harsh and challeng-
ing conditions. Compared to the rate table experiments, the
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FIGURE 7. Results of a single trial of ‘‘BROAD Combined 360s’’. (a) Errors of estimated attitude, (b) estimated external acceleration, and
(c) estimated center of rotation. From (a), the conventional method and the proposed method are colored in green and red, respectively,
denoted as ‘‘Li & Wang’’ and ‘‘CR-ARS’’ (short for Center-of-Rotation based ARS), respectively.

accuracy of estimating external acceleration is compromised
due to harsh nature of the motion. Yet, our algorithm still out-
performs the conventional algorithm by a great deal, proving
improved robustness towards harsh motion.

The results of ‘‘Handheld Eight’’ scenario are summarized
in Table 7. Our proposed method outperforms both conven-
tional and MTx results in most cases, with sub-degree error
for both roll and pitch of all four trials. As for estimat-
ing external acceleration, proposed algorithm shows better
performance compared to the conventional algorithm with
62% less error, consistent with the results of other scenarios.
Together with the results from ‘‘Handheld Yaw’’, we can con-
fidently claim that our method successfully estimates attitude
and external acceleration in highly dynamic conditions, espe-
cially with motions regarding center of rotation. A graphical
comparison of attitude estimation of a single trial is presented
in Fig. 6 (a). Fig. 6 (c) shows estimated center of rotation

of this scenario. When compared to other scenarios, it can
be noted that the estimation has a delay in converging to
accurate value of center of rotation, which is the length of the
forearm. Such delay can explain a slightly higher error within
the timeframe of 0-40 seconds than the rest of the time, shown
in Fig. 6 (a). Finally, Fig. 6 (b) shows estimated external
acceleration of a single trial compared to the reference value,
magnified for 5 seconds.

D. BROAD DATASET
The results of ‘‘BROAD Combined 360s’’ scenario are
summarized in the first row of Table 8. Our proposed
method outperforms the conventional algorithm by 38%,with
sub-degree error for both roll and pitch. A graphical com-
parison of attitude estimation of a single trial is presented
in Fig. 7 (a). The accuracy of estimating external accelera-
tion is also improved compared to the conventional method,
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FIGURE 8. Results of a single trial of ‘‘BROAD Disturbed Mixed’’. (a) Errors of estimated attitude, (b) estimated external acceleration, and
(c) estimated center of rotation. From (a), the conventional method and the proposed method are colored in green and red, respectively,
denoted as ‘‘Li & Wang’’ and ‘‘CR-ARS’’ (short for Center-of-Rotation based ARS), respectively.

showing 56% less error, consistent with the results of author-
collected scenarios. Fig. 7 (c) shows estimated center of rota-
tion of this scenario. When compared to the previous author-
collected dataset, it can be seen that the center of rotation
changes irregularly, hence proving that estimating center of
rotation online serves a purpose in situations with arbitrary
motions. Fig. 7 (b) shows estimated external acceleration
compared to the reference value, magnified for 5 seconds.

The second row of Table 8 presents the results of ‘‘BROAD
DisturbedMixed’’ scenario. The results show that ourmethod
outperforms the conventional method by 32% in attitude esti-
mation. A full graphical representation of attitude estimation
is presented in Fig. 8 (a). Our algorithm also outperforms
the conventional in estimating external acceleration with 57%
less error. Fig. 8 (b) shows estimated external acceleration of
a single trial compared to the reference value, magnified for
5 seconds. From the graph, we can see that there has been a

false detection of external acceleration from 74 to 77 second
of the sequence. Judging from the provided sensor data, this
deviation can be explained by a sudden change in the gyro-
scope measurements within that window, which results in an
erroneous deduction of the gravity vector. Such false detec-
tion leads to deterioration of accuracy in attitude estimation,
as explained in Section III-B. The zoomed graph of Fig. 8 (a)
corroborates the effect of false detection, showing increased
attitude estimation error for both roll and pitch. However,
it is also shown that false detection does not have a lasting
effect on degradation of performance as the error normalizes
when the filter starts to correctly detect external acceleration.
Lastly, the estimated center of rotation is shown in Fig. 8 (c).
We prove once again that our method estimates center of rota-
tion well through the areas with near-zero values, which coin-
cide with the intermittent short breaks between the dynamic
phases that ‘‘BROAD Disturbed Mixed’’ has.
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The evaluation on both BROAD sequences effectively
demonstrate the robustness of our algorithm, proving that the
applicability of our method is not limited to situations with
rotation-only motions or a fixed center of rotation.

V. CONCLUSION
In this work, we presented an augmented Kalman filter-based
ARS that accurately estimates attitude with center of rotation
augmented to its error-state vector.

As an accurate estimation of the external acceleration is a
key to a successful ARS, knowing the types of undergoing
motion is crucial. The augmentation of center of rotation
precisely does that: estimated center of rotation allows us
to describe the motion with respect to rotational motions as
well as translational ones, unlike previous works that do not
distinguish whether the motion is translational, rotational,
or both.

With a more specific understanding of the motion,
we employ two motion detectors to adaptively adopt a mea-
surement model and noise covariance matrix more fitting
to the undergoing motion. The static detector, the first of
the two detectors, is similar to those of the conventional
threshold-based algorithms: determining whether the system
is static or not, without considering the nature of the dynam-
icity. The superiority of our algorithm lies with the second
detector, the rotational motion detector. Effectively taking
advantage of the estimated center of rotation, the detector
not only distinguishes whether the dynamicity of the system
inherits a rotational motion but also provides the filter with
a more accurate measurement model that incorporates rota-
tional acceleration. This includes a newly defined component
of the measurement noise covariance matrix, R′, with its full
derivation thoroughly presented in Section III-C, Appendix A
and Appendix B.

Our algorithm is validated through author-collected experi-
ments and existing benchmark dataset [36] in Section IV. The
former is comprised of four experiments: ‘‘Rate Table Slow’’,
‘‘Rate Table Fast’’, ‘‘Handheld Yaw’’, and ‘‘Handheld
Eight’’. These experiments are intended to highlight the con-
tribution as they are almost purely rotational with fixed center
of rotation. With the estimated center of rotation and the
rotational motion detector, the proposed algorithm outper-
forms the conventional algorithm and the MTx output in
terms of accuracy in estimating the attitude and the external
acceleration in almost all sequences. From the benchmark
dataset, we chose two sequences, ‘‘BROADCombined 360s’’
and ‘‘BROAD Disturbed Mixed’’, to prove the robustness of
our algorithm against challenging situations. The sequences
consist complex motions, in combination of translational and
rotational motions with varying center of rotation. Even in
such adverse circumstances, our algorithm outperformed the
conventional method with sub-degree errors, proving that the
superb performance of the proposed algorithm is not limited
to purely rotational motion with fixed center of rotation.

This work may be extended to an ARS for robot applica-
tions or generally for any dynamic system, preferably with

unknown model parameters and/or under rotational motions.
For future work, the relationship between the magnitude
of acceleration and performance can be further investigated
through additional experiments.

APPENDIX A
DERIVATION OF EXPECTATIONS OF SQUARED-ERROR
TERMS
Case 1:
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Case 5:
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APPENDIX B
DERIVATION OF R’
R′ is the measurement noise covariance matrix induced
from the gyroscope error, or more specifically, from the
Hr r̂b of the measurement equation (26). In Kalman filter,
the measurement noise covariance matrix is the expecta-
tion of the error squared. Accordingly, R′ can be expressed
as E

[(
δHr r̂b

) (
δHr r̂b

)T ]
. Expansion of this is shown as

follows.

E
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) (
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·
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T


From equations (38) and (39), the above equation is only left
with the δHr (l,m ̸= l)2 terms, as shown below.
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Hence, we can conclude by simplifying the above:
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APPENDIX C
DETAILS ON THE OBSERVABILITY MATRIX
We first conduct full expansions of H and 8.
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As for 8, as shown in the equation at the top of the next
page.
Hence, we can express H8 from the observability matrix as
follows.

H8 =
[
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55858 VOLUME 11, 2023



M. S. Lee et al.: Center-of-Rotation-Augmented Kalman Filter for Adaptive ARS
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n (1, 2)1t − Cb
n (2, 1) g · Cb

n (2, 2)1t

Cb
n (3, 2) g · Cb

n (1, 2)1t − Cb
n (3, 1) g · Cb

n (2, 2)1t


v9

=

Cb
n (1, 2) g · Cb

n (1, 3)1t − Cb
n (1, 1) g · Cb

n (2, 3)1t

Cb
n (2, 2) g · Cb

n (1, 3)1t − Cb
n (2, 1) g · Cb

n (2, 3)1t

Cb
n (3, 2) g · Cb

n (1, 3)1t − Cb
n (3, 1) g · Cb

n (2, 3)1t


To give an example of an unobservable case, we assume a
rotation purely about the z-axis. In this case, ωx , ωy, αx , and
αy are all zeros. This makes v6, the last column ofH8, a null
vector, hence indicating that δrz is unobservable.
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