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ABSTRACT Accidents involving electric vehicle fires have increased as the number of electric vehicles
has grown recently. The issue of charging safety is a key barrier to the growth of the electric vehicle sector
because these accidents have resulted in large financial losses for car owners and charging facility operators.
The approach for resolving the issue of electric car charging safety through an electric vehicle charging
safety warning system is suggested in this research. The suggested solution uses an adaptive optimization
of long short-term memory neural network (A-LSTM) to forecast voltage changes throughout the whole
charging process by using the vehicle’s daily historical charging data. The warning threshold adjustment
method is established by the difference between the predicted voltage data and the actual voltage data, which
is dynamically adjusted as the charging process progresses. Finally, a real-time warning model for vehicle
charging alert is developed. The daily charging data of electric vehicles is used in the paper to verify the
precision of data prediction and the accuracy and timeliness of the model. The study’s findings demonstrate
that the early warning model suggested in this paper can quickly send out early warning signals to safeguard
the safety of car charging and can identify aberrant charging data.

INDEX TERMS Electric vehicle, charging safety, early warning, A-LSTM algorithm, daily charging data.

I. INTRODUCTION

The ecological and energy crises are becoming increasingly
prominent on a global scale. Compared with traditional fuel
vehicles, electric vehicles (EVs) have significant advantages
in saving oil resources and reducing carbon emissions. They
have received attention from governments and automotive
companies worldwide, and the number of EVs in use has
continued to grow [1], [2]. However, the frequent occurrences
of spontaneous combustion and fires in EVs have caused
serious economic losses to car owners and charging facility
operators, and charging safety issues have hindered the devel-
opment of EVs and related industries [3], [4]. With the full
implementation of the national big data strategy, the trend
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of digitalization and intelligence in the automotive industry
is becoming more and more obvious. The use of big data
research to solve the safety issues of EVs has become an
important pathway. The deep integration of EVs and big data
will undoubtedly accelerate the transformation of automotive
safety regulatory technology, thereby further promoting the
high-quality development of China’s EV industry [5], [6].
At present, the research on the safety warning and fault
diagnosis of EV charging process has just started. Generally,
the traditional research for EV fault diagnosis and warning is
done by constructing the electrochemical model of the bat-
tery. Seo et al. used a recursive least squares method to detect
internal short-circuit faults in batteries based on an equivalent
circuit model with the battery open-circuit voltage and state
of charge (SOC) as inputs [7]. Zhang et al. electrochemical
model of the power battery is constructed, and the battery
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status is judged by comparing the charge response informa-
tion simulated by the battery model and the battery charge sta-
tus information for charging fault monitoring and early warn-
ing [8]. Tran et al. comprehensive consideration of SOC, tem-
perature and state of health (SOH) establishes an equivalent
circuit model for lithium-ion batteries, which is capable of
estimating the battery state of charge, temperature and health
status with high accuracy and can be effectively monitored
by the battery management system (BMS) [9]. In addition,
some scholars have used the expert system approach for fault
detection and early warning. Song designed a comprehensive
evaluation index system for charging safety based on expert
scoring and other methods from three aspects: power battery,
charging equipment and distribution network, and use the
gray correlation degree method to determine the weight of
each index [10]. Qian et al. designed a safety and protection
monitoring device for electric vehicle charging, and then
established an early warning model based on the operation
status of charging equipment by fuzzy comprehensive evalu-
ation method [11]. EV battery systems are strongly nonlinear
and it is difficult to build an accurate model for them. Fearing
that a model is usually only applicable to a specific fault
type, it requires a lot of modeling work and is inconvenient
in engineering.

In recent years, the widespread use of big data and machine
learning has also led to new approaches to fault monitoring
and early warning. Zhao et al. proposed a fault diagnosis
method for electric vehicle battery system based on big
data statistical method to construct a more complete bat-
tery system fault diagnosis model based on machine learn-
ing algorithm and multi-level screening strategy to detect
abnormal changes of voltage [12]. Zhang et al. Constructing
a charging warning model based on improved grey wolf
optimization-back propagation neural network (IGWO-BP)
to accurately identify abnormal EV charging voltage condi-
tions for diagnosis and warning [13]. Xia et al proposed a
short-circuit fault diagnosis method based on voltage profile
correlation coefficients to detect short-circuit faults by cap-
turing the decreasing trend of voltage correlation coefficients
of two adjacent cells individually and using recursive sliding
windows to maintain the sensitivity of fault detection during
operation. [14] Gao et al. constructed an electric vehicle
charging process fault warning method based on adaptive
deep belief networks, which can accurately warn of faults dur-
ing the charging process of electric vehicles [15]. Zhang et al.
proposed a new method for quantifying electrical safety index
system based on comprehensive weights, which is suitable for
application to electrical safety protection of electric vehicle
charging equipment [16]. Yu combines BP neural networks
with outlier testing to achieve charging safety monitoring
and fault warning for electric vehicles, and is capable of
alerting when charging faults occur in electric vehicles [17].
Yang et al. proposed a current prediction method based on
back propagation neural network to estimate the current of
cells with external short circuit faults in the battery pack by
neural network using only voltage information to achieve
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early warning of thermal runaway [18]. The aforementioned
methods based on big data and machine learning are able
to handle time-series EV charging data, but they are mostly
based on laboratory data, and less research has been con-
ducted on daily EV charging data.

In summary, big data research and machine learning algo-
rithms are widely used in the field of fault diagnosis and
early warning, however, electric vehicle charging data is time-
series data, and the data volume is huge, the input dimension
is many, and the coupling is strong, some deep learning
algorithms are not well applied in this scene. The time series
warning method based on Long Short-Term Memory (LSTM)
can predict the future development trend of the data based
on current and historical data features, which is suitable for
vehicle charging data warning requirements. Therefore, this
paper is based on LSTM algorithm to build the vehicle charg-
ing safety warning model. Firstly, we analyze and summarize
the factors affecting vehicle charging safety by combining
the characteristics of vehicle charging data and the charging
characteristics of lithium-ion battery, and filter the charging
safety warning factors according to the vehicle charging data
characteristics by using Pearson correlation analysis to cal-
culate the correlation coefficients between different warning
factors; then we construct the A-LSTM prediction algorithm
and design the prediction model of charging data, and get the
predicted values of electric vehicle charging data by analyz-
ing and learning from the historical data; finally, we combine
the A-LSTM prediction algorithm and design the prediction
model of charging data. Finally, the dynamic warning thresh-
old method is constructed by combining the predicted value,
actual value and charging standard, and the real-time warning
model of EV charging safety is designed. Finally, the dynamic
warning threshold method is constructed by combining the
predicted values, actual values and charging standards to
design a real-time warning model for EV charging safety.
The daily charging data are analyzed and verified to prove
the accuracy and timeliness of the charging safety warning
model constructed in the paper.

Il. EV CHARGING SAFETY ANALYSIS

A. ANALYSIS OF EV ACCIDENTS

There are significant differences between combustion acci-
dents in new energy vehicles and those in traditional fuel
vehicles. Combustion accidents in traditional vehicles are
typically caused by non-standard modifications, aging cir-
cuits, arson, and other factors, whereas most combustion
accidents in new energy vehicles are caused by thermal run-
away [19]. The fire scenarios caused by thermal runaway
in EVs mainly include five types: lithium-ion battery charg-
ing combustion, natural parking combustion, driving com-
bustion, collision combustion, and immersion combustion.
According to statistics [20], the accident ratios for these
scenarios are shown in Fig. 1, with the highest proportion of
combustion accidents occurring when EVs are being charged,
parked, or driven. Generally, there are fewer supervisory
personnel around vehicles in the charging and parking states
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than during driving. Therefore, it is necessary to improve the
safety warning system for EV charging and protect the safety
of charging EVs.

1.8% 3 6o,

B Sock

Collision
Park

FIGURE 1. EV accident scene diagram.

B. ANALYSIS OF EV CHARGING METHOD

There are two main charging methods used for EVs in the
market today, one is Direct Current (DC) fast charging and
the other is Alternating Current (AC) slow charging. DC fast
charging mainly uses the high-power DC charger of the
charging pile to directly charge the EV power battery, which
has a higher charging current and requires a short charging
time. AC slow charging relies on the on-board charger inside
the EV to convert the AC power provided by the charging
equipment to DC power for charging the power battery. This
charging method has a lower charging current but requires a
longer charging time, which generally causes less chemical
damage to the battery and can prolong the battery’s service
life [21], [22]. The voltage and temperature trends of an
on-board battery pack change when a vehicle is charged using
different charging techniques. Therefore, in order to develop
effective charging warning models, it is important to study
fast charging and slow charging vehicles separately.

C. ANALYSIS OF THE FACTORS AFFECTING

THE SAFETY OF EV CHARGING

Numerous factors are implicated in the safety of EV charging.
Typically, mistreatment of the battery can cause a sudden
rise in its internal temperature [7], which if exceeds a critical
threshold, may result in the melting of the separator, decom-
position of the positive electrode material, and electrolyte
oxidation within the battery, ultimately leading to a violent
combustion event and subsequent thermal runaway. While
the phenomena may vary slightly depending on the specific
trigger, the underlying mechanisms are largely analogous.
In the following, we will provide a comprehensive overview
of the commonly observed influential factors.

1) INTERNAL SHORT CIRCUIT IN BATTERY
When a battery is internally short-circuited for some reason,
a huge current will be generated inside the battery in a short
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period of time, causing the internal temperature of the battery
to rise sharply, which will lead to charging accidents. From
the perspective of the triggering mechanism, there are three
main types of internal short circuits in batteries: internal short
circuits caused by overcharge or over discharge, internal short
circuits caused by mechanical damage and self-triggered
internal short circuits [23].

2) BATTERY OVERCHARGE

Overcharging of a battery can be a dangerous condition where
the charging equipment continues to supply energy to the
battery for an extended period of time. This can lead to
safety accidents. There are several factors that can cause
battery overcharging, including high ambient temperatures
and incorrect charging methods [24].

3) BATTERY SEPARATOR AND ELECTROLYTE MATERIAL

The battery separator serves the critical function of isolating
the positive and negative electrodes to prevent short circuit
accidents that may arise from the penetration of the separator
during the electrochemical reaction. However, as the battery
undergoes cycles of charge and discharge, the electrolyte
degrades, leading to a decline in the battery’s overall perfor-
mance over its life cycle [25].

4) BATTERY PACK CONSISTENCY

Due to differences in production technology and daily usage,
individual battery parameters of EV battery packs may
become inconsistent, and there may be differences between
individual batteries due to internal decay effects of the battery
pack. The inconsistency of battery packs can lead to differ-
ences in SOC, voltage, SOH, etc. between individual cells,
which can seriously affect normal use [26].

In summary, it is evident that EV spontaneous combustion
accidents are primarily caused by thermal runaway issues
resulting from internal battery short circuit, battery over-
charge, and battery pack inconsistency. Therefore, this paper
integrates vehicle charging data and charging safety influ-
encing factors and selects real-time battery pack SOC, initial
SOC, battery pack SOH, charging current, maximum temper-
ature of single battery, and maximum voltage of single battery
as EV safety warning factors. Battery pack SOC and charging
voltage current temperature can represent the charging status
of EV, SOH can represent the aging condition of the battery
pack, and the aforementioned early warning factors can be
used to determine whether the EV is malfunctioning or not.

Ill. MODE DESIGN

The safety warning model is developed based on the charac-
teristics of EV charging data, comprising five distinct steps.
The first four steps involve offline processing to establish
EV charging warning thresholds, while the fifth step involves
online comparison of EV charging data with the warning
thresholds to achieve status detection and warning. The model
operates as follows:

55083



IEEE Access

X. Diao et al.: Research on EV Charging Safety Warning Based on A-LSTM Algorithm

Step 1: EV charging data processing. Firstly, the collected
EV historical charging data are subjected to de-hybridization
operation to remove missing values and great outliers from
the data, and then the data are normalized according to equa-
tion (1) to make the EV historical charging data vector EVyg
a standard data mapped to [—1, 1]. This can prevent the
subsequent calculation errors caused by data changes, and at
the same time can improve the operation speed and prediction
accuracy of the early warning model.

2 (EVhis — EVhis-min)
EVhis—max — EVhis-min
where EVhig input i the normalized historical data value,
which is used as the standard input data in the subsequent
steps; EVypjs is the original charging data; EVpjsmax and
EVhis-min are the maximum and minimum values of the cor-
responding data in the original charging data.

Step 2: EV charging warning factor calculation. First,
the EV charging safety warning factor ryr is determined by
considering the EV charging history data types and the EV
charging safety influencing factors summarized in the intro-
duction section, and then the corresponding data in EVy;g,
the EV charging history data set, are extracted according
to the warning factor, and the correlation coefficient ck
among the influencing factors is calculated by the Pearson
correlation coefficient formula shown in equation (2) and
equation (3), and finally the correlation coefficients among
the factors are compared, and the one with the strongest
correlation with other factors is selected as the charging safety
warning factor rys.

1 1

EVhis—input =

é (i — D —7)

@

Cxy—i =
\/Z (i =X 2 (i —y)?
i=1 i=1

m
k=, Comi 3)

where i is the data number of the warning factor, n is the
number of input data, x and y are two different warning data.
Cxy—i shown in Table 1 indicates the correlation coefficient
between warning data x and y, X and y are the average value
of the corresponding warning data set, k is the warning factor
serial number, m is the number of warning factors, and m is
taken as 6 according to Table 1.

Step 3: EV charging data prediction. Extract EV standard
charging data EVy;s_input to select suitable parameters as input
EVinput, take the predicted data of charging factor as output
EVpre, and build A-LSTM deep network for regression cal-
culation of the data. Observe the prediction results, gradu-
ally adjust the hyperparameters of the algorithm, explore the
balance between the amount of input data and the prediction
accuracy of the algorithm, while ensuring the optimal pre-
diction accuracy and prediction time, determine the optimal
hyperparameters of the algorithm, form the A-LSTM deep
learning network model, and then use the A-LSTM algorithm
to fit the data, as shown in equation (4) and equation (5)
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TABLE 1. EV charging safety warning factor.

NO. Symbols Meaning of Symbols Unit
1 T'wE-S0C0 Charge initiation SOC %
2 r'wi-SOC Charging real-time SOC %
3 F'wi-SOH SOH %
4 Fwi-l Charging current A
5 Fwt-v Maximum individual voltage A%
6 Fwi-C Maximum individual temperature °C

to obtain the EV warning factor prediction vector EVpge
and EV warning factor pressure residual vector EV,., which
lay a good foundation for the subsequent charging warning
threshold setting.

EVpre =f A—LSTM(EVinput) “4)
EVi = EVpre —EVior ©)

Step 4: EV dynamic warning threshold setting. Accord-
ing to the EV prediction data residual EV, obtained
in step 3 and the “Electric Vehicle Safety Requirements
(GB 18384-2020)”, the vehicle charging voltage threshold
array EVy,; is established with the data characteristics. then
the vehicle charging process is divided into 4 different warn-
ing regions according to the SOC value, I, II, IIT and IV, con-
sidering the changing characteristics of the vehicle charging
data, and each region is set up with the warning The threshold
adjustment factor w, w is dynamically adjusted according to
different regions, and equation (6) constructs the dynamic
warning threshold EVi.qy for EV charging warning factor.

n
EViay = > WEVanj ©)
EVipr = £4 - EVie )

where j is the charging warning region serial number, taking
the value of [1] and [4], w; is the warning threshold adjust-
ment factor of region j, and A is the adjustment factor, taking
the value between [—1.15, 1.15] according to the specific data
variation.

Step 5: EV charging safety warning. Input EV real-time
charging data EVy, record the initial SOC of EV charging
as SOCy and the highest voltage of vehicle battery as V,
determine the vehicle warning area according to the initial
state of vehicle charging, then select the dynamic warning
threshold of the corresponding area and monitor the vehicle
charging status, when the vehicle charging status is abnor-
mal, i.e., the changes of real-time charging voltage, charging
current and temperature are different from the safety model
constructed based on the historical normal charging data,
consider that there is a safety problem of EV charging at this
time, implement the corresponding warning rules in time and
take measures to deal with it. When the vehicle charging state
is abnormal, i.e., the real-time charging voltage, charging
current and temperature changes are different from the safety
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model built based on the historical normal charging data, it is
considered that there is a safety problem in EV charging at
this time, and the early warning is carried out in time and
measures are taken to deal with it.

The specific EV charging safety warning rules are as fol-
lows:

The first level is EV normal charging state, the vehicle
charging data in this state is below the warning threshold,
which is the most ideal charging state and no alarm will be
made;

The second level is EV warning state, the EV SOC in this
state is below 60% and the maximum battery voltage is higher
than the warning threshold, the state of this level indicates that
the EV charging is abnormal and protective measures should
be taken in time to make it converge to normal charging;

The third level for the electric vehicle alert state, the state
of the vehicle SOC in 60%-80%, the vehicle single battery
maximum voltage is higher than the warning threshold, at this
time the vehicle state may have risk, should be alarmed and
timely measures to prevent the vehicle from danger;

The fourth level is EV dangerous state, the state of the
vehicle SOC is above 80%, the highest voltage of the vehicle
single battery is higher than the warning threshold and lasts
for a long time, the EV continues to charge in this state is
very likely to burn the car accident, should promptly cut off
the power and stop charging.

In summary, the EV charging safety warning model is
constructed, and the specific model operation block diagram
is shown in Figure 2.

GO

Data Processing

Charging safety warning

Real-time charging data EV,,
Get SOC and V, etc.
Select threshold: EVy.qy

Judge vehicle status

Yes No
Above/below
the threshold

Perform the
appropriate alert
action

Input historical
charge data EV;;,

Calculate charge

factor: 7,

Forecast
data:
EVp.

Error
Information:
EV.

Data demixing and
data normalization

I 2
Standard data EVy.iup

‘Warning Threshold

Warning threshold
EVi

Data Prediction

LSTM algorithm

Error dependent
linear analysis

Dynamic adjustment

i

‘Warning threshold:
A-LSTM algorithm EViay Adjust the warning threshold
|
R E—

FIGURE 2. Flow chart of EV charging safety warning model.

IV. EV CHARGING DATA PREDICTION MODEL

The third step of the charging safety warning model con-
structed in Section III, accurate prediction of the complete
change pattern of EV charging data is crucial. It is apparent
that EV charging data series represent standard time series
data, and predicting the variable constitutes a regression
problem for time series analysis. LSTM algorithm model
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has proven effective in analyzing and learning input vehicle
historical charging time series data and forecasting the trend
of subsequent charging data based on the historical and cur-
rent state. Therefore, this study adopts LSTM to address the
data regression prediction challenge and further optimizes the
problem solution by constructing an A-LSTM model.

A. LSTM ALGORITHM
The LSTM neural network is a variant of Recurrent Neural
Network (RNN) that addresses the problems of gradient van-
ishing and explosion. It replaces the hidden layer of the orig-
inal RNN with LSTM units, which contain input, output, and
forget gates. The forget gate regulates the amount of historical
input by controlling which information is retained and which
is discarded. The activation function of all three gates is the
sigmoid function, which produces values between 0 and 1.
The gates learn to weight the historical input, current input,
and historical output, thereby achieving the memory function
of historical input and output.

The LSTM unit is constructed as shown in (8) to (13), with
the candidate LSTM memory cell state value represented by:

C (1) = tanh (wy — ¢ (t) + wpch (t — 1) +be)  (8)

where: x(¢) is the input data of the historical charging of the
EV at the current moment, 4(t — 1) is the output of the LSTM
unit at the previous moment, w, and wp,. are the connection
weights corresponding to the two inputs x(#) and the output
h(r — 1), C (¢) is the memory unit reference, and b, is the
bias of the network. Values of the input gates of the LSTM
network:

I (t) = sigmoid (

wyix (t) + wpih (t — 1)) )

+wq;C (t — 1)+ b;

where: wy;, wp; and w,; are the input data for the current
moment of EV historical charging, the previous moment
LSTM cell output and the previous moment cell output con-
nection weights to the input gate, respectively, and b; is the
bias of the input gate.

The values of the forgotten gates of the LSTM network:

. o wox () Foprh (= 1)

F (t) = sigmoid (+a)ﬁC (t— 1)+ b ) (10)
where: w,r, wyr and w,r are the EV historical charging input
data at that moment, the previous moment LSTM cell output
and the previous moment cell output connection weights to
the forgetting gate, respectively; by is the bias of the forgetting
gate.

In this way, the current LSTM memory cell state value:

COH=F0OQCE—1D+11)&C () (11)

where ® denotes the residence product operation.
And the value of the output gate of the LSTM network:

WxoX (1) + wpoh (t — 1)
+w,oC (t — 1)+ b, ) (12)

where: wyo, wpe and w,, are the connection weights of the
current moment’s input, the previous moment’s LSTM cell

O (t) = sigmoid (
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output and the previous moment’s cell output to the output
gate, respectively, and b, is the bias of the output gate.

It is feasible to determine the output of the LSTM memory
cell at a given time t by combining equations (8) to (13).

h(t)=0({—1)®tanh (C (r — 1)) (13)

In summary, the working process of LSTM can be simplified
as follows: given the input value x(#) at the current time step,
the information is filtered through candidate memory cells,
under the control of the input gate, to update the current
memory cell. The forgetting gate determines whether the
current memory cell can access information from the previous
cell, and the valuable information retained by these two parts
(i.e., the updated memory) is passed to the next LSTM. The
output gate controls whether the information in the memory
cell is transmitted to the hidden state for use in the output
layer, and h(tz) is also connected to the next LSTM cell
module. The interaction and control of the three gates allows
for the longer-term memory of the input information.

B. A-LSTM ALGORITHM

To enhance the precision of the LSTM model’s predictions
and mitigate its error, this study utilizes the error corre-
lation linear analysis approach and proposes the A-LSTM
(Adaptation LSTM) model. This model involves developing
a relationship equation (13) that correlates the input variables
with the historical prediction error.

en=f (x1,...,xn) (14)
where: e, represents the LSTM historical prediction error;
f(x1,...,x,) is a primary function on the input, (x, ..., x,

denotes the input).
The prediction model after error correction is shown in
equation (14).

LX)+ h (g, ., x) (15)

where: h(xy, ..., x,) is the established LSTM prediction
model; f(x1, ..., x,) is the error linear correction function,
and ha-1sTMm is the final output of the A-LSTM algorithm.

hatstm =f (x1, ..

V. EXPERIMENTAL VERIFICATION AND ANALYSIS

To validate the proposed EV warning model, this paper
selected two types of daily charging data from vehicles for
charging characteristic analysis and experimental simulation
verification. The charging data of vehicles using fast charging
and slow charging were collected separately. The selected
vehicles in this study have a demonstrative effect and can
serve as a reference for developing other EV charging safety
warning models.

A. EV CHARGING DATA

The EV battery system used in this study consists of
18650 type ternary lithium-ion batteries. The EV is composed
of 92 individual cells connected in series to form one group,
and a total of 32 groups are connected in parallel to form
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the battery pack of the EV. Each individual cell has a rated
voltage of 3.7V and a rated capacity of 2.2Ah. Therefore,
the rated voltage and capacity of the EV battery pack are
328.5V and 69Ah, respectively. Throughout the entire charg-
ing process, the EV adopts a typical three-stage charging
method, with slow charging before the battery pack’s SOC
reaches 80% using constant current charging. The charging
termination voltage of the vehicle’s battery system is 377V,
and the discharge termination voltage is 276V. The operating
temperature range for charging is between 0 to 50°C, and
for discharging, it is between —20 to 60°C. The maximum
continuous charging current allowed is 35A, and the max-
imum continuous discharge current is 103A. The charging
protection voltage for each individual cell is 4.1V, and the
discharge protection voltage is 3V.

The experimental EV operating data is presented in
Table 2, which includes fundamental information on vehicle
operation and data related to the vehicle battery system.

TABLE 2. Summary of EV Charging Data.

Type Name Data Range  Unit
EV Data Submission Time — —
operation

. . Motor temperature -10~50 °C

information
SOC 0~100 %
SOH 94.0~96.5 %

EV .

EV charging status 0,1,2 —

battery pack
related Charging current 1~110 A
information Battery temperature -10~50 °C

Maximum (low) voltage of

3.61~4.15 v

single battery cell

B. EV CHARGING DATA PRE-PROCESSING
In this study, a total of 153,247 vehicle charging history data
are collected, with a data time span of 1 year, specifically
containing the basic data of vehicle-pile communication and
the data type required for the model, which can depict the
vehicle charging scenario more completely. External factors,
such as measurement errors of vehicle sensors and trans-
mission errors of data, may lead to null values, abnormally
large values, and repeated values in historical charging data.
Moreover, due to the high data collection frequency, multiple
charging data correspond to the same SOC value when the
vehicle SOC accuracy is kept to 1 decimal place. There-
fore, data de-aggregation is required. After screening and
eliminating the abnormal data and blank data, the remaining
valid charging data are 98581. Then, the data were normal-
ized to meet the input requirements of the model prediction
algorithm.

After data pre-processing, extract the relevant charging
data, and equations (2) and (3) were used to calculate the
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correlation coefficients ¢ between the real-time SOC of the
battery pack, the initial SOC of the battery pack charging,
the SOH of the battery pack, the charging current of the
battery pack, the maximum temperature of the single cell,
and the maximum voltage of the single cell. The purpose was
to investigate the degree of coupling between these factors
and to determine the charging safety influence factor rys. The
results of these calculations are presented in Fig. 3.

The strength of the correlation between two variables is
indicated by the absolute value of the Pearson correlation
coefficient, with a value closer to 1 indicating a stronger
correlation. Fig. 3, which displays the correlation coefficient
heatmap, indicates that the real-time SOC of the battery pack
is strongly correlated with both the EV charging current and
the highest single cell voltage of the battery pack. The health
of the battery pack is strongly correlated with the initial SOC
of the battery pack charging. In contrast to the exposition of
related literature, the maximum temperature of the single cell
of the battery pack is weakly correlated with other factors.
Upon ranking, it was discovered that the maximum tempera-
ture of the single cell of the battery pack is more significantly
impacted by the ambient temperature, and that it changes
more under different ambient temperature conditions.

Real-time SOC 1 08

0.6
Initial SOC 02096 1

04

Charging Current 0.7186 0.1075

-0.07697 1

Maximum Battery 04
Temperature 0.1713 0.1556 -0.1669 0.2661 1

Maximum Battery

09914 02146 -0.1202 0.637 0.1394 1 -08
Voltage

Real-time Initial SOH Charging Maximum Maximum
Nelo soc Current  Battery Battery
Temperature Voltage

FIGURE 3. Pearson coefficient between parameters.

In order to consider the influence of ambient tempera-
ture, this paper selects the vehicle temperature in winter
and summer when the ambient temperature difference is
large to study, and integrates the EV motor temperature and
battery temperature change as shown in Fig. 4. As evident
from the figure, the difference between temperature values
in January and August is significant, regardless of whether
it is the battery or motor temperature. This is also why
temperature has a weak correlation with other factors. The
motor temperature curve demonstrates that it changes less
and stabilizes gradually after a period of charging, while the
battery temperature changes continuously during charging.
Hence, this paper uses the stable motor temperature as the
reference for the ambient temperature and reconstructs the
battery temperature by calculating the difference between
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the stable motor temperature and the battery temperature.
The correlation coefficient of each parameter was then recal-
culated, as presented in Figure 5. Upon comparing Figure 3
and Figure 5, it is observed that the correlation coefficients
between temperature (after the improved formulation) and
other factors, except SOH, are significantly improved. This
is due to the narrow SOH range (94% to 96.5%) of the EV
data obtained in this study, which is not enough to cover the
entire SOH cycle.

Upon comprehensive observation of the correlation coef-
ficients between the factors compared in Fig. 5, it is evident
that the correlation between single cell voltage and the other
factors is stronger when considered together. Therefore, sin-
gle cell voltage is selected as the warning factor.

{

8 —— Motor temperature (January)

L35 L —— Battery temperature (January) _L
% T ——  Motor temperature (August) |
E 15 ——— Battery temperature (August)| |

S
T

" " 1 " 1 " 1 " 1 "
0 5 10 15 20 25 30 35 40
Charging time / min

FIGURE 4. Charging temperature curve of vehicle motor and battery in
January and August.
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SOH EOAPZER 09777 1 102

Charging Current 0.7186 0.1075 | -0.07697 1

-0.2

Maximum Battery 04
Temperature 0.1713 04556 -0.1669 0.5162 1
-0.6

Maximum Battery

- -0.8
Voltage 09914 02146 0.1202 0.637 0.7021 1

Real-time Initial SOH  Charging Maximum Maximum
soc soc Current  Battery Battery
Temperature Voltage

FIGURE 5. Pearson coefficient after improved temperature expression.

C. CHARGING VOLTAGE PREDICTION

To construct a sound algorithm model, it is crucial to deter-
mine the primary hyperparameters of the A-LSTM algorithm,
which includes the number of neural units in the input and
output layers, the number of layers in the hidden layer, and
the number of neural units in the hidden layer. Addition-
ally, we have selected the root mean square error SRMSE
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TABLE 3. Results of MAE with different parameters of A-LSTM.

Number of implied layers

1 2 3 4
Number of neurons
50 0.016306 0.014884 0.0097496 0.0094464
100 0.0087073 0.0085165 0.007558 0.0077584
150 0.0092994 0.0086817 0.0079107 0.0092439
200 0.014884 0.0090652 0.008208 0.0068189
TABLE 4. A-LSTM RMSE results with different parameters.
Number of implied layers
1 2 3 4
Number of neurons
50 0.012099 0.0098941 0.0071593 0.0068011
100 0.0066321 0.0063512 0.0052183 0.0053847
150 0.0070102 0.0058953 0.0054527 0.0065878
200 0.0098941 0.0067912 0.0054627 0.0093

(Root Mean Square Error, RMSE) and mean absolute per-
centage error sMag (Mean Absolute Error, MAE) as the
evaluation criteria to assess the prediction performance of the
A-LSTM algorithm under different parameters. The specific
formulas for these two evaluation criteria are shown in (16)
and (17).

SRMSE = | >, (i — fi)? / n (16)
i=1

1 n
SMAE = le lyi — fi] (17)
1=

where: f; is the predicted value of the data, y; is the original
value of the data, and i is the ordinal number of the data (i =
1,2,...,n).

The input for the A-LSTM algorithm consists of the initial
SOC, real-time SOC, battery pack SOH, charging current,
and temperature during EV charging, resulting in an input
dimension of 5. The maximum voltage of single cell during
charging is selected as the output, resulting in an output
dimension of 1.

To identify the optimal parameters, the number of implied
layers of A-LSTM is selected as 1-4 layers in turn, and the
number of neurons per layer of implied layers is 50, 100, 150,
200 to find the optimal parameters. The prediction results and
evaluation indexes are computed for each set of parameters.
The output results of the two evaluation indexes are presented
in Table 3 and Table 4.

The results presented in Tables 3 and 4 indicate that the
optimal evaluation metrics for the A-LSTM model were
achieved when the number of hidden layers was set to three
and each layer contained 100 hidden units. Based on this
finding, the structure of the A-LSTM model was finalized
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to include three hidden layers, with each layer containing
100 units. The remaining hyperparameters of the A-LSTM
model are provided in Table 5.

TABLE 5. Hyperparameter setting of A-LSTM model.

Hyperparameters Values
Max Epochs 2000
Mini Batch Size 128
Learn Rate Drop Period 150
dropout 0.4
Learn Rate Drop Factor 0.4

Once the parameters of the A-LSTM model were deter-
mined, the algorithm was utilized to fit the historical charging
voltages of the vehicle. A subset of the prediction results
obtained from the test set are presented in Fig. 6, and Fig. 7
illustrates the absolute error between the predicted and actual
values of the selected dataset.

0.04

0.03

Prediction error

0.02 ‘
0.01 ‘
0
0 2000 4000 6000 8000 10000

Data number / No.

FIGURE 6. EV charging data prediction error.

From Figures 6 and 7, it is evident that the proposed
algorithm yields high accuracy in prediction the maximum
voltage of the individual battery during the charging of EVs.
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FIGURE 7. Comparison of prediction results.

This facilitates the prediction of the entire voltage change
process during vehicle charging. The variation in initial SOC
from 0 to 99.9% during charging is illustrated in Fig. 8.
The results obtained from the A-LSTM algorithm developed
in this study demonstrate excellent prediction performance,
completely covering the state of charge for each type of charg-
ing, thereby highlighting the exceptional predictive accuracy
of the proposed prediction algorithm.

4.2

Predictive charge data

VOltage / V

920 T30 7900 7950 79600
Dusmumbar. No

3.4 * * *
0 25000 50000 75000 100000 125000

Data number / No.

FIGURE 8. EV charging data forecast results.

To verify the prediction accuracy of the A-LSTM model
proposed in this paper, we selected BP neural network, RNN
neural network, LSTM neural network, and A-LSTM neural
network to fit the charging voltage of the vehicle. The BP
neural network was set up with 3 fully connected layers,
while the RNN, LSTM, and A-LSTM neural networks were
set up with 3 layers, and the number of hidden units in
each layer was set to 100, respectively. We compared the
prediction results of these algorithms using the coefficient of
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determination (R?), as shown in equation (18). The specific
prediction results are shown in Fig. 9.

2. (fi —y)?
R*=1- ! > (18)
> ()’i - % Zl)’i)

i

where f; is the predicted value of the data, y; is the original
value of the data, and i is the ordinal number of the data
i=12,...,n).

As depicted in Figure 9, it can be observed that for the
EV data in the test set, the A-LSTM algorithm prediction
results are evenly distributed in the center of the graph, with
a maximum R? value of 0.99781. This indicates that the
algorithm can more accurately predict voltage changes during
EV charging, providing reliable prediction data and residual
data for the subsequent charging warning threshold setting.

To further compare the performance of LSTM and
A-LSTM algorithms, we calculated the prediction residuals
using the EV test set data. The distribution histogram was
plotted as shown in Figure 10. It is observed that the resid-
uals of the A-LSTM algorithm are primarily distributed in
the range of —0.01238 to 0.006933, whereas the prediction
residuals of the LSTM algorithm are distributed in the range
of —0.01619 to 0.009573. This indicates that the A-LSTM
algorithm exhibits higher prediction accuracy than the LSTM
algorithm.

3.90 s 7 3.90 ,
R*=0.990781 R*=0.970133

385 390 395 400 405 410 385 390 395 400 405 410
(a) A-LSTM algorithm (b) LSTM algorithm

4.10 4.10
4.05 4.05
4.00 4.00

390+ 3.90
R*=0.921584 R?=0.899541

3.85 3.90 3.95 4.00 4.05 4.10 3.85 3.90 3.95 4.00 4.05 4.10
(c) RNN algorithm (d) BP algorithm

FIGURE 9. Comparison of R2 values tested by different algorithms.

D. EV CHARGING SAFETY WARNING EFFECT

To establish the vehicle warning threshold, we utilized the
dynamic threshold model after obtaining the vehicle charging
prediction value. Specifically, we selected a charging dataset
and constructed the warning threshold based on the dynamic
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FIGURE 10. Histogram of prediction residuals for different algorithms.

threshold construction rules illustrated in Figure 11. This
construction approach divided the charging curve into four
regions based on voltage change characteristics.

In warring area I, where the SOC is between 10% and 30%,
the voltage rises rapidly while remaining at a low level.
To accommodate this situation, we set the warning threshold
to £(1.12%~1.16%) of the normal value. As in warring
area II (SOC 30%~60%), the voltage gradually rises, and
its increase slows down. we set the warning threshold to
+(1.08%~1.12%) of the normal value. Consequently, the
warning threshold is smaller than the previous area. And
in warring area III (SOC 60%~80%), the voltage is high,
but its increase slows down even further, resulting in an
increased risk of overcharging. Here, we set the threshold to
+(1.05%~1.08%) of the normal value. Finally, in Region IV
(SOC 80%~100%), the battery is near completion, and the
voltage is about to reach its peak, making it susceptible to
overcharging, we set the threshold to £(1.03%~1.05%) of
the normal value. If any abnormality is detected in the battery,
the warning threshold range will be further contracted.

Figure 12 illustrates how we adjusted the warning thresh-
old after detecting abnormal data in warning area III.
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As shown, the warning threshold of voltage changes over
time and gradually shrinks with an increase in SOC range.
Compared to a fixed threshold, a dynamic threshold is more
flexible in warning vehicles during charging while ensuring
safety, thereby maximizing the safety of the vehicle charging
point.
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FIGURE 11. Dynamic warning threshold.
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FIGURE 12. Dynamic warning threshold after adjustment.

As the collected EV charging data did not include any fault
data, we simulated three types of vehicle fault state data to
assess the accuracy of the early warning model. To generate
this data, we used the fault data setting method outlined
in Table 6. And then we calculated the accuracy of the model
using equation (19).

Wa = (Ndet/Nerr) * 100 (19)
Verr € (rand (—0.1 ~ 0.1) * Vior) (20)
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TABLE 6. Simulated vehicle failure data.

Fault type Data description
Data transmission Randomly insert 100 sets of empty data
failure and wrong data in the data set

Randomly insert 200 sets of discrete

Discrete data faults abnormal voltage data in the data set

according to (20)

. Insert 200 sets of continuous abnormal
Continuous data ]
. voltage data randomly in the data set
failure .
according to (21)

Insert 200 sets of random anomalies

Critical charge failure ~ when the SOC is above 75 according to

(22)
Verr € (rand (—=0.15 ~ 0.15) * Vior) @21)
Verr € (rand (—=0.25 ~ 0.25) # Vior) (22)

where wy, is the warning accuracy, Nye; is the number of fault
data detected by the model, and Neyr is the number of fault
data set in this paper, Ve represents the fault voltage data
set, Vyhor represents the normal charging data, and ‘rand()’
represents a function that generates a random number.

To validate the accuracy of the proposed charging warn-
ing model, we used the predicted data from the BP neural
network, RNN neural network, LSTM neural network, and
A-LSTM neural network (as discussed in section IV-A) to
construct fixed warning thresholds and dynamic warning
thresholds. We then ran the warning models in a sequence and
recorded the warning accuracy. The results of our analysis are
presented in Fig. 13 and Fig. 14.
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: :

100

98

Warning accuracy / %
el el
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o
¥
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FIGURE 13. Dynamic threshold warning accuracy rate.

According to Fig. 13, for fault type 1, all four prediction
algorithms can accurately identify empty data and abnormal
data thanks to the proposed warning architecture in this paper.
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FIGURE 14. Fixed threshold warning accuracy.

For fault types 2, 3, and 4, the proposed warning model in
this paper can accurately indicate the charging faults of vehi-
cles, with an average accuracy rate of 99.0%. By comparing
Fig. 13 with Fig. 14, it can be concluded that the dynamic
warning thresholds proposed in this paper can improve the
accuracy of charging safety warnings for all four types of
faults. For fault types 2 and 4, the dynamic threshold can
improve the warning accuracy rate by an average of 2.51%.
Particularly for the third charging fault type, the dynamic
threshold can improve the average warning accuracy rate
by 5.84% compared to using a fixed threshold. This is because
the warning model constructed in this paper can accurately
and strictly monitor and warn the subsequent charging pro-
cess by dynamically reducing the warning threshold after the
fault is identified.

Another element in evaluating the warning model is the
warning time. In this study, the ASOC, as shown in equa-
tion (23), is chosen as the measure of the vehicle warning
time, where a lower ASOC value indicates better warning
results.

ASOC = SOCe¢;y — SOCyget (23)

where SOC; represents the SOC at the beginning of the
fault, while SOCg4¢ represents the SOC at which the fault was
detected. A smaller value of ASOC indicates that the model
can detect vehicle faults in a timely manner.

Then we set the abnormal voltage value using equa-
tion (18), and identified the corresponding SOC interval in
which the voltage was located as shown in Table 5. Next,
we executed the warning model sequentially for each SOC
interval in Table 5, and the results are presented in Fig. 15.

As shown in Fig. 15, the dynamic threshold warning model
proposed in this paper can provide early warning for faults
in a short period of time. For the first type of fault, since
the SOC is low at this time and in order to prevent false
alarms, the dynamic threshold is set relatively loose. There-
fore, the required warning ASOC is 3.8%. For fault type 3,
the SOC and battery voltage are both in a relatively high state.
To ensure the safety of the vehicle to the greatest extent
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possible, the warning threshold is set more strictly, with a
required warning ASOC of 0.8%. Compared with the fixed
threshold, the dynamic threshold proposed in this paper for
charging safety warning has excellent warning timeliness.

(— I Dynamic threshold
10r [ Fixed threshold

ASOC /%
A

0 m

Fault type 1

Fault type 2 Fault type 3

FIGURE 15. Time-limit of warning for different models.

VI. DISCUSSION
The following conclusions can be drawn from the analysis of
the results over time:

1) The actual charging data of EVs obtained has abnormal
samples due to sensor failures and transmission prob-
lems. Eliminating data anomalies through data prepro-
cessing can improve the prediction accuracy of the
algorithm;

2) EV battery temperature is greatly influenced by the
external environment, by smoothing the motor tem-
perature and battery temperature at the same time, the
environmental influence can be significantly reduced,
providing convenience for subsequent data prediction;

3) A-LSTM algorithm for time series data prediction
problems: the accuracy and applicability of A-LSTM
for EV voltage prediction problems is demonstrated by
comparison with three other algorithms;

4) The construction of dynamic thresholds can signifi-
cantly improve the prediction accuracy and timeliness
of the model. Comparing dynamic thresholds with
fixed thresholds, it was found that the dynamic thresh-
olds had an average 4.52% higher accuracy in predict-
ing charging anomalies for different vehicles and the
required ASOC for warning was reduced by an average
of 8.21%.

VII. CONCLUSION

This paper proposes a state monitoring and fault warning
method for electric vehicle charging processes based on
charging-side deep learning. The aim of the method is to
ensure the safety of electric vehicle charging, promote the
integration of automotive safety technology with various data
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resources, and facilitate the implementation of the national
big data strategy.

The proposed method can effectively monitor various
physical quantity data of EV charging, enable charging fault
warning of EV, and prevent false alarms caused by incorrect
charging data. However, this study has some limitations, par-
ticularly in terms of data acquisition of SOH and the lack of
complete life cycle EV charging data. Further research could
explore these areas in greater depth.
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