
Received 14 April 2023, accepted 19 May 2023, date of publication 31 May 2023, date of current version 19 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281761

IrisMath: A Blind-Friendly Web-Based
Computer Algebra System
ANA M. ZAMBRANO 1, DANILO I. PILACUÁN 1, MATEO N. SALVADOR 1,
FELIPE GRIJALVA2, (Senior Member, IEEE),
NATHALY OROZCO GARZÓN 3, (Senior Member, IEEE),
AND HENRY CARVAJAL MORA 3, (Senior Member, IEEE)
1Departamento de Telecomunicaciones y Redes de Información, Escuela Politecnica Nacional, Quito 170525, Ecuador
2Colegio de Ciencias e Ingenierías ‘‘El Politécnico,’’ Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
3Faculty of Engineering and Applied Sciences (FICA), Telecommunications Engineering, Universidad de Las Américas (UDLA), Quito 170503, Ecuador

Corresponding author: Henry Carvajal Mora (henry.carvajal@udla.edu.ec)

This work was supported by Escuela Politécnica Nacional through the Project Sistema de Cálculo Numérico-Algebraico Virtual Interactivo
Para Estudiantes de Ingeniería con Discapacidad Visual under Grant PTT-21-02.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by Technical Cooperation Agreement between Research Project PTT-21-02 from Escuela Politecnica Nacional and the Asociación
de Invidentes Milton Vedado from Quito, Ecuador.

ABSTRACT Visually impaired individuals face challenges in pursuing higher education, particularly in
technical courses related to engineering. The lack of specialized tools and resources that allow for proper
development in academic activities is a significant barrier to their admission, retention, and graduation from
higher education institutions. By considering this, this paper presents the development of a blind-friendly
Computer Algebra System (CAS) called IrisMath. This system enables visually impaired people to perform
mathematical operations commonly used in engineering. IrisMath is a web application inspired by Jupyter
Notebooks and developed using a Layered Architecture to provide modularity. It offers a variety of output
formats, including LaTex, CMathML, JSON, and audio formats. Our CAS has undergone an extensive
assessment of its functional, non-functional, and usability requirements, demonstrating its potential as a
tool for engineering students with visual disabilities.

INDEX TERMS Blind people, Python, synthesized voice, sonification, computer algebra system.

I. INTRODUCTION
According to the World Health Organization (WHO), there
are around 252.6 million people with some type of visual
impairment around the globe, of which 36 million are clas-
sified as totally blind [1]. Among these people, there is a
high degree of school dropout, so the percentage is estimated
at around 40% in countries like the United States and is
exceeded in Latin America [2].

In the particular case of Ecuador, where this research work
is carried out, there is a total of 11.6% of the population
with some degree of visual disability. In particular, 40% of
these people have a disability greater than 75%, of which

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

only 2,906 people are studying basic education and approxi-
mately 1,100 people are studying at university [3]. The latter
group faces greater challenges due to the lack of specialized
tools and resources that allow their correct development in
academic activities, especially in technical courses related
to engineering. This undoubtedly limits their likelihood of
admission, retention, and graduation from higher education
institutions.

Among the most widely used software tools in exact
sciences and engineering are Computer Algebra Systems
(CAS), such as Matlab, Wolfram Mathematica, and Maxima
CAS [4]. Unfortunately, these tools lack features that make
them accessible and usable by people with visual disabili-
ties. Although there are software tools that can read what
is displayed on a computer screen, they are not suitable for

71766
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-3555-1924
https://orcid.org/0009-0005-8042-7710
https://orcid.org/0009-0000-8235-5507
https://orcid.org/0000-0002-5232-7529
https://orcid.org/0000-0003-0529-8224
https://orcid.org/0000-0002-3685-3879


A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

environments that involve mathematical expressions. The
main issue is that these programs are designed to read a text
and not equations or mathematical expressions. As a result,
users may listen to text in a linear way, which can generate
ambiguities when trying to understand the details of a math-
ematical expression. Therefore, there is a need to develop
tools that enable visually impaired people to comprehend
mathematical expressions in detail, taking into account all of
the subtleties that may be involved in these expressions.

This work proposes a new platform called IrisMath that
acts as a web prototype, connecting to the Maxima CAS
tool via an accessible and intuitive interface to perform
numerical-algebraic calculations. It also features speech syn-
thesis adapted to the nonlinear semantics characteristic of the
resulting mathematical expressions. The aim of IrisMath is
to provide academic support to blind engineering students
and overcome potential limitations they may face during their
training.

The rest of this work is organized as follows. Section II
presents the state of the art and highlights the current
problems associated with the lack of research on inclusive
software. In addition, the main contributions of our proposal
are presented. Section III defines the architecture and the
development process for IrisMath. In Section IV, the results
obtained are analyzed, and discussions around these results
are presented. Finally, Section V concludes the work and
presents options for future research.

II. STATE OF THE ART AND CONTRIBUTIONS
This section describes previous works related to the proposal
presented. Specifically, these works propose accessibility
tools for people with visual disabilities. In addition, the key
contributions of our proposal are summarized.

Pearson Accessible Equation Editor (AEE) presents a sys-
tem for creating mathematical expressions through a web
application that is based on external screen readers such as
NVDA or JAWS [5]. This system allows the input and out-
put of information related to mathematical notations through
a Braille system. For the inputs, AEE uses an external
updateable display. Furthermore, the outputs are converted
to MathML language, which is an XML-based markup lan-
guage intended to represent mathematical notations in Braille
format [6].

L-MATH [7] is a system that enables the editing and
inspection of mathematical formulas. Writing and read-
ing of mathematical expressions are achieved through the
BlindMath and TalkingMath modules, respectively. With
BlindMath, the visually impaired student can enter mathe-
matical formulas using a computer keyboard that can then be
converted to LaTeX code. On the other hand, TalkingMath
uses an original adaptive algorithm to read formulas accord-
ing to human reading habits.

Another popular platform is the LAMBDA system [8].
This is a system of access to computational mathematics,
which is based on a linear mathematical notation that allows
access to mathematical expressions through the Braille code

and synthetic voice. This system has a Braille version with
256 unique characters (LAMBDA code) based on the Braille
representation of 8 points, which includes new symbols that
allow for the representation of mathematics in a linear way.
These symbols can be represented visually and in Braille.
Among the distinctive features of LAMBDA is its ability to
solve basic mathematical operations (for example, addition,
factorial, and trigonometric operations).

DOSVOX [9] is an autonomous system developed by
the Federal University of Rio de Janeiro and is currently
widely used in Brazil. Within the DOSVOX system, there
are two tools that allow the execution of mathematical
operations: MATVOX and FINANVOX. The financial cal-
culator FINANVOX [10], allows to perform financial and
statistical calculations. This software tool allows operations
such as compound interest, amortization, depreciation, mean,
and standard deviation, among others. This is achieved by
emulating and expanding on the functions of the popular
Hewlett-Packard HP-12C financial calculator. On the other
hand, DOSVOX encompasses more than 80 open-source
tools that can be accessed through spoken menus, allowing
visually impaired users to perform various activities such as
sending emails, playing music, and creating documents and
spreadsheets.

MATVOX [11] is an interpreter of computer algorithms
that helps to write and compile pseudocode from a text editor
called EDIVOX, which also allows working with mathemat-
ical notation such as complex numbers and matrices.

The CASVI system [12] is the best predecessor of our
proposal. It provides an alternative tool to help people with
visual disabilities who are studying engineering and exact sci-
ences. The system serves as a bridge between the students and
existing computer algebra system (CAS) tools, allowing them
to write, edit, evaluate, and solve mathematical expressions.
It is important to note that CASVI is not described in technical
scientific papers; its analysis has been limited to studying the
interaction with the users.

As a summary, Table 1 details the main contributions
of previous works and the ones of our proposal. Based on
the literature review, it is evident that the development and
implementation of accessible tools present a great challenge
since it has become a very important need for the inclusion of
students with visual disabilities. This is the main motivation
for our work and that is why IrisMath arises, as a pedagogical
aid, being a web platform that improves the management of
tasks (assignments and grades) between a sighted teacher and
a blind student.

This project, carried out by several work teams from dif-
ferent universities, undoubtedly improves the current state of
inclusion in engineering. More specifically, our main contri-
butions are summarized as follows:

• In contrast to systems like CASVI [12], a platform
structured under a Layered Architecture to provide mod-
ularity is developed. Overall, our structured layered
architecture with modularity provides a solid foundation
for software development by enhancing maintainability,

VOLUME 11, 2023 71767



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

scalability, flexibility, testability, integration, and collab-
oration. It helps build robust and adaptable software that
can evolve over time while minimizing the impact of
changes and promoting efficient development practices.

• A significant improvement in voice synthesis by jump-
ing from linear to non-linear translation is performed.
In comparison with CASVI [12] that only offers a
linear synthesis of complex mathematical expressions,
incorporating both linear and non-linear equation read-
ing capabilities enables access to complex equations,
supports advanced mathematics education, enhances
comprehension, and prepares users for higher-level
mathematics. It empowers visually impaired individuals
to navigate and engagewithmathematical content across
a wide range of disciplines and educational levels.

• A greater variety of output formats are provided,
such as LaTeX, CMathML, JSON, and audio formats.
By providing a greater variety of output formats, soft-
ware aimed at visually impaired individuals can ensure
inclusivity, accommodate individual preferences and
accessibility needs, and enhance compatibility with
complementary assistive technologies. It promotes a
more personalized and empowering user experience,
empowering visually impaired users to access and inter-
act with information in ways that suit them best.

• A web platform is developed in order not to present
limitations to the user, being able to use any hardware
and software as long as a web browser is available. By
leveraging the advantages of web platforms, visually
impaired users can benefit from increased accessibil-
ity, flexibility, and choice. The hardware and software
agnosticism, combined with the ease of access and
seamless updates, contribute to a more inclusive and
empowering user experience for individuals with visual
impairments. This contrasts with previous systems such
as LAMBDA, CASVI, or MATVOX.

Details about the development process are presented in the
following section.

III. ARCHITECTURE AND DEVELOPMENT PROCESS
In this section, the components and language of the system are
presented as well as the structure and operation of the proto-
type. Besides, the voice synthesis operation is also described.

As shown in Fig. 1, the system contemplates two types of
actors: Students (users with visual disabilities) and Teachers
(users with full capacity to use a graphical interface) with
their own activities. More details related to the development
of the platform are described below.

A. DEFINITION OF COMPONENTS AND LANGUAGES
This subsection details the architecture, which has been
developed taking into account the following considerations:

• Users with visual disabilities do not have the possibility
of using a classic graphical interface since they cannot
position themselves on the screen.

FIGURE 1. Actors and their activities on IrisMath (Use Case Diagram).

• Users with visual disabilities must use the interface
solely through a keyboard as the input device to the
system.

• The users must be provided with auditory feedback,
which contains as much information as possible for the
correct understanding of the actions they are performing
while taking care of the user’s cognitive load [13].

• To ensure unrestricted scalability, the system should be
limited to working with CPU, display, keyboard, and
mouse (for sighted users).

For the development of this project, a layered architecture
has been used, which allows for a modular and easily scal-
able system. The layers have been developed using Python
and JavaScript programming languages, with the MAXIMA

71768 VOLUME 11, 2023



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

TABLE 1. Main features of current Math CAS for visually impaired individuals.

FIGURE 2. Block diagram of our architecture.

CAS software as the backend for mathematical processing.
Maxima CAS was chosen by its efficient symbolic calcula-
tions and has been optimized over the years for performance.
It is designed to handle complex mathematical computations
efficiently, particularly in the domain of symbolic mathe-
matics. In addition, Maxima CAS uses its own high-level
programming language, which is designed for symbolic com-
putations. The language is expressive and concise, making
it easier to work with complex mathematical expressions,
and provides advanced control structures and programming
constructs for more advanced symbolic manipulation tasks.

The interface has been developed with the help of the
VueJS framework and implemented as a web system, which
provides multi-platform capability, allowing the system to be
independent of the operating system where it is used. This
interface has been developed simulating a web development
environment similar to Jupyter Notebooks [14], which has
allowed the development of features inspired by it, such as
(1) text inputs known as code cells (which allow the writing
of mathematical expressions, which will be referred to as
scripts from now on), (2) independent execution of cells to
offer modularity to the resolution of scripts, and (3) a custom
file format based on JSON [15], which stores, with the help of
the MongoDB [16], both the inputs of the cells, as well as the
outputs processed by the backend that makes use of Maxima
CAS.

This undoubtedly delivers the advantage of being
exportable and importable for exchange by other users of the
system.

FIGURE 3. Component diagram of IrisMath.

The system has also been provided with a Text-to-Speech
(TTS) functionality for the mathematical processing results.
It is worth noting that this will be much more specialized
than the TTS synthesis performed by previous works since
they use a simple synthesis that dictates the results linearly.
Therefore, IrisMath performs a non-linear synthesis of the
results, bringing it closer to the non-linear nature of math
expressions that preserves the context and hierarchy of the
operations.

Fig. 2 depicts the block diagram of the proposed archi-
tecture. Within this architecture, the data exchange formats
between the Python backend developed (which uses Maxima
CAS), the system interface, and the TTS voice synthesis
module are LaTeX and MathML [17] (in its CMathML
specification) [18], with LaTeX being the output format pro-
vided by Maxima CAS for resulting expressions. However,
LaTeX lacks a structure that provides mathematical context
to the resulting expressions (therefore ignoring hierarchy and
preventing non-linear voice synthesis), which is why the
conversion of LaTeX outputs through the SnuggleTex [19]
tool to CMathML is necessary. This format allows structuring
a mathematical expression in a tree-like form that provides
mathematical context to the resulting expressions and pre-
serves their hierarchy.

As mentioned earlier, the mathematical processing
required for the resolution of the mathematical expressions
entered in the system interface is carried out by the Maxima
CAS system, which is an open-source and multi-platform
computer algebra system. Fig. 3 shows a component diagram
that describes the interaction between the user, the web
system, and the MAXIMA CAS system.

The need to implement the CMathML specification to
convert the LaTeX format results returned by Maxima CAS
for the resolution of mathematical expressions arises from its
characteristics. Concretely, MathML has two specifications:

VOLUME 11, 2023 71769



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

FIGURE 4. PMathML representation of x +
a
b .

FIGURE 5. CMathML representation of x +
a
b .

PMathML (Presentation MathML) and CMathML (Context
MathML). The main objective of PMathML is to describe the
structure of a mathematical expression. However, this repre-
sentation lacks an appropriate semantics for the unequivocal
distinction of mathematical operators since these will be
encompassed in common tags such as <mi>, <mo>, and
<mrow> that cover most operators and variables, which
results in expressions that can become ambiguous, making
their correct interpretation impossible. In contrast, the main
objective of the CMathML specification is to describe the
context and semantics of a mathematical expression, adding
a much wider range of tags that allow for the identification
of an operator or variable independently. Since CMathML
contains a specific tag for each mathematical operation, it is
more specific than PMathML.

As an example, consider the mathematical expression
x +

a
b , which has been considered for detailing its represen-

tation both in the PMathML and CMathML specifications,
as shown in Figs. 4 and 5, respectively. As evidenced in
Fig. 4, the only tags that make up the structure of PMathML
are <mrow>, <mi>, <mo>, and <mfrac>. However, the
+ operator is among a series of tags that are common to all
mathematical operations, which would prevent the distinction
of its mathematical context. On the other hand, in Fig. 5 it
is possible to see that both the division and the addition are
correctly identified by a specific tag, namely <divide> and
<plus> respectively, which allows knowing exactly which
mathematical operation is being performed when traversing
the CMathML tree.

As specified earlier, CMathML defines a specific tag for
eachmathematical operation. Therefore, Table 2 below shows
a list of mathematical operations supported in the latest
CMathML specification, their respective tags, and their corre-
sponding LATEX operators. These operators are the results of
solving mathematical expressions and are returned by Max-
ima CAS, which are used to be transformed into CMathML
using the SnuggleTex tool [20]. In this way, through the use

TABLE 2. Mathematical operations supported by CMathML.

FIGURE 6. LaTeX output from Maxima CAS.

of CMathML, which provides the mathematical context and
semantics of mathematical expressions, a much more effi-
cient TTS voice synthesis is achieved compared to previous
works.

Consider now the example presented in Fig. 6, where the
LaTeX output for the expression arcsin(0) = 0 is shown. For
this example, Fig. 7 shows the CMathML tree obtained after
the execution of the SnuggleTex tool.

As a final stage and in order to provide a way to store and
retrieve the results of the processing of mathematical expres-
sions, the MongoDB database manager is used, which is a
document-oriented database system. Thus, it allows embed-
ding the results of both LaTeX, CMathML, and TTS in a
JSON format that contains all the relevant information about
the execution of the system.

B. STRUCTURE AND OPERATION OF THE PROTOTYPE
Although the target users are visually impaired students,
this web interface has been developed with controls such as
buttons and text boxes, with special emphasis on the use of
MathJAX [21] as a library for displaying the results of mathe-
matical expressions. This is made to facilitate the interaction
of Professor-type users. On the other hand, visually impaired
users can navigate through the various menus using shortcut
keys, which are detailed in Table 3.

71770 VOLUME 11, 2023



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

FIGURE 7. Resulting CMathML tree after conversion by SnuggleTex.

TABLE 3. Available shortcuts for visually impaired users.

Fig. 8 shows the activity diagram that illustrates the actions
to solve a mathematical expression, display the visual presen-
tation, and synthesize the text-to-speech output.

Initially, the system is waiting for input from the user as
shown in Fig. 9, which details the initial interface of the
system. It consists of a menu bar for storing the current file
and managing the processing backend, as well as a toolbar for
manipulating and executing mathematical expressions. It also
includes a series of sections called cells, which consist of a
text editor where mathematical expressions are entered.

Following the process in the activity diagram of Fig. 8, the
user enters a mathematical expression to be solved (using
a keyboard and with audio assistance at each execution).
Fig. 10 presents the process for enteringmathematical expres-
sions. The focus of the system should be on the text editor of
the cell to be executed, either by clicking on it with the mouse
pointer (for sighted users) or through the keyboard shortcut
Alt+W, which performs the same function and is designed to
provide accessibility [22] for visually impaired users. Math-
ematical expressions to be solved should be entered line by
line, with automatic numbering to provide an identifier that
allows for feedback to the user.

Once the mathematical expressions have been entered, the
user can request their resolution by clicking on the ‘‘Exe-
cute’’ button located in the toolbar, or by using the keyboard
shortcut Alt+R, which allows the interface to request their
resolution from the processing backend. After this process
is completed, the inputs and outputs are displayed in the
results table (one by one), in order to provide better feedback
to the users. Fig. 11 shows the results table correspond-
ing to the resolution of the previously entered mathematical
expressions.

The table of results presents a series of rows and columns
focused on presenting input and output information to the
user. In the case of columns, the first column shows the

identifier of the result, while the second column shows the
result itself. Likewise, the rows show one by one the inputs
accompanied by their corresponding outputs. To identify
whether a row corresponds to an input or an output, the
identifiers %in have been used for the inputs, and %on for
the outputs, with i standing for input, i for output, and n
being the identifier that marks the correspondence between
them. For example, it can be clearly seen in Fig. 11 that
cell%i1 represents the text:solve(3*x +4=12) (this has
been entered by the user); while %o1 represents the output in
CMathML format as a response to the equation entered in
cell %i1.

The aforementioned has been developed through a process
that communicates the user interface with the Maxima CAS
backend, using a REST API [23] (see Component Diagram
in Fig. 3 with the help of the ExpressJS framework [24],
which creates a web service that receives processing requests
as HTTPmethods and is responsible for calling the subsystem
for mathematical expression processing, coded in Python.
This REST API also stores inputs and results in the Mon-
goDB database manager, which allows the web system to not
depend on the internal storage of the computer on which it is
running. Fig. 12 presents the Flow Diagram that is followed
for processing a script (composed of mathematical operations
in a cell %in, created in the user interface).

Fig. 12 presents a Flow diagram that represents the
proposed algorithm for processing a script containing math-
ematical expressions. As a first step, a web service is started
using the ExpressJS framework, which is responsible for
receiving processing requests through the HTTP protocol on
port 8000. Subsequently, if a processing request is received,
the system attends to it and an instance of the mathemat-
ical expression processing backend (coded in Python) is
initialized. The backend prepares the input to the system by
removing control characters and making it compatible with
Maxima’s CAS format (i.e., normalization process). Then,
the inputs are converted to LaTex format with the help of
Maxima CAS, and then to CMathML format, which allows
them to be converted into a non-linear language with math-
ematical context for subsequent synthesis. Next, the inputs
are saved in an object called result, which has a prop-
erty called inputSpeech. Once the input conversion is
completed, the expressions is resolved, and Maxima CAS
performs the resolution and formatting of results in LaTex
format and then, in CMathML format for conversion to non-
linear language with a mathematical context.

The output results are also stored in the result object
but in the outputSpeech property. Once these tasks are
completed, a conversion is made from the object in memory
(cache) to an object in JSON format, which is returned to the
user interface as the processing request result.

The results of the processing performed in the system’s
backend, in both LaTex and CMathML formats and non-
linear language with mathematical context, are also stored in
a JSON object using MongoDB, which is used to display the
results on the screen and also to perform the voice synthesis

VOLUME 11, 2023 71771



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

FIGURE 8. Activity diagram. Example to solve a polynomial equation.

FIGURE 9. Initial interface of the system.

FIGURE 10. Entry of mathematical expressions.

process. Fig.13 shows the structure of the document in which
the information for processing mathematical expressions,
both inputs, and outputs, is stored.

The format shown in Fig. 13 presents a JSON document
with a series of inputs and outputs representing the attributes
contained within a cell, which represent the different objects
that store the information used by the interface. Each of these
is detailed below:

• input: Information entered by the user to be processed.
• output: Result of processing the mathematical expres-
sion in the system’s backend, which in turn is subdivided
into:

– inputScript: Expressions received in the
backend.

– outputScript: Result obtained by Maxima
CAS, which is in LaTeX format and is not intelligi-
ble by a visually impaired user.

– inputSpeech:Mathematical expressions entered
by the user, converted to non-linear language
that preserves the context and hierarchy of the

FIGURE 11. Table of results of the mathematical expressions.

operations, used to denote mathematical expres-
sions that are synthesized as speech to provide
auditory feedback to the user.

– outputSpeech: Result obtained by processing
the input in the backend with Maxima CAS and
converted into a non-linear language that preserves
the context and hierarchy of the operations, used to
denote mathematical expressions to be synthesized
to present the result to the user through the system’s
speaker.

• run: Current processing status of the cell.
• activeCell: Determines if the cell is currently active
to receive keyboard inputs from the user.

• isTextCell: Cells are divided into two types. (1) Text
cells: which are cells with additional information and
will not be processed in the backend, and (2) Script cells:
which will be processed by Maxima. isTextCell helps

71772 VOLUME 11, 2023



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

FIGURE 12. Flow diagram for mathematical expression processing.

FIGURE 13. JSON file format that stores processing results in MongoDB.

in identifying them and avoiding sending a text cell for
processing.

However, despite all this process, JSON format by itself
is not useful for users with visual disabilities. This is why
the functionality of speech synthesis of the results has been
added, which allows the cells to be dictated one by one,
using the identifiers presented above, which provides better
feedback to the blind user. This speech synthesis is executed
immediately after rendering the results table and can be
invoked as many times as necessary through the shortcut
Alt+L.

C. VOICE SYNTHESIS FOR THE RESULTING
MATHEMATICAL EQUATION
After processing the cells in the backend of the system, the
platform’s interface is capable of taking the obtained results
and performing text-to-speech synthesis in order to provide
the necessary feedback to users [25].

Text-to-speech synthesis of the results obtained from the
backend is carried out using Web Speech API, which is an

FIGURE 14. Volunteer users using IrisMath.

open API aimed at web browsers that provides accessibility
options for users with visual impairments and enables the
development of the present system as a web application.
Web Speech API implements functions for text-to-speech
synthesis, which are used to create a component in VueJS
that handles the voice synthesis of the results obtained from
the backend. Table 4 presents the methods that make up the
speech synthesis which are available in Web Speech API.
These have been implemented in the corresponding compo-
nent, that can be controlled through the shortcuts presented
on Table 5.

IV. EXPERIMENTS AND RESULTS
This section describes the tests developed to evaluate the
interaction of users with the IrisMath platform in terms of
its usefulness, and its complexity of use. First, we present
the experimental setup conditions of our experiments in
Section IV. Next, in Section IV-B, we outline the evaluation
metrics used to assess our system. Finally, in Section IV-C,
we discuss the results.

A. EXPERIMENTAL SETUP
For the execution of the tests, a computer laboratory was set
up, in which 5 computers were adapted with the appropriate
level of contrast and brightness for use by blind volunteers.
This is because, on the visual disability scale, not all blind
people are unable to perceive light. In addition, the test
group was divided into two scenarios: a simulated scenario
consisting of six people without visual impairment, and then,
a real scenario where two visually impaired people used the
platform, as observed in Fig. 14.

The simulated scenario lasted four weeks, out of which two
constituted processes such as environment preparation and
user training in the use of the software. It is worth mentioning
that in the real testing scenario, this period was doubled due
to logistical implications and coordination with the parties
involved. Additionally, it is of utmost importance that the
visually impaired users undergo prior training in the use of
the system.

Regarding the methodologies applied in the execution
of the tests, the study was based on current standards
and guidelines, which include the Software Engineering
Body of Knowledge V3 (SWEBOK) [26], the International

VOLUME 11, 2023 71773



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

TABLE 4. Methods provided by Web Speech API.

TABLE 5. Shortcuts available to control speech synthesis.

Software Testing Qualifications Boards (ISTQB) Soft-
ware Testing Certification Body [27], the ISO/IEC/IEEE
29119 standard [28], and the Keystroke-Level Model (KLM)
GOMS [29]. At this point, it is worth emphasizing that Iris-
Math is not required to comply with all the specifications
of the aforementioned standards, but they have served as a
guide to correctly focus the tests and appropriately dimension
resources such as time and (computer and human) resources.

B. EVALUATION METRICS
We evaluated our system using the following metrics:

• Average duration to perform an action: We assessed
the time required to complete the following actions:
accessing the course, accessing the activity, script execu-
tion, modifying the script, re-execution of the modified
script, and downloading the script. These actions were
evaluated by both visually impaired and non-visually
impaired users for comparison purposes. Non-visually
impaired users served as the baseline.

• Self-Assessment Manikin (SAM) survey: This survey
measures pleasure, arousal, and dominance using a 9-
point scale for various parameters, including equation
input, interface interaction, interpretation of audible
indications, and result transcription. These indicators
directly impact the usability and satisfaction levels of the
target users.

C. RESULTS
Table 6 summarizes the number of test cases executedwithout
issues related to functional and non-functional requirements.
These results show that 88% of the test cases associated
with functional requirements were executed without issues,
and 100% of the test cases associated with non-functional
requirements were executed without issues. Among the most
important functional test cases are equation input, interaction
and navigation between interfaces, interpretation of audible
indications, and result transcription.

TABLE 6. Summary of test cases associated with the IrisMath platform
requirements.

TABLE 7. Average duration, in seconds, of actions performed by visually
impaired and not visually impaired users.

Regarding usability, the completion time in seconds for
a task composed of (i) accessing the course and the cor-
responding activity, (ii) executing the preconfigured script,
(iii) modifying parameters in four cells, (iv) re-evaluating
the script, and (v) downloading the new script locally, are
presented in Table 7. The average activity completion times
are compared between a visually impaired and a non-visually
impaired user. In the table it is observed that the total activity
performed by both groups takes 295.95 seconds (4.9 minutes)
and 239 seconds (3.9 minutes), respectively, which does not
represent a time in which a person can lose track of the activ-
ity or become bored with it. These results are encouraging
since the visually impaired user was able to complete all the
actions correctly and in a time that is about 1 minute slower
than a user without visual disabilities. The longer duration in
performing the actions by visually impaired individuals is due
to the auditory indications, which are reproduced as guides
and sometimes require additional reproductions.

Finally, emotions associated with the use of IrisMath were
evaluated considering 3 aspects from the Self-Assessment
Manikin (SAM) survey: pleasure, arousal, and dominance,
with respect to the parameters equation input, interface inter-
action, interpretation of audible indications and transcription
of the results. The evaluation uses a 9-point scale, whose
results are shown in Table 8. From a general perspective,

71774 VOLUME 11, 2023



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

TABLE 8. Assessment of user perception regarding the key functions of
the IrisMath platform. The evaluation uses a 9-point scale.

IrisMath has achieved a high level of acceptance from users
and has demonstrated solid results in most of the evaluated
parameters. However, some results have raised concerns, and
we have conducted additional queries to users to delve deeper
into these issues. Specifically, we would like to address the
following points:

(i) The parameter ‘‘Equation Input’’ received a low level of
satisfaction, which could be attributed to two factors: firstly,
the system presents a delay in the descriptive audio of the keys
that were pressed, and secondly, the system does not allow
users to navigate through the input, meaning that the elements
eliminated when the user presses the ‘‘backspace key’’ are not
indicated.

(ii) The low levels of dominance observed in both the
‘‘Equation Input’’ and the ‘‘Interface Interaction’’ parame-
ters have led us to consider providing more time for users
to become familiar with all the elements and commands
that make up IrisMath. We believe that allowing users more
time to become familiar with the system will improve their
experience.

V. CONCLUSION
This work presented IrisMath, a web-based Computer Alge-
bra System aimed at visually impaired people that use
Maxima as a math engine. Our system is inspired by Jupyter
Notebooks, where code cells allow individuals with visual
disabilities to execute mathematical operations. IrisMath
employs text-to-speech messages to communicate with the
user about both the input operations as well as their result.

Our system has been evaluated by both sighted and visu-
ally impaired individuals, demonstrating promising results in
terms of the time required for users to complete various activ-
ities as well as acceptance regarding its use. Specifically, 88%
of functional requirements were executed correctly, while
100% of non-functional requirements were met. Although
the SAM surveys yielded positive results, we noted that the
system has a learning curve that visually impaired users
need to overcome. In fact, a steep learning curve is typically
expected for CAS software, even for sighted people, due to
the intrinsic difficulties of mathematics.

In this study, we have adopted a microservices architec-
ture, which is well-suited to the particular objectives and
demands of the project. By decomposing the application
into smaller, loosely coupled services, this architecture offers

modularity, flexibility, and scalability, enabling independent
development, deployment, and scaling of each service. As a
result, maintenance becomes more manageable, and develop-
ment cycles accelerate. Nevertheless, it is worth noting that
alternative architectures exist for developing similar appli-
cations. Considering these alternatives may be worthwhile
for future research or work. In addition, future work may
explore the inclusion of more features to IrisMath, such as
the ability to plot graphs or allow users to execute source code
in programming languages. Another important enhancement
would be to include a grading system that allows teachers to
evaluate visually impaired users as explored in [30].

REFERENCES
[1] E. B. M. Elsman, M. Al Baaj, G. H. M. B. van Rens, W. Sijbrandi,

E. G. C. van den Broek, H. P. A. van der Aa, W. Schakel, M. W. Heymans,
R. de Vries, M. P. J. Vervloed, B. Steenbergen, and R. M. A. van Nispen,
‘‘Interventions to improve functioning, participation, and quality of life in
children with visual impairment: A systematic review,’’ Surv. Ophthalmol-
ogy, vol. 64, no. 4, pp. 512–557, Jul. 2019.

[2] WHO. (2019). Who Launches First World Report on Vision. Accessed:
Jul. 22, 2022. [Online]. Available: https://www.who.int/es/news/item/08-
10-2019-who-launches-first-world-report-on-vision

[3] CONADIS. (2022). Disability Statistics. Accessed: Jan. 8, 2023. [Online].
Available: https://www.consejodiscapacidades.gob.ec/estadisticas-de-
discapacidad/

[4] A. Díaz, A. G. López, and A. de la Villa Cuenca, ‘‘An example of learning
based on competences: Use of maxima in linear algebra for engineers,’’
Int. J. Technol. Math. Educ., vol. 18, no. 4, pp. 177–181, 2011.

[5] Pearson Accessibility for Assessments. (2023). Accessible Equation Edi-
tor. Accessed: Mar. 1, 2013. [Online]. Available: https://accessibility.
pearson.com/resources/aee/aee-start.php

[6] MDN. (2022). MathML. Accessed: Aug. 31, 2022. [Online]. Available:
https://developer.mozilla.org/en-U.S./docs/Web/MathML

[7] R. Neeser. (2022). L-Math: Linear Algebra for Geometric Applications.
Accessed: Mar. 2, 2022. [Online]. Available: https://l-math.common-
lisp.dev/

[8] W. Schweikhardt, C. Bernareggi, N. Jessel, B. Encelle, and M. Gut,
‘‘LAMBDA: A European system to access mathematics with Braille
and audio synthesis,’’ in Proc. Int. Conf. Comput. Handicapped Persons,
vol. 4061, 2006, pp. 1223–1230.

[9] J. A. Borges, ‘‘Dosvox um novo acesso dos Cegos à cultura e ao trabalho,’’
Revista Benjamin Constant, vol. 3, no. 1, Apr. 2017.

[10] P. H. M. Campoverde and L. C. Martini, ‘‘Calculadora financiera FINAN-
VOX: Herramienta informática educativa de apoyo para deficientes
visuales en Su proceso de formación académica,’’ in Proc. Brazilian Symp.
Comput. Educ., vol. 1, 2012, pp. 872–875.

[11] H. da Mota Silveira, ‘‘Extensão de recursos e plano de avaliação do
matvox: Aplicativo matemático programável de apoio para deficientes
visuais,’’ in Proc. Anais do XXII SBIE (XVII WIE), 2011, pp. 592–595.

[12] P. Mejía, L. C. Martini, F. Grijalva, and A. M. Zambrano, ‘‘CASVI: Com-
puter algebra system aimed at visually impaired people. Experiments,’’
IEEE Access, vol. 9, pp. 157021–157034, 2021.

[13] J. Sweller, ‘‘Cognitive load theory and educational technology,’’ Educ.
Technol. Res. Develop., vol. 68, no. 1, pp. 1–16, Feb. 2020.

[14] B. M. Randles, I. V. Pasquetto, M. S. Golshan, and C. L. Borgman, ‘‘Using
the jupyter notebook as a tool for open science: An empirical study,’’ in
Proc. ACM/IEEE Joint Conf. Digit. Libraries (JCDL), Jun. 2017, pp. 1–2.

[15] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, ‘‘Foundations
of JSON schema,’’ in Proc. 25th Int. Conf. World Wide Web, Apr. 2016,
pp. 263–273.

[16] C. Gyorödi, R. Gyorödi, G. Pecherle, and A. Olah, ‘‘A comparative study:
MongoDB vs. MySQL,’’ in Proc. 13th Int. Conf. Eng. Modern Electr. Syst.
(EMES), Jun. 2015, pp. 1–6.

[17] O. Caprotti and D. Carlisle, ‘‘OpenMath and MathML: Semantic markup
for mathematics,’’ XRDS, Crossroads, ACM Mag. Students, vol. 6, no. 2,
pp. 11–14, Nov. 1999.

[18] M. Kohlhase and F. Rabe, ‘‘Semantics of OpenMath and MathML3,’’
Math. Comput. Sci., vol. 6, no. 3, pp. 235–260, Sep. 2012.

VOLUME 11, 2023 71775



A. M. Zambrano et al.: IrisMath: A Blind-Friendly Web-Based CAS

[19] J. F. Sepúlveda and L. Ferres, ‘‘Improving accessibility to mathematical
formulas: The Wikipedia math accessor,’’ New Rev. Hypermedia Multime-
dia, vol. 18, no. 3, pp. 183–204, Sep. 2012.

[20] D. McKain. (2011). Snuggletex Generating Content MathML.
Accessed: Mar. 4, 2023. [Online]. Available: https://www2.ph.ed.ac.
uk/snuggletex/documentation/generating-content-mathml.htm

[21] D. Cervone, P. Krautzberger, and V. Sorge, ‘‘Towards universal rendering
in MathJax,’’ in Proc. 13th Int. Web All Conf., Apr. 2016, pp. 1–4.

[22] G. Yang and J. Saniie, ‘‘Sight-to-sound human-machine interface for
guiding and navigating visually impaired people,’’ IEEE Access, vol. 8,
pp. 185416–185428, 2020.

[23] M. Collier and R. Shahan, Microsoft Azure Essentials Fundamentals of
Azure. Redmond, WA, USA: Microsoft Press, 2015.

[24] A. Mardanov, Express.Js Guide: The comprehensive Book Express.Js.
Victoria, BC, Canada: Lean Publishing, 2013.

[25] P. Mejía, L. C. Martini, F. Grijalva, J. C. Larco, and J. C. Rodríguez,
‘‘A survey on mathematical software tools for visually impaired persons:
A practical perspective,’’ IEEE Access, vol. 9, pp. 66929–66947, 2021.

[26] P. Bourque and R. Fairley, Guide to the Software EngineeringBody of
KnowledgeVersion 3.0 SWEBOK. Piscataway, NJ, USA: IEEE Press, 2014.

[27] Software Testing Qualifications Board, Y Hispanic America Software Test-
ing Qualifications Board, International Software Testing Qualifications
Board, Probador Certificado del ISTQB. EEUU: CTFL-ISTQB, Tampa,
FL, USA, 2018.

[28] S. W. G. AEN/CTN71/SC7/GT26. (2022). ISO/IEC/IEEE 29119 Soft-
ware Testing Standard. Accessed: Jan. 8, 2023. [Online]. Available:
https://in2test.lsi.uniovi.es/gt26/?lang=en

[29] S. K. Card, T. P. Moran, and A. Newell, The Psychology of Human
Computer Interaction. Mahwah, NJ, USA: CRC Press, 2008.

[30] A. M. Zambrano, S. Corrales, C. Parra, F. Grijalva, and J. A. Zambrano,
‘‘A prototype software for grading management aimed at visually impaired
teachers,’’ in Proc. IEEE 6th Ecuador Tech. Chapters Meeting (ETCM),
Oct. 2022, pp. 1–6.

ANA M. ZAMBRANO received the engineer-
ing degree in electronics and information net-
works from Escuela Politécnica Nacional, Quito,
Ecuador, in 2010, the master’s degree in commu-
nication technologies, systems and networks from
the Polytechnic University of Valencia, in 2013,
through a scholarship in Ecuador, and the Ph.D.
degree in telecommunications, in 2015. She is
currently with Escuela Politécnica Nacional. Her
research interests include real-time applications,

distributed systems, and the Internet of Things together with smart cities.

DANILO I. PILACUÁN was born in Quito,
Pichincha, in March 1995. He received the bache-
lor’s degree in computer science. He is currently
pursuing the degree with the Faculty of Elec-
tronic Engineering and Information Networks,
Escuela Politecnica Nacional. His research inter-
ests include the development of web applications
in languages, such as C#, Java, and Python, and
also the development and implementation of the
IoT hardware prototypes.

MATEO N. SALVADOR was born in Quito,
Ecuador, in 1999. He is currently pursuing
the engineering degree in information tech-
nology (IT). He studies with Escuela Politéc-
nica Nacional, Quito. In 2022, he received
a Scholarship for Academic Excellence from
Escuela Polítecnica Nacional. His research interest
includes the development and optimization of web
applications and network security.

FELIPE GRIJALVA (Senior Member, IEEE)
received the B.S. degree in electrical engineering
and telecommunications from the Army Polytech-
nic School, Quito, Ecuador, in 2010, and theM.Sc.
and Ph.D. degrees in electrical engineering (major
in computing engineering) from the University of
Campinas, Campinas, Brazil, in 2014 and 2018,
respectively. He is currently a full-time Professor
with Universidad San Francisco de Quito (USFQ),
Quito. His research interests include spatial audio,

machine learning and computer vision applications, and assistive technolo-
gies aimed at visually impaired people.

NATHALY OROZCO GARZÓN (Senior Member,
IEEE) received the electronic and telecommuni-
cations engineering degree from Armed Forces
University-ESPE, Ecuador, in 2011, and the M.Sc.
and Ph.D. degrees in electrical engineering from
the University of Campinas (UNICAMP), Brazil,
in 2014 and 2018, respectively. She obtained the
HCIA-5GCertification fromHuawei, in 2020. She
is currently an Assistant Professor with Univer-
sidad de Las Américas (UDLA), Quito, Ecuador.

Her research interests include digital and wireless communications, com-
puter applications, software simulation, MIMO, cognitive systems, machine
learning, and 5G technologies.

HENRY CARVAJAL MORA (Senior Member,
IEEE) received the B.Sc. degree (Hons.) in elec-
tronics and telecommunications engineering from
Armed Forces University-ESPE, Ecuador, in 2009,
and the M.Sc. and Ph.D. degrees in electri-
cal engineering from the School of Electrical
and Computer Engineering (FEEC), University of
Campinas (UNICAMP), Brazil, in 2014 and 2018,
respectively. He was the Director of the Technol-
ogy Transfer Area in the Education, Science and

Technology Secretariat (SENESCYT), Ecuador, in 2018. He obtained the
HCIA-5G Certification from Huawei, in 2020. He is currently an Assistant
Professor with Universidad de Las Américas (UDLA), Ecuador. His research
interests include wireless communications, physical-layer security, 5G and
B5G technologies, software simulation, computer applications, and machine
learning.

71776 VOLUME 11, 2023


