
Received 22 May 2023, accepted 27 May 2023, date of publication 31 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281559

Discriminative Angle Feature Learning for
Open-Set Deep Fault Classification
JIE MEI 1,2,3, WEI LIU 1, (Member, IEEE), MING ZHU 1,2,3, YONGKA QI1,2,3, MING FU 1,2,3,
YUSHI LI 1,2,3, AND QUAN YUAN4
1School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
2National Engineering Research Center of Fire and Emergency Rescue, Wuhan 430074, China
3Hubei Province Internet Technology and Engineering Research and Development Center, Wuhan 430074, China
4School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China

Corresponding author: Ming Zhu (zhuming@mail.hust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62071189.

ABSTRACT Unknown faults may occur in practical applications, necessitating an open-set classifier that can
classify known classes as well as recognize unknown faults. The current deep open-set classificationmethods
are implicit in optimizing the intra- or inter-class distances, which may result in performance degradation
when the number of unknown classes far exceeds that of the known. In this study, the discriminative angle
deep features for vibration signals are investigated. A novel normalized one-versus-all classification loss with
center and contrastive regularization is proposed. The trained network can explicitly optimize deep features
to ensure intra-class compactness and inter-class divergence. In this case, such discriminative features can be
used for open-set fault classification. Furthermore, the effectiveness of the proposed method is verified using
field-measured motor bearing and gear vibration signals. The results demonstrate the evident advantages of
our proposed method over other approaches in practical fault diagnosis scenarios.

INDEX TERMS Classification algorithms, convolutional neural networks, deep learning, detection algo-
rithms, fault diagnosis, feature extraction, pattern recognition, rotating machines, supervised learning,
vibration measurement.

I. INTRODUCTION
With the development of deep learning, the data-driven fault
diagnosis of industrial equipment has attracted significant
research attention in recent years [1], [2], [3]. Fault diag-
nosis based on vibration signals is particularly favored by
researchers and engineers owing to the ease of signal collec-
tion on the surfaces of equipment without affecting opera-
tions [4], [5]. Recently, fault diagnosis techniques based on
vibration signals and deep learning have been extensively
studied for a variety of industrial equipment, including com-
pressors [6], rotating machinery [7], and high-speed train [8].
Moreover, various intelligent diagnostic methods have been
proposed recently. Wang et al. [9] presented a transformation
method to convert vibration signals into images, and fur-
ther adopted a two-dimensional convolutional neural network
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with multi-head attention to classify faults. Ding et al. [10]
fed the time-frequency representation of vibration signals into
a Transformer network for fault diagnosis. Tang et al. [11]
developed a bi-directional deep belief network to improve
the accuracy and generalization performance of the fault
diagnosis model.

However, most intelligent fault diagnosis models assume a
closed-set classification scenario. Under this assumption, the
labels of all test samples are previously seen by the model
during the training phase. The classification model divides
the entire feature space into K subspaces, where K denotes
the number of known classes, as depicted in Figure 1(a).
Therefore, when a sample from an unknown class is fed into
the model, it is erroneously classified as a specific known
class. This does not match real application scenarios. Typ-
ically, an intelligent diagnosis model deployed in practical
application scenarios should be capable of open-set recogni-
tion, as shown in Figure 1(b). Open-set classification models
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FIGURE 1. Comparison of decision boundaries in (a) closed-set and
(b) open-set classification scenarios. The dashed lines indicate the
decision boundaries and different shapes represent different classes.
(a) Unknown samples are erroneously classified as a specific known class
in the closed-set scenario. (b) Samples from known and unknown classes
are correctly classified in the open-set scenario.

narrow down the decision boundaries of known classes so that
the model can simultaneously classify samples from known
classes and recognize unknown faults. However, actual indus-
trial applications pose a challenging problem for the deployed
fault diagnosis model, which is only trained on K known
classes but outputs K + 1 classes, where K + 1 represents
the extra unseen fault classes. In this study, the focus lies on
establishing an open-set deep fault classification model for
practical applications.

The open-set fault classification problem is primarily
related to open-set recognition (OSR) [12] and open-set
domain adaptation (OSDA) [13]. Generally, OSDA methods
learn domain-invariant features between the source and tar-
get domains to realize the classification of shared classes
while rejecting samples from unknown classes. Currently,
most OSDA methods adopt the domain adversarial learn-
ing technique [14], which learns domain-invariant features
through adversarial training of the feature extractor and
domain classifier. Zhang et al. [15] proposed an instance-level
weighted mechanism to determine the similarities of test
samples with known classes for weighted domain adversarial
learning. Mao et al. [16] designed an interactive dual adver-
sarial neural network with a closed-set and weighted open-
set domain adversarial network. Yu et al. [17] presented a
bilateral weighted adversarial network that utilized the output
of an additional domain classifier to obtain the similarities
between the test samples and the known classes. Zhao and
Shen [18] proposed a dual adversarial network with weighted
and separated adversarial learning for cross-domain open-
set fault diagnosis. However, these OSDA methods require
sufficient test samples to participate in training, which does
not satisfy the real-time diagnosis requirements of industrial
applications.

The OSR model, which does not require any test samples
to participate in training, is more suitable for field appli-
cations. Existing OSR methods enable the deep network to
learn discriminative features that can be used for both the
classification of known classes and the detection of unknown
faults. A predefined feature distance is further used to deter-
mine the category of the input sample. Bendale et al. [19]
proposed an OpenMax layer to generate extra unknown class

activation and used the Euclidean distances for unknown
detection. Chen et al. [20], [21] extracted Euclidean discrim-
inative features using adversarial reciprocal point learning,
where each reciprocal point represents the extra-class space
corresponding to a known class. Similarly, Yu et al. [17]
utilized the Euclidean distance between the output logit vec-
tor and class center to determine whether an input sample
is an unknown fault. The variational auto-encoder (VAE)
network can also be improved for OSR. He et al. [22] simul-
taneously trained a VAE network and deep latent feature
classifier, utilizing Bhattacharyya distances of latent features
for unknown detection. Chen et al. [23] directly replaced the
decoder of the VAE network with a classifier and trained an
encoder-classifier network for discriminative feature extrac-
tion. Zhang et al. [24] employed a flow-based model to
estimate the density of known-class features and treated its
output density as a special distance for unknown detection.
Small intra-class variance and large inter-class separation are
two important aspects of discriminative features. However,
these methods are implicit in optimizing the intra- or inter-
class distances, which may result in performance degradation
when the number of unknown classes far exceeds that of the
known.

Inspired by intelligent face recognition which has demon-
strated considerable progress, discriminative angle feature
learning is considered in this study. Wang et al. [25] added
a cosine margin term to the L2 normalized SoftMax clas-
sification loss to force the network to learn deep features
with large inter-class variance. Deng et al. [26] proposed an
additive angle margin SoftMax loss for discriminative feature
learning. Nevertheless, these face recognition methods do not
explicitly optimize the intra-class variance of deep features.
In addition, vibration signals are non-stationary signals with
strong periodicity and high noise. Face recognition methods
typically focus on images, which are non-serial and com-
pletely different from vibration signals.

Compared with previous OSR methods, the discriminative
angle features for vibration signals are investigated in this
study. We propose a novel normalized one-versus-all classifi-
cation loss with center and contrastive regularization, which
is called the discriminative angle feature learning for open-set
classification of vibration signals (OSDAF). The normalized
one-versus-all classification loss can effectively extract the
deep features due to its low information interaction of each
known class. In addition, the center and contrastive regu-
larization terms explicitly optimize deep features to ensure
intra-class compactness and inter-class divergence, while the
existing method is implicit optimization.

The key contributions of our study are as follows:
1) We improve the deep learning-based industrial equip-

ment fault diagnosis system by extending it from a
closed-set to an open-set scenario that is closer to prac-
tical applications.

2) We propose a novel normalized one-versus-all classi-
fication loss with center and contrastive regularization.
The trained network sufficiently learns discriminative
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FIGURE 2. Outline of the proposed method in the training and testing phases. The model is trained
end-to-end by the OSDAF loss and classifies samples based on the cosine distances between the
learned and stored features.

angular features that are intra-class compact and inter-
class divergent.

3) We verify the effectiveness of our proposed method
using field-measured industrial equipment vibration
signals. The results demonstrate the apparent advan-
tages of the proposed method over other approaches in
practical open-set fault diagnosis scenarios.

The rest of this paper is organized as follows. In Section II,
the proposed approach is detailed. Comparative and ablation
experiments are carried out in Section III. Finally, Section IV
provides the conclusion and suggestions for future research.

II. PROPOSED METHOD
Wemathematically formalize the open-set fault classification
problem in Section II-A. Section II-B presents a detailed
derivation of our proposed loss function L. The pipeline of
the training and testing phases is introduced in Section II-C
based on the proposed loss.

A. PROBLEM STATEMENT
The label set of a training dataset Dtr = {xi, yi}Ni=1 compris-
ing N samples and K known classes is Ytr = {1, . . . ,K }.
A test set Dte, which contains unknown faults that have
not occurred in the training set Dtr , is collected in practical
industrial applications. The training label set is a subset of

the test label set Ytr ⊂ Yte. A learned model g that has been
trained on Dtr attempts to make an open-set classification
g : x → {1, . . . ,K ,K + 1}, where K + 1 denotes the label of
unknown fault and x ∈ Dte.

B. LEARNING OBJECTIVE
The objective of our approach is to learn the discriminative
angle features. Two properties of these features are consid-
ered: intra-class compact and inter-class divergent. The two
properties can reserve sufficient space between known classes
for samples from unknown classes to occupy. Consequently,
both the classification of known classes and the detection of
unknown faults could be more effectively performed. Fur-
thermore, this motivation is similar to that of the Fisher
discrimination criteria. The purpose of a Fisher discriminant
is to learn a linear projection that maximizes the inter-class
distance and minimizes the intra-class distance. In this study,
we employ a deep network as a non-linear projection to learn
these features.

The proposed model consists of two components: a back-
bone network fφ(·) with parameters φ and stored weights
W ∈ Rd×K , where d represents the dimension of deep feature
z = fφ(x). The outline of the proposed method in the training
and testing phases is illustrated in Figure 2. The detailed
derivation of the loss function is as follows.
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1) NORMALIZED ONE-VERSUS-ALL CLASSIFICATION LOSS
The one-versus-all training strategy [27] includes two
aspects: increasing the probability that sample xi belongs to
its correct class yi, as well as the probability that xi does not
belong to any other class. The one-versus-all classification
loss can be expressed as follows:

Loc = −
1
N

N∑
i=1

{log pi,yi +
K∑

j=1,̸=yi

log(1− pi,j)}, (1)

where pi,j represents the output probability from the model
that the sample xi belongs to the j-th class, K is the number
of classes, and N is the number of samples.
A deep backbone network fφ(·) is used to learn a

d-dimensional high-level feature zi = fφ(xi) ∈ Rd . By using
a fully connected layer W ∈ Rd×K and a Sigmoid activation
function σ (·), the probability pi,j is calculated as follows:

pi,j = σ (∥W T
j ∥∥zi∥ cos θi,j), (2)

where θi,j is the angle between feature zi and weightWj. Thus,
equation (1) can be rewritten as follows:

Loc = −
1
N

N∑
i=1

{log σ (∥W T
yi ∥∥zi∥ cos θi,yi )

+

K∑
j=1,̸=yi

log(1− σ (∥W T
j ∥∥zi∥ cos θi,j))}. (3)

FIGURE 3. Geometrical interpretation of (a)-(c) Loc and (d) Lnoc . The
decision boundary is positively correlated with the magnitude of the
weight vector Wj . ∥Wj ∥ = 1 and ∥zi ∥ = s are fixed to ensure reasonable
angle decision boundary in the Lnoc .

We consider a binary scenario with classes C1 and C2 to
simplify the analysis, as presented in Figure 3. Let W1 and

W2 represent the weight vectors of C1 and C2, respectively.
The decision boundary is defined by

∥W1∥ cos θ1 = ∥W2∥ cos θ2, (4)

where θ1 is the angle between the feature vector zi and W1,
and θ2 is the angle between the feature vector zi andW2. Thus,
its boundary depends on both the magnitudes of the weight
vectors and the cosine of the angles. When ∥W1∥ = ∥W2∥,
the decision boundary is the angular bisector of W1 and W2,
as depicted in Figure 3 (a). Otherwise, the decision boundary
for Cj is positively correlated with the magnitude of weight
vectorWj when ∥W1∥ ̸= ∥W2∥, as shown in Figure 3 (b)-(c).

To ensure reasonable angle decision boundaries, ∥Wj∥ =

1 and ∥zi∥ = s are fixed, where s is a predefined norm of
the feature zi [25], [28]. Therefore, the decision boundaries
merely depend on the angle θi,j, as shown in Figure 3 (d).
The normalized one-versus-all classification loss is defined
as follows:

Lnoc = −
1
N

N∑
i=1

{log σ (s cos θi,yi )

+

K∑
j=1,̸=yi

log(1− σ (s cos θi,j))}, (5)

subject to

zi =
fφ(xi)∗
∥fφ(xi)∗∥

,

wj =
w∗j
∥w∗j ∥

,

cos θi,j = wTj zi. (6)

2) NARROW INTRA-CLASS VARIANCE WITH CENTER LOSS
Typically, loss Lnoc can only complete the classification task
of known classes, which leads to the reservation of insuffi-
cient space for unknown fault samples in the feature space,
as shown in Figure 4 (a). Compact intra-class features make
the decision boundaries of known classes more robust for
unknown fault detection, as shown in Figure 4 (b). We first
define the cosine distance d(zi,Wj) between feature zi and
weight vectorWj as follows:

d(zi,Wj) =
1
2
(1− cos θi,j). (7)

We propose a cosine center loss [29] to reduce the cosine dis-
tance between feature zi and its corresponding prototypeWyi ,
which is expressed as follows:

Lcent =
1
N

N∑
i=1

d(zi,Wyi ). (8)

3) EXPAND INTER-CLASS SEPARATION WITH
CONTRASTIVE LOSS
The cosine center loss Lcent minimizes the distance between
the feature vectors zi and corresponding weight vectorWyi to
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FIGURE 4. Illustrative comparison among (a) Lnoc , (b)Lnoc + αLcent , and (c)L = Lnoc + αLcent + βLcontr .
Lnoc is only used for classification. Lcent and Lcontr are used to compress the intra-class distance and
enlarge the inter-class margin, respectively.

reserve sufficient feature space for unknown-class samples.
Intuitively, enlarging the gap between the decision bound-
aries of different categories is another approach for improv-
ing the unknown fault detection performance, as shown in
Figure 4 (c). A contrastive cosine loss is proposed to push
the weight vectors Wj(j ̸= yi) that is not related to their
corresponding labels yi far away from the feature zi with a
large margin m, which is expressed as follows:

Lcontr =
1

N (K − 1)

N∑
i=1

K∑
j=1,̸=yi

[m− d(zi,wj)]+, (9)

where [·]+ is a function that returns the positive part of the
argument.

4) OVERALL LEARNING OBJECTIVE
The final incorporative normalized one-versus-all loss with
center and contrastive regularization, called the open-set dis-
criminative angle feature learning loss (OSDAF), can be
expressed as

L = Lnoc + αLcent + βLcontr , (10)

where α and β are the trade-off hyperparameters.

C. TRAINING AND TESTING PIPELINES
We summarize the training and testing procedures in
Algorithm 1. During the end-to-end training procedure,
parameters φ and W are jointly optimized using the loss L
in equation (10), as shown in lines 1-10 of Algorithm 1. After
training, the threshold �k for the k-th known class is set to
accept the η% of the correctly classified validation samples,
as shown in lines 11-14 of Algorithm 1.
For the testing procedure, the model classifies samples

based on the cosine distance d(zi,Wj) in (7). The cosine
distance dj between the output feature fφ(x) and j-th weight
Wj is first calculated for a test sample x. Subsequently, the
closed-set prediction label ŷ ∈ {1, . . . ,K } and its correspond-
ing distance dŷ are obtained. The label of test sample x is
determined to be an unknown class K + 1 if dŷ exceeds the
preset threshold �ŷ. Otherwise, the label of test sample x is
predicted as ŷ.

III. EXPERIMENTAL VALIDATION
A. DATASET DESCRIPTIONS
1) GEAR AND BEARING DATASET
The gear and bearing dataset [30], [31] were created by the
Southeast University (SEU) in China. Four types of bearing
faults and four types of gear faults were included in this
dataset, as listed in Table 1. Data collected under working
conditions with a rotating speed-load configuration of 20 Hz–
0 V were selected in this study.

2) BEARING DATASET
The bearing dataset [32], [33] was provided by the Paderborn
University (PU) inGermany. Real damaged bearing data were
chosen to form the PU dataset, and these included KA04,
KA15, KA16, KA22, KA30, KB23, KB24, KB27, KI14,
KI16, KI17, KI18, andKI22, as listed in Table 2. KA,KB, and
KI indicate that the damaged positions were on the outer ring,
both the outer and inner rings, and the inner ring, respectively.
The test rig ran at 1,500 rpmwith a load torque of 0.7 Nm and
a radial force of 1,000 N on the bearing.

B. FAULT DIAGNOSIS TASKS AND IMPLEMENTATION
DETAILS
Several OSR fault diagnosis tasks were established for each
dataset to verify the effectiveness of our proposed method,
as shown in Table 3. Each task had different numbers
of known and unknown classes. Openness O = 1 −
√
K/(K + U ) was used to denote the difficulty of a particular

open-set recognition task, following the definition in [12].
Here, K and U denote the number of known and unknown
classes, respectively. The higher the degree of openness O,
the greater the difficulty associated with the OSR task. The
established tasks had a wide range of openness. For example,
the openness of the tasks on the PU dataset varied from
0.5196 to 0.0801.

We divided the samples from the raw vibration signals
in a partially overlapping or non-overlapping manner [34],
with 1024 points for each sample and 3000 samples for each
class. The dataset was constructed according to the known

VOLUME 11, 2023 55015



J. Mei et al.: Discriminative Angle Feature Learning for Open-Set Deep Fault Classification

Algorithm 1 Training and Testing Process of Pro-
posed Model

Input: Training set {(xi, yi)}Ni=1 and validation set.
Test sample x. A backbone network fφ(·) with
parameters φ, and stored featuresW .
Hyperparameters α, β, m, and s. Learning rate
γ , and acceptance rate η%. Number of
iterations t ← 0.

Output: The predicted test sample label.
// training procedure
while not converge do

t ← t + 1;
Normalize feature zi =

fφ (xi)∗
∥fφ (xi)∗∥

;

Normalize weightWj =
W ∗j
∥W ∗j ∥

;

Compute cosine cos θi,j = W T
j zi;

Compute the loss L = Lnoc + αLcent + βLcontr
using (10);
Compute the backpropagation error ∂Lt

∂xti
for each i

using ∂Lt
∂xti
=

∂Ltnoc
∂xti
+ α

∂Ltcent
∂xti
+ β

∂Ltcontr
∂xti

;
Update the parameters φ using
φt+1 = φt − γ t ∂Lt

∂xti
;

Update the weight w usingW t+1
= W t

− γ t ∂Lt
∂W t ;

// set threshold
for j = 1, . . . ,K do

Compute the cosine distance di,j using (7) of the
correctly classified validation sample xi;
Set the threshold �k to accept η% of di,j;

// test procedure
for j = 1, . . . ,K do

Compute the cosine distance

dj = 1
2 (1−

wTj
∥wj∥

fφ (x)
∥fφ (x)∥

) of the test sample x;
Compute the closed-set prediction label ŷ and its
corresponding cosine distance dŷ;

if dŷ > �ŷ then
Predict the label as K + 1;

else
Predict the label as ŷ ∈ {1, . . . ,K }.

TABLE 1. Detailed description of the SEU dataset. Nine types of health
states were considered.

and unknown label sets of each task (Table 3). Note that the
labels of all unknown samples were set to K + 1.

TABLE 2. Detailed description of the PU bearing dataset. Thirteen types
of health states were considered.

TABLE 3. Open-set fault diagnosis tasks on two datasets. Eighteen OSR
fault diagnosis tasks were randomly established for each dataset to verify
the effectiveness of our proposed method.

In addition, the one-dimensional ResNet-18 network was
employed as the backbone feature extractor fφ(·), owing to its
powerful feature extraction ability [35]. The deep ResNet-18
network mapped the input of 1024-dimensional raw vibration
data into 64-dimensional features and was trained using the
Adam optimizer at a learning rate of 0.001. The unknown
detection threshold was set to 99% of the acceptance rate of
known samples to ensure a high known-class classification
objective, i.e., η = 99. We set the fixed length s of the feature
to 30, following [25] and [26]. The hyperparameters α, β,
and m were set to 0.01, 0.01, and 0.8, respectively. Each
task was run independently five times to reduce the risk of
randomization.

C. EVALUATION METRICS
In addition to the classification of known classes, the detec-
tion of unknown-class samples is a key but difficult-to-
achieve goal of open-set fault classification. We used the
unknown detection accuracy (UDA) to evaluate the ability of
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TABLE 4. Results of different methods on tasks of the SEU dataset. The results were the averages of five random dataset splits. The best results are
highlighted in bold font.

the model to detect unknown samples, which is defined as

UDA = Mu/Nu, (11)

where Mu and Nu respectively represent the number of
correctly classified unknown-class test samples and all
unknown-class test samples. A higher UDA indicates better
unknown-class detection performance.

In addition, the F1 score is commonly used to evaluate the
open-set classification performance of a model that is trained
with K classes but outputs K + 1 classes [22], [23]. The F1
score is defined as

F1 =
2× TP

2× TP+ FP+ FN
, (12)

where TP, FP, and FN represent the number of true positives,
false positives, and false negatives, respectively. A high F1
score indicates high known-class classification accuracy and
strong unknown-class detection ability.

D. COMPARISON WITH OTHER METHODS
The proposed method was compared with the following
methods.

1) The three most current open-set fault classification
methods. CNNevt [17] utilized the Euclidean distance
between the output logit vector and class center to
determinewhether an input sample is an unknown fault.
OSSC [23] replaced the decoder of the VAE network
with a classifier and trained an encoder-classifier net-
work for discriminative feature extraction. The extreme
value theory and entropy, which are termed as OSSCevt
and OSSCentropy, respectively, were further used to
detect the unknown fault.

2) Four mainstream OSR baselines in computer vision.
OpenMax [19] proposed a new layer to generate
extra unknown class activation and used the Euclidean

distances for unknown detection. OpenHybrid [24]
employed a flow-basedmodel to estimate the density of
known-class features and treated its output density as a
special distance for unknown detection. RPL [20] and
RPL++ [20] extracted Euclidean discriminative fea-
tures using adversarial reciprocal point learning, where
each reciprocal point represents the extra-class space
corresponding to a known class.

3) Two face recognition methods based on discriminative
angle feature learning. CosFace [25] added a cosine
margin term to the L2 normalized SoftMax classifica-
tion loss to force the network to learn deep features with
large inter-class variance. ArcFace [26] proposed an
additive angle margin SoftMax loss for discriminative
feature learning.

For a fair comparison, all tasks were run on the same
computer, which was equipped with an i9-12900KF CPU,
64 GB RAM, and an RTX 3090Ti GPU. All the baselines
adopted the same backbone network, and trainable parameter
initialization and dataset division were conducted using the
same random seed. The results for the SEU and PU datasets
were the averages of five random dataset splits, as shown in
Tables 4 and 5, respectively. The best results are highlighted
in bold font.

The open-set fault classification results for the SEU dataset
are presented in Table 4. Our method achieved the highest
UDA on each task of the SEU dataset. The average UDA for
all tasks of the proposed method is 84.16%, which is 23.27%
higher than that of the next best method. Although the face
recognition methods CosFace and ArcFace also adopt dis-
criminative angle feature learning, the UDA of the proposed
method OSDAF is still 23.27% and 29.37% higher than the
UDAs of the foregoing methods, respectively. This is owing
to the explicit optimization of the intra- and inter-class cosine
distances of the depth angle features by the proposed method.
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TABLE 5. Results of different methods on tasks of the PU dataset. The results were the averages of five random dataset splits. The best results are
highlighted in bold font.

FIGURE 5. Visualizations of extracted features on the S8, S9, and S10 tasks. Top: visualizations of extracted
features; bottom: known and unknown statistical distributions.

Moreover, the unknown detection threshold was set to 99%
of the acceptance rate of known samples to ensure a high
known-class classification objective, which is another goal
of the open-set classification task. Table 4 indicates that the
proposed method achieves promising F1 scores for all tasks,
which further confirms its effectiveness and superiority in
addressing the open-set fault classification problem.

The open-set fault classification results for the PU dataset
are presented in Table 5. A pattern similar to that for the SEU
dataset can be observed. The average UDA and F1 score of
the proposed method are 48.76% and 0.7527, respectively,
indicating that it has a strong ability for known-class clas-
sification and unknown-class detection. Compared to other
baselines, the average UDA and F1 score of the proposed
method were greater by at least +12.29% and 0.0574, respec-
tively. Method CNNevt on the P4 task and method CosFace
on the P5 task obtained slightly higher UDAs but lower
F1 scores than the proposed method. This may be because
they use unreasonable threshold settings to detect samples
from unknown classes. Although this improves the detection
accuracy of unknown classes, it impairs the classification
performance of known classes. The high F1 scores listed in

Table 5 indicate that the training and testing strategy of the
OSDAF method is reasonable and superior in the field of
open-set fault classification.

To intuitively demonstrate the effectiveness of the pro-
posed approach, we visualized the normalized output features
on the S8, S9, and S10 tasks, as shown in Figure 5. The
features of samples from known and unknown classes are rep-
resented by colored and gray dots, respectively. The features
from known classes form clusters according to their labels,
indicating that the proposed model can ensure a high classi-
fication accuracy of known classes. Moreover, we also made
statistics on the cosine distance from the output feature to the
nearest stored feature, which is defined in equation (7). The
cosine distance distributions between known and unknown
classes presented an evident margin. Therefore, this cosine
distance can be used to detect unknown-class samples.

E. ABLATION STUDY
1) A TOY EXAMPLE
The proposed OSDAF loss includes three components: the
normalized one-versus-all classification loss Lnoc, center
regularization Lcent , and contrastive regularization Lcontr .
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We studied a toy example to better visualize the learned
features and validate the effectiveness of each component.
We extracted the two-dimensional features of each known
sample on the S4 task for simplicity. As presented in
Figure 6 (a), we can observe that the features learned by
only Lnoc are distributed at angles but are not necessarily
more discriminative. Under the regularization of Lcent , the
intra-class angular distribution is compact, as illustrated in
Figure 6 (b). The contrastive regularization Lcontr helps to
enlarge the inter-class margin, especially the yellow and red
classes in Figure 6 (c). This toy experiment validates our
motivation of Figure 4.

FIGURE 6. Toy experiment of different loss functions on the S4 task with
two-dimensional features. Different colors represent different known
classes. This experiment validates our motivation of Figure 4.

2) ABLATION EXPERIMENTS
Ablation experiments were conducted on the SEU dataset
to verify the contribution of each part to the proposed loss.
The following ablation experiments on the SEU dataset were
conducted:

1) w/o Lnoc: The normalized one-versus-all classifi-
cation loss Lnoc was replaced by the commonly
used normalized SoftMax (nsm) loss Lnsm =

−
1
N

∑N
i=1 log

exp(s cos θi,yi )∑
j exp(s cos θi,j)

[25], [26], [36]. The train-
ing loss can be expressed as L1 = Lnsm + αLcent +
βLcontr .

2) w/o Lcent : The center regularization Lcent was
removed, leaving only the contrastive cosine regular-
ization. The training loss can be expressed as L2 =

Lnoc + βLcontr .
3) w/o Lcontr : The contrastive regularization Lcontr was

removed, leaving only the center regularization. The
training loss can be expressed as L3 = Lnoc + αLcent .

TABLE 6. Averaged results of the ablation study on tasks of the SEU
dataset. The results were the averages of five random dataset splits. The
best results are highlighted in bold font.

The results in Table 6 indicate that the OSDAF method
achieves the best average F1 score and UDA. The center

regularizationLcent plays the most important role in the over-
all loss according to the averaged results of the ablation stud-
ies. In the absence of Lcent , the average UDA and F1 scores
decrease by 13.74% and 0.0569, respectively. Moreover, the
normalized one-versus-all classification loss Lnoc is another
key factor that improves the performance of open-set fault
classification. When Lnoc was used instead of the normalized
SoftMax classification loss, the average UDA and F1 scores
of the OSDAF method increased by approximately 11% and
0.04, respectively. Similarly, the average UDA and F1 scores
of the model were improved by approximately 2% with the
help of contrastive regularization Lcontr .

FIGURE 7. F1 score comparisons of different ablation methods for each
task of the SEU dataset. The proposed OSDAF method has evident
advantages, especially in high-openness tasks.

In addition, the proposed OSDAF method has evident
advantages in high-openness tasks, as shown in the F1 scores
of each task in Figure 7. For example, OSDAF achieves
an F1 score of at least 0.0295 higher than those of other
methods for the S1 task with an openness of 0.4226. We also
plotted the confusion matrix of the S1 task to observe the
accuracy of each class in detail, as shown in Figure 8.
The accuracy of unknown detection of OSDAF was at least
6% higher than those of the other three ablation methods.
In conclusion, the proposed normalized one-versus-all clas-
sification loss Lnoc, center regularization Lcent , and con-
trastive regularization Lcontr all contribute to the open-set
fault classification performance in practical application
scenarios.
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FIGURE 8. Confusion matrices on task S1 for three ablation methods and
the proposed method: (a) w/o Lnoc , (b) w/o Lcent , (c) w/o Lcontr , and
(d) proposed OSDAF method, where ‘‘UK’’ refers to the unknown class.

FIGURE 9. F1 scores on task S6 with varying (a) trade-off
hyperparameter α, (b) trade-off hyperparameter β, (c) fixed feature length
s, and (d) large margin m. The recommended hyperparameter values were
α = β = 0.01, s = 30, and m = 0.8 because the model received the
highest F1 score.

F. PARAMETER ANALYSIS
The unknown detection threshold was set as a 99% accep-
tance rate of known samples to ensure a high known-class
classification objective, i.e., η = 99. We analyzed the impact
of other hyperparameters on the performance of open-set
classification on the S6 task, as shown in Figure 9. The
hyperparameters α and β were the trade-off coefficients of
the regularization terms Lcent and Lcontr in the loss func-
tion, respectively. The values of α and β were selected as
{10−4, 10−3, 10−2, 10−1, 100}. The hyperparameter s was
expressed as the length of the fixed feature, whose value

was chosen as {10, 20, 30, 40, 50}. The hyperparameter m
represented the large angle margin, whose value was selected
as {0.70, 0.75, 0.80, 0.85, 0.90}. As shown in Figure 9, the
recommended hyperparameter values were α = β = 0.01,
s = 30,m = 0.8 because the model received the highest F1
score on the S6 task under this setting.

IV. CONCLUSION
This paper proposes a novel normalized one-versus-all clas-
sification loss with center and contrastive regularization to
address the open-set fault classification scenarios in practical
applications. This loss enables the network to sufficiently
learn discriminative angular features that are intra-class
compact and inter-class divergent. The effectiveness of the
proposed method is verified through a comparison with
other mainstream algorithms, using field-measured industrial
equipment vibration signals obtained frommotor bearing and
gear datasets. The results demonstrate the apparent advan-
tages of the proposed method over other approaches. Con-
sequently, the trained model can be used for unseen fault
recognition and fault classification based on cosine distances
in the angle feature space.

Despite the promising results, some limitations exist
and need to be further investigated. Considering that the
field-deployed model requires real-time fault diagnosis of
vibration signals, it is necessary to design a lightweight model
to reduce deployment costs. In addition, this study focuses on
the open-set fault classification problem where the training
label set is a subset of the test label space. Concerning the
OSDA, the invariant angle feature extraction method between
the source and target domains will be investigated in future
research.
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