
Received 1 May 2023, accepted 23 May 2023, date of publication 31 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281699

Providing Near Per-Flow Scheduling in
Commodity Switches Without
Per-Flow Queues
SHIE-YUAN WANG , (Senior Member, IEEE), CHEN-YO SUN, YU-CHEN HSIAO ,
AND YI-BING LIN , (Fellow, IEEE)
Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan

Corresponding author: Shie-Yuan Wang (shieyuan@cs.nycu.edu.tw)

This work was supported in part by the Center for Open Intelligent Connectivity from the Featured Areas Research Center Program within
the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan, in part by the National Science and
Technology Council under Project NSTC 111-2622-8-A49-022 and Project NSTC 110-2221-E-A49-032-MY3, and in part by the
Academia Sinica under Project 236c-1012030.

ABSTRACT Network quality of service (QoS) is essential for network applications. For many applications,
getting a fair share of available bandwidth for their flows can prevent them from being blocked by other
flows that do not respond to congestion. Providing per-flow scheduling in each output port of a commodity
switch can isolate the flows that compete for the bandwidth of a bottleneck link. Although per-flow
scheduling can maintain fair shares among competing flows, due to the high implementation costs of
providing per-flow queues in commodity switches, this capability is rarely provided in commodity switches
on the market. To address this need, we design and implement a near-per-flow scheduling scheme named
Near Per-flow Scheduling (NPFS) in P4 programmable hardware switches and evaluate its performance.
NPFS provides near-per-flow scheduling effectiveness in commodity switches that do not have per-flow
queues in their output ports. NPFS utilizes the priority queues provided in most commodity switches and
dynamically assigns competing flows to these queues based on their protocol types and current sending rates.
Experimental results show that, when the number of competing flows is less than three times the number
of queues, NPFS guarantees that the achieved bandwidths of these flows only deviate from their ideal fair
shares by 5%.

INDEX TERMS Near per-flow scheduling (NPFS), per-flow scheduling, programmable switches, program-
ming protocol-independent packet processors.

I. INTRODUCTION
Congestion control is very important for networks and identi-
fied as a top-10 problem in [1]. Allowing a flow to have its fair
share of available bandwidth is essential. Otherwise, a flow
may be blocked by other flows that exceed their fair shares
of available bandwidth and do not respond to congestion.
Nowadays, most commodity switches use FIFO queues to
forward packets [2]. Both simplicity and low cost can be
achieved if only one FIFO queue is needed for each output

The associate editor coordinating the review of this manuscript and

approving it for publication was Quansheng Guan .

port [3]. Using such a FIFO queue scheme, however, an unfair
situation is likely to occur when a TCP flow competes with a
UDP flow for the bandwidth of a bottleneck link [1]. We call
this problem the ‘‘TCP-vs-UDP’’ problem in this paper.

The unfair problem also occurs among competing UDP
flows, which is called the ‘‘UDP-vs-UDP’’ problem in this
paper. When a single queue is used and the total sending
rate of all competing UDP flows exceeds the bandwidth of
the bottleneck link, the packets of these UDP flows will
be dropped by the queue when the queue is full. Suppose
that there are N competing UDP flows, the sending rates of
these flows are r1, r2, . . . , rN , respectively, and the sum of

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54029

https://orcid.org/0000-0002-6481-3604
https://orcid.org/0009-0001-1924-4959
https://orcid.org/0000-0001-6841-4718
https://orcid.org/0000-0001-6159-3194


S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

these sending rates is R. The achieved bandwidth of these
competing UDP flows will be about (r1/R, r2/R, . . . , rN /R).
This bandwidth allocation is unfair and the cause of it is that
the packets of a flow with a higher sending rate will achieve
a higher proportion of the bottleneck bandwidth due to the
FIFO scheduling [1].

As for the ‘‘TCP-vs-TCP’’ case in which N large TCP
flows are competing for the bandwidth of a bottleneck link,
each TCP flow will get its fair share (i.e., 1/N) of the bottle-
neck bandwidth if the sending rate of each TCP flow is higher
than its fair share [1].

An effective way to provide fair bandwidth allocation is
to use a per-flow scheduling scheme in each output port of
a switch to maintain the fairness. However, to support such
a scheme, the switch needs to provide per-flow queues in its
output ports so that packets of different flows can be stored
in different queues. Such a design is required to avoid the
head-of-line blocking problem that may happenwhen a single
queue is used. Once per-flow queues are provided, these per-
flow queues can be manipulated with a simple scheduling
policy (for example, round-robin) to fairly allocate bottleneck
bandwidth among the competing flows.

Although a per-flow scheduling scheme is essential to
maintain fairness among competing flows, this scheme is
rarely supported by commodity switches on the market due to
its high design complexity and implementation cost. In most
commodity switches, the number of queues supported in an
output port is small. For example, to support the eight dif-
ferent QoS priorities defined in the IEEE 802.1p task group,
most commodity switches support only eight priority queues
in an output port. As for the support of per-flow queues,
when a large number of flows are passing an output port,
it is much more difficult to dynamically manage a large
and nondeterministic number of per-flow queues at a high
speed for a high-bandwidth output port such as 10 Gbps or
even 100 Gbps. Therefore, most commodity switches do not
support per-flow queues in their switching ASIC chips.

A fair bandwidth allocation scheme can be provided
by using an active queue management (AQM) approach
(e.g., [4], [5], [6], [7]) or a fair queueing (FQ) approach
(e.g., [8], [9], [11], [12], [13]). An AQM scheme determines
which packet to be dropped when the queue is full while a
FQ scheme determines which packet to be transmitted when
the output port is free. In the last three decades, many fair
bandwidth allocation schemes have been proposed in the
literature. However, most of them were only evaluated by
mathematical analyses, simulations, or software implemen-
tation in the FreeBSD/Linux kernel.

Recently, data-plane programmable hardware switches
have been available on the market. P4 (Programming
Protocol-Independent Packet Processor) [14], [15] is an open
domain-specific programming language that can be used to
program such switches. P4 provides a programmable data
plane that can process packets as fast as fixed-function
switches. By using P4, researchers can design, implement,

and experiment their schemes with realistic network traffics
to obtain reliable results. Due to this capability, there is a trend
of using programmable switches to support fair bandwidth
allocation. In a recent survey paper [16], the authors surveyed
nine works that use P4 switches to implement customized or
standard AQM algorithms. This shows the strong motivation
for fair sharing of available bandwidth.

Although in [16] the authors listed nine works using P4
switches to implement AQM algorithms, these works do not
implement FQ algorithms. Furthermore, only two of these
nine works actually implemented their proposed algorithms
in P4 commodity switches (the other seven works were
implemented in the BMv2 P4 software switch). The authors
in [17] and [18] proposed P4-based scheduling algorithms
for FQ. However, both of these works need special hard-
ware supports and cannot be implemented in P4 commodity
switches. The research gaps in the community are designing
and implementing a FQ approach in P4 commodity switches
that achieves the FQ effect enabled by per-flow scheduling.
The research challenge is designing and implementing such
an approach in P4 commodity switches by using a very
limited number of pipeline operations for each packet.

In an output port whose bandwidth is 100 Gbps (which
is the port bandwidth of the hardware switches used in
this work), the time interval (12 nanoseconds) between two
consecutive 1500-byte packet transmissions is very short.
This means that a packet scheduler designed for such an
output port needs to finish each scheduling decision within
12 nanoseconds (or even shorter if the packet size is less than
1500 bytes). Due to this high-speed forwarding requirement,
a sophisticated fair bandwidth allocation design may not be
practically implemented in high-speed switching chips and
instead only a very limited number of operations can be
applied to a packet while it is passing the packet processing
pipeline.

To bridge the gap, in this work we design and implement a
scheme named Near Per-flow Scheduling (NPFS) to achieve
the effectiveness of per-flow FQ in P4 commodity switches
that do not support per-flow queues at their output ports.

The novelty of our scheme is that we use the limited
number of priorities queues provided in most commodity
switches and dynamically assign competing flows to these
queues based on their protocol types (i.e., TCP or UDP)
and current sending rates. To address the ‘‘TCP-vs-UDP’’
problem, we separate the flows into the TCP groups and
UDP groups, respectively, and then assign these groups to
different queues. To address the ‘‘UDP-vs-UDP’’ problem,
we put UDP flows with similar sending rates into the same
UDP group and assign the UDP groups of different rates
to different queues. We dynamically assign weights to these
queues based on the number of flows assigned to these queues
and use a weighted round-robin packet scheduler to serve
these queues. These weights are adjusted so that all TCP
flows and UDP flows competing on the same bottleneck link
can get their fair shares of the bottleneck bandwidth.

54030 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

The contributions of our work consist of both novel designs
and solid implementation. We have designed novel algo-
rithms that prevent the ‘‘UDP-vs-UDP’’ and ‘‘TCP vs. UDP’’
unfairness problems and the ‘‘TCP vs. TCP’’ unfairness prob-
lem when multiple queues are used. Using Inventec D5264
P4 switches [19], we have successfully implemented these
algorithms in P4 commodity switches and validated their
functionality. Furthermore, experimental results show that,
when the number of competing flows is less than three times
the number of queues, our scheme guarantees that the flows
obtain bandwidths on a bottleneck link that only deviate from
their ideal fair shares by 5%.

The significant contributions of our work are summarized
as follows:

• We have designed and successfully implemented a novel
near-per-flow scheduling schemeNPFS for P4 commod-
ity switches that do not have per-flow queues. This is the
first such design and implementa-tion in P4 switches.

• Experimental results show that when the number of
competing flows is less than three times the number of
queues, NPFS guarantees that their achieved bandwidths
on a bottleneck link only deviate from their ideal fair
shares by 5%. Such results are near optimal.

This paper is organized as follows. In Section II, we survey
related works. Section III briefly introduces the P4 switch
architecture. Section IV presents the definition of fair share
and our design goals. Section V presents the design and
implementation of NPFS in a P4 switch. In Section VI,
we evaluate the performance of NPFS using real-world traffic
flows. In Section VII, we discuss several issues of NPFS.
Finally, we conclude the paper and discuss future work in
Section VIII.

II. RELATED WORK
A fair bandwidth allocation to competing flows can be
provided by an active queue management (AQM) scheme,
in which a switch maintains fairness by dropping the packets
of ill-behaved flows [4], [5], [6], [7]. Another approach is a
fair queueing (FQ) scheme, which ensures that traffic sources
can get their fair bandwidth shares in the network by deter-
mining which packet to be transferred when the output port
is free. NPFS can be viewed as an FQ scheme.

Nagle [20] proposed the first per-flow FQ scheme that
has a set of independent queues for packets of each flow.
Many follow-up solutions provided various types of FQ algo-
rithms [8], [9], [10], [11], [12], [13]. Generally, a per-flow
queueing algorithm needs two mechanisms — classifying
packets by flows and managing the states of flows, both
of which can be efficiently performed in P4 commodity
switches.

Later on, several proposals improved the time efficiency
of per-flow FQ [21], [22]. However, these sophisticated algo-
rithms still could not be implemented in high-speed switches.
To overcome this problem, the authors in [23] and [24]
leveraged the core-edge switch architecture to reduce the

complexity of core switches. Although the implementation
complexity of core switches can be reduced, the implemen-
tation complexity of edge switches is still high.

These above schemes were evaluated only by mathemati-
cal analyses, simulations, or software implementation in the
FreeBSD/Linux kernel. They were not implemented in high-
speed commodity switches.

More recently, the authors in [17] used reconfigurable
switches to develop the Approximating Fair Queueing (AFQ)
scheme, which dynamically assigns the dequeue round num-
ber to physical queues and enqueues the packets into the
corresponding queue to achieve approximate fair queueing.
This scheme needs a new packet scheduler, called the ‘‘Rotat-
ing Strict Priority’’ scheduler, which is a custom design and
requires the priority of a queue to be adjusted with respect
to other queues after it is completely drained by the dequeue
module. This mechanism is not currently supported in com-
modity switches, and existing reconfigurable switches do not
expose the programmability of internal queues. Therefore, the
authors implemented the AFQ scheme in a hardware proto-
type based on a Cavium programmable network processor to
measure the performance results of the AFQ scheme. It is
unclear from the paper whether the AFQ scheme can be
exercised in a more general P4 commodity switch instead of
the specific hardware prototype.

The authors in [18] presented a scheme called Fair
Dynamic Priority Assignment (FDPA), which uses rate esti-
mators to dynamically assign traffic flows to different priority
queues. In FDPA the priorities of the queues can remain
fixed and need not be varied at a high frequency. FDPA
is implemented in the Linux kernel running on a desktop
machine instead of a P4 commodity switch. Furthermore,
it can only handle the case where all competing flows are TCP
flows. In contrast, NPFS can handle other cases such as the
‘‘TCP-vs-UDP’’ case and the ‘‘UDP-vs-UDP’’ case.

Rather than providing a new FQ scheme, several recent
studies have proposed innovative packet schedulers that can
be used to implement sophisticated algorithms in switches.
For example, the authors in [25] introduced the pro-
grammable calendar queues with hardware prototype imple-
mentation; the authors in [26] and [27] proposed the hardware
design of PIFO- based schedulers. Currently, these innovative
programmable packet schedulers are only prototypes and are
not available yet in commodity switches. The authors in [28]
provided an approximate PIFO scheduler (SP-PIFO) by using
native strict-priority queues in a P4 switch. Although SP-
PIFO is implemented in P4 hardware switches, its purpose
is to approximate the PIFO scheduler rather than provide fair
bandwidth allocation among competing TCP and UDP flows.
Thus, it does not support fine-grained per-flow scheduling.

Recently, the authors in [29] enhanced their Core-Stateless
Fair Queueing (CSFQ) scheme presented in [23] to sup-
port hierarchical packet scheduling. They implemented their
new scheme (named HCSFQ) in a P4 hardware switch and
evaluated its performance. Although HCSFQ, like our NPFS
scheme, has been implemented in a P4 hardware switch,

VOLUME 11, 2023 54031



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

TABLE 1. Comparison of NPFS with related works.

FIGURE 1. The packet forwarding model of a P4 hardware switch (blue
blocks are programmable and the yellow block is reconfigurable).

its designs are totally different from those of NPFS. Firstly,
in HCSFQ the header of every packet needs to be modified
to carry two pieces of state including: (1) the arrival rate
estimation of the flow that the packet belongs to; and (2) a list
of node IDs that indicate the flow aggregates that the packet
belongs to in the flow hierarchy. In contrast, NPFS need not
modify the header of any packet. Secondly, HCSFQ uses
probabilistic packet dropping in its scheme while NPFS need
not. Thirdly, HCSFQ requires coordination between edge and
core switches in a network while NPFS does not require
coordination between switches.

There are several specific examples of using pro-
grammable switches for packet scheduling [30], [31], [32].
Although their intended purposes are different from ours,
they show the attractiveness of this technique. In [33], the
authors uses ECN over several packet schedulers to achieve
the effects of these schedulers. Since ECN marking must
be carried by TCP ACK packets to trigger the congestion
control of TCP senders, this work can only solve TCP vs.
TCP problems. However, our NPFS scheme can also solve
‘‘TCP vs. UDP’’ and ‘‘UDP vs. UDP’’ problems.

To facilitate a comprehensive understanding of the dis-
tinctions between NPFS and the related works, we present
a detailed comparative analysis in Table 1, encompassing
diverse aspects.

III. P4 SWITCH ARCHITECTURE
A P4 switch is a reconfigurable switch that uses multi-stage
pipelines to process packets. With reconfigurability, the pro-
grammers can change the way the switch processes packets.

The pipeline logic of a P4 switch is controlled by the P4
language [34], [35]. A P4 program defines how the headers of
a packet are parsed into header fields and how the fields are
used by the match-action tables. Figure 1 shows the packet
forwarding model for a P4 hardware switch. A P4 program
can be mainly split into three components: Parser graph
(Figure 1 (1)), Match-Action Table Configuration
(Figure 1 (2)), and Control Program (Figure 1 (3)).

The parser graph (Figure 1 (1)) defines the process of
packet header extraction, including the header formats and
the parser behavior. The parser is a finite state machine.
In each state, the parser extracts the corresponding bits
from the packet and sends the packet to the next state. The
parser stores the extracted bits in the header structure objects
(e.g., the Ethernet header and IPv4 header) called header
fields. In addition, the parser can generate an arbitrary value
in the extraction process and send it to other components
by storing it in the switch’s metadata objects. The header
fields and metadata objects can be accessed and modified
by the match-action tables according to the needs of the P4
application. The deparser reorganizes the header fields and
packet payload to form the packet before forwarding it out of
the switch.

Both the ingress and egress pipelines are composed of
several match-action tables. In a match-action table, a pair
of a key and an action is called a match-action entry. Match-
action table configuration (Figure 1 (2)) defines the key fields
(i.e., the header fields of a packet used for matching) and
the action code of the match-action table. In addition, the
processing order of match-action tables is defined by the
control program (Figure 1 (3)). The match-action tables are
read-only for the data plane, but their entries can be modified
by the control plane.

A control plane program can use pre-built APIs to manage
the value of key and the input parameter data of the action

54032 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

used in a match-action table. For each packet, the match-
action table (Figure 1 (4)) uses the information of the packet
to compare with the key value of each match-action entry.
If there is a match, the packet will be processed by the action
associated with the matched entry. If the packet cannot match
any entry in the table, the default action will be executed to
handle the packet. An action can modify the header fields of
the packet or insert/delete a header into/from the packet. The
output port and the queue in the selected output port for a
packet can be determined in the ingress pipeline by specifying
the values of the metadata. Once a packet leaves the ingress
pipeline, the output port and output queue determined for the
packet cannot be changed.

The Traffic Manager (TM; Figure 1 (5)) manages physical
queues and buffer space to store the packets before they
are sent out of the switch. The TM can perform several
scheduling algorithms such as FIFO,Weighted Round-Robin,
and Strict Priority to determine the forwarding order of the
packets.

The P4 switch used in this study has 64 ports and the
bandwidth of each port is 100Gbps. Packets can be forwarded
by this switch at line rate.

IV. DESIGN GOALS OF NPFS
In this section, we first define the fair shares of bottle-
neck bandwidth for the flows competing over a link. Then,
we explain the design goals of NPFS. P4 switches use the
match-action pipeline architecture to process packets at a
high speed in an output port. However, to support a large
port bandwidth such as 100 Gbps, the types, functionality,
and complexity of actions that can be executed in a table
are very limited. For example, floating-point numbers cannot
be used in an action and the multiply and divide operations
cannot be executed in an action. Besides, a design that can
be easily implemented as a software program running on
a general CPU must be transformed to a series of match-
action tables. At run time, these tables must be configured
with proper rules to correctly trigger the execution of user-
defined actions. Due to these constraints, most sophisticated
FQ algorithms described in Section II cannot be practically
implemented in P4 switches. On the other hand, we can
implement the designs of NPFS as a series of match-action
tables with properly configured rules. NFPS can provide near
per-flow scheduling effectiveness at line rate of 100 Gbps,
which cannot be achieved by the previous studies.

A. DEFINITIONS OF FAIR SHARE AND NOTATIONS USED
IN THIS PAPER
Assume that there are Nf ,t TCP flows and Nf ,u UDP flows
competing for the bottleneck bandwidth BB at an output port,
whereNf ,t orNf ,u may be 0 but will not be 0 at the same time.
Let Nf denote the total number of flows passing the output
port and its value isNf ,t+Nf ,u. We define a flow to be a small
flow if its bandwidth usage is less thanBB/Nf . Otherwise, it is

TABLE 2. Notations used for determining the fair shares of competing
flows.

a large flow. The number of small flows and large flows are
denoted by Ns and Nl , respectively, and Ns+Nl = Nf . In the
following equations, we assume that Nl is larger than 0.

For a small flow, since it cannot use all of BB/Nf , its fair
share Fs is its transmission rate. As for a large flow, suppose
that the bandwidth usages of these small flows are denoted
by us(i), where i denotes the index of the i-th small flow, then
the fair share Fl of each large flow is defined as below:

BR =
Ns∑
i=1

(BB/Nf − us(i))

Fl = BB/Nf + BR/Nl

In the above equations, BR is the total amount of the
original fair- share bandwidth that is not used by small flows.
Because BR should be fairly shared by all large flows, BR is
divided by Nl and then BR/Nl is added to BB/Nf , which is
the original fair share of a large flow, to obtain the new fair
share Fl of a large flow. If the new fair shares of some large
flows are larger than their bandwidth usages, then the above
process is repeated to reallocate their left bandwidth among
those flows whose bandwidth usages are above the new fair
shares. The above process is repeated until the fair shares
of all flows are determined. Table 2 summarizes the above
notations.

B. DESIGN GOALS
There are three design goals for NPFS: (i) Preventing unfair-
ness problems in the ‘‘TCP-vs-UDP’’ case, (ii) Preventing
unfairness problems in the ‘‘TCP-vs-TCP’’ case when mul-
tiple queues are used, and (iii) Mitigating unfairness prob-
lems in the ‘‘UDP-vs-UDP’’ case. In the following section,
we structure the presentation of the design and implementa-
tion of NPFS based on these goals.

V. DESIGN AND IMPLEMENTATION
We have designed and implemented NPFS in Inventec D5264
P4 switches (D5264-P4 in short) [19], which use Bare-
foot/Intel’s Tofino chip as their switching ASIC [35] chips.

VOLUME 11, 2023 54033



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

A. DESIGNS FOR PREVENTING UNFAIRENESS PROBLEMS
IN THE ‘‘TCP-vs-UDP’’ CASE
D5264-P4 has up to 32 physical queues in each 100 Gbps
port and this number can be changed by a pre-built API
function [19]. Assume that there are Nq queues used in an
output port, we split the queues into three different queue sets:
(i) the default queue set, (ii) the TCP queue set, and (iii) the
UDP queue set. The default queue set has one queue, the TCP
queue set has

⌈
Nq/2

⌉
−1 queues, and the UDP queue set has⌊

Nq/2
⌋
queues.

The default queue set has only one queue (called the default
queue) to temporarily store the packets of new flows whose
match-action entries have not been inserted into the match-
action table yet. The bandwidth usage of a new flow will be
monitored by the control program of NPFS for one second.
After one second, it will be assigned to a queue in the TCP
(or the UDP) queue set based on its protocol type. Because
D5264-P4 supports the strict-priority scheduling method,
which is commonly supported in commodity switches, NPFS
gives the default queue a higher priority than the queues in
the TCP and the UDP queue sets. This design allows NPFS to
observe the real bandwidth usage of a flow in the first second
of its duration before starting to control its bandwidth usage.

The queues in the TCP queue set (called TCP queues)
and the queues in the UDP queue set (called UDP queues)
are used to store the packets of TCP flows and UDP
flows, respectively, and their priorities are set the same.
Algorithm 1 shows the mechanism used to dispatch TCP
and UDP flows into the respective TCP and UDP queue
sets. (Note that all Algorithms shown in this paper are in
the pseudocode format.) Further details about the operations
between the control plane and data plane will be explained in
Sections V-D andV-E. Figure 2 shows the system architecture
of NPFS, including a default queue, several TCP queues, and
several UDP queues. In NPFS, because all flows sharing a
TCP queue are TCP flows and all flows sharing a UDP queue
are all UDP flows, the ‘‘TCP-vs-UDP’’ problem is avoided.

Algorithm 1 The algorithm used to dispatch TCP and UDP
flows into the respective TCP and UDP queue sets
Require:

Array of new flows, F ;
Array of TCP flows, T ;
Array of UDP flows, U ;

1: for i← 0 to len(F)− 1 do
2: if F[i] is a UDP flow then
3: U append F[i]
4: else
5: T append F[i]

For the TCP queues and UDP queues, NPFS uses the
deficit-weighted round-robin scheduling method [21] to
determine the transferring amount of each queue in each
round. Due to its simplicity and effectiveness, this method is
supported in most commodity switches. The control program
of NPFS uses pre-built APIs to dynamically set the weight

FIGURE 2. The system architecture of the NPFS scheme.

TABLE 3. Notations used for describing the NPFS system architecture.

of each queue. The maximum weight of a queue in the used
P4 switch can be set to 1,024. NPFS sets the weight of
each queue to Nf ,q × 20, where Nf ,q is the number of flows
sharing the queue. Let wi denote the weight assigned to the
queue with the index of i. Let Bq,d denote the bandwidth
consumed by the packets dispatched to the default queue.
Then, the available bandwidth of the i-th queue is equal to

(BB − Bq,d ) × (wi/
∑N∗q

k=1 wk ), where N
∗
q is the total number

of queues in the TCP queue set and UDP queue set. With
these settings, the available bandwidth of each TCP queue or
UDP queue will be proportional to the number of flows using
the queue. This bandwidth allocation among the TCP and the
UDP queues is the first step towards achieving the goal of fair
sharing. Table 3 summaries the above notations.

B. DESIGNS FOR PREVENTING UNFAIRNESS PROBLEMS
IN THE ‘‘TCP-vs-TCP’’ CASE WITH MULTIPLE QUEUES
The ‘‘TCP-vs-TCP’’ case with a single queue has been dis-
cussed in Section I, in which all TCP flows sharing a single
queue will get their fair shares without problems. However,
if Nf ,t TCP flows share a set of queues and some of their
sending rates are less than the aggregate bandwidth of these
queues Bq,t divided by Nf ,t , a TCP flow whose sending

54034 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 3. An example showing how the NPFS scheme assigns UDP flows to the UDP queues.

rate is higher than Bq,t/N f ,t may unfairly get an amount of
bandwidth that is higher than its fair share. NPFS resolves
this issue as follows.

After allocating a set of queues for TCP flows, NPFS deter-
mines the matching between TCP flows and TCP queues.
We use one of the TCP queues (called the small flow queue) to
store the packets of the TCP flowswith sending rates less than
Bq,t/N f ,t . If we assign a TCP flow whose bandwidth usage
is less than Bq,t/N f ,t and another TCP flow whose usage
is larger than Bq,t/N f ,t to the same queue, the remaining
bandwidth left by the small TCP flow will be solely used by
the large one. However, the remaining bandwidth should be
reallocated to all other flows in the system, rather than just
the flow sharing the same queue.

For example, if a small and a large TCP flows share a
queue and their sending rates are 300 Mbps and 1,000 Mbps,
respectively. Assuming that Bq,t/N f ,t is 500 Mbps. Then, the
bandwidth allocated to the queue to serve the two flows is
1,000 (500 × 2) Mbps. In this scenario, the achieved band-
width of the two TCP flows will be 300 Mbps and 700 Mbps,
respectively. Because the small flow does not consume all of
the 500 Mbps bandwidth allocated to it, its left bandwidth
200 Mbps is used by the large flow, which explains why the
large flow receives 700Mbps bandwidth. However, it is fairer
if the left bandwidth 200 Mbps is shared by all other flows
in the system, rather than just the large flow using the same
queue.

To solve this unfairness problem, we assign the TCP flows
whose sending rates are less than Bq,t/N f ,t to the small flow
queue. As explained in Section V-A, NPFS uses the deficit
weighted round-robin scheduler and assigns a weight to a
queue that is proportional to the number of flows assigned
to the queue. Since the aggregate sending rate of all small
flows assigned to the small flow queue will be less than the
bandwidth of the small flow queue achieved from the deficit
weighted round-robin scheduler, the left bandwidth of the
small flow queue will be automatically and fairly shared by
all other queues (and thus the flows served by them) managed
by the deficit weighted round-robin scheduler. As for the TCP

Algorithm 2 The algorithm used to move TCP flows between
the small flow queue and non small flow queues
Require:

Fair share of a TCP flow, fairShare;
Array of TCP flows, T ; Flow’s sending rate, T [i].rate;
Array of TCP queues containing arrays of mapped
TCP flows, QT ;
Array containingmapped TCP flows for the special TCP
small queue, QTsmall ;
Index used to assign TCPflows to TCP queues in a round
robin manner, next;

1: for i← 0 to len(QT )− 1 do
2: for j← 0 to len(QT [i])− 1 do
3: if QT [i][j].rate < fairShare then
4: QTsmall append QT [i] [j]
5: QT [i] remove element at index j
6:
7: for i← 0 to len(QTsmall)− 1 do
8: if QTsmall[i].rate >= fairShare than
9: QT [next] append QTsmall[i]
10: next← next + 1 mod len(QT )
11: QTsmall remove element at index i

flows whose sending rates are larger than Bq,t/N f ,t , NPFS
assigns them to non-small flow queues and sets the weights
of these queues to their corresponding values as explained in
Section V-A. Due to the property of TCP congestion control
algorithm, these large TCP flows will share the available
bandwidth of a queue equally.

In NPFS, the control program will periodically monitor,
update, and store the sending rates of all flows in the coun-
ters of a P4 switch every second. After these operations are
performed in each second, the control program will compare
the sending rate of each TCP flow with the current value of
Bq,t/N f ,t , where Nf ,t may vary over time. If a TCP flow is
currently served by the small flow queue and its sending rate
has become larger than Bq,t/N f ,t , the control program will

VOLUME 11, 2023 54035



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 4. An example illustrating how Algorithm 3 partitions four flows into three groups.

move it to a non-small flow queue. In contrast, if a TCP flow
is currently served by a non-small flow queue and its sending
rate has become less than Bq,t/N f ,t , the control program will
move it to the small flow queue. NPFS avoids frequently
moving a TCP flow among different queues in order not to
generate excessive TCP out-of-order packets. Algorithm 2
describes the above designs.

C. DESIGNS FOR MITIGATING UNFAIRNESS PROBLEMS
IN THE ‘‘UDP-vs-UDP’’ CASE
The ‘‘UDP-vs-UDP’’ problem may occur when there are
multiple UDP flows sharing a queue. In this scenario, the
achieved bandwidths of these flows will be proportional to
their sending rates, which may exceed their fair shares. When
assigning multiple UDP flows to multiple queues, the ‘‘UDP-
vs-UDP’’ problem may occur if the assignment does not
consider this problem. In the following, we use Figure 3 as
an example to illustrate this problem and show how it can be
solved in NPFS. In this example, Case 1 represents the case
in which the problem occurs and thus competing flows do not
receive their fair shares. In contrast, Case 2 represents the case
in which competing flows receive their fair shares in NPFS.

In this example, there are four UDP flows and two UDP
queues. Among the four flows, two flows are small flows
each sending at the rate of 300 Mbps while the other two
flows are large flows each sending at the rate of 1,200 Mbps.
We assume that Bq,u/N f ,u is 500 Mbps and thus the band-
width allocated for each queue is 500 Mbps multiplied by the
number of flows sharing the queue. Since each queue serves
two flows, its allocated bandwidth is 1,000 Mbps. In the
‘‘UDP-vs-UDP’’ situation, the Case 1 table of Figure 3 shows
the achieved bandwidth of each flow, where the achieved
bandwidth (200 Mbps) of each of these small flows is lower
than its fair share (300 Mbps). This is because each of them
is served by a queue that also serves a large flow.

Ideally, the UDP flows served by a queue should receive
their fair shares from the bandwidth of the queue. If we assign
the UDP flows that have similar sending rates to the same
queue, the proportions of the bandwidths that these flows
obtain from the queue will be close. With this design, NPFS
canmitigate the ‘‘UDP-vs-UDP’’ problem.We have designed
and implemented an algorithm to achieve this goal. It is

Algorithm 3 The algorithm used to mitigate unfairness prob-
lems in the ‘‘UDP-vs-UDP’’ case
Require:

Array of UDP flows, U ; Flow’s sending rate, U [i].rate;
Array of sending rate differences between pairs of adja-

cent flows, D; Index of the right flow of the pair, D[i].idx;
Value of the difference, D[i].diff ;

Array of UDP queues containing mapped UDP flows,
QU ;
1: SortAscending(U, key: U.rate) ▷ Sort, flows by sending

rates
2: for i← 0 to len(U )−1 do ▷Get sending rate differences

of adjacent flows
3: D[i].idx ← i+ 1
4: D[i].diff ← U [i+ 1].rate− U [i].rate
5:
6: SortDescending(D, key: D.diff)
7: D← D[: len(QU )− 1] ▷ Get largest len(QU )− 1

sending rate differences
8:
9: SortAscending(D, key: D.idx)
10: l ← 0
11: for i← 0 to len(QU )−1 do ▷Assign flows into queues
12: QU [i]← U [l : D[i].idx]
13: l ← D[i].idx

periodically executed by the control program of NPFS every
second. It will assign the UDP flows to UDP queues based
on their sending rates to minimize the maximum sending
rate difference in a UDP queue. Case 2 of Figure 3 shows
how this algorithm assigns the four UDP flows to the two
UDP queues. The achieved bandwidth of each flow is shown
in the Case 2 table of Figure 3. One can see that the two
small flows now can achieve their fair shares and the left
400 = (1000 − 600) Mbps bandwidth of queue 1 can be
used by queue 2 due to using the deficit weighted round-robin
packet scheduler. As a result, each of the two large flows can
achieve 700 = (500 + 400/2) Mbps bandwidth, which is its
fair share in this situation.

Algorithm 3 below describes the designs of the above
algorithm. In the pseudocode, Array[i:j] represents a subarray

54036 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

containing Array[i], Array[i+1], . . . , Array[j−1]. For Nf ,u
UDPflows andNq,u UDPqueues in the system, this algorithm
will partition these flows into Nq,u groups by finding the
top Nq,u − 1 largest gaps between every two adjacent flows.
Algorithm 3 first sorts the Nf ,u flows by their sending rates in
ascending order. Next, it calculates the sending rate difference
between every two adjacent flows in the sorted array. Then,
it sorts these differences and obtains the top Nq,u − 1 largest
sending rate differences to separate flows into Nq,u groups,
where each group corresponds to a queue. For the flows
assigned to a group, NPFS will direct their packets to the
queue corresponding to this group. Directing a packet to a
queue can be dynamically and efficiently performed in a P4
switch by specifying the value of the output queue metadata
associated with the packet.

Figure 4 shows an example to illustrate this design. In this
example, Algorithm 3 partitions four UDP flows into three
groups, where each group corresponds to a UDP queue. After
calculating the differences and selecting the places of the
top two largest differences, Algorithm 3 uses these places to
partition the four flows into three groups.

Algorithm 3 is executed by the control program every
second. There are three sorting parts in it, each of which has a
time complexity ofO(nlogn), where n is the number of flows.
Therefore, the time complexity of Algorithm 3 is O(nlogn).
We have measured and will report its execution time with
different numbers of flows in Section VI.

D. IMPLEMENTATION OF DATA PLANE OPERATIONS
NPFS identifies a flow by its FID (flow ID), which is the
hash value of the 5-tuple information (source IP address,
source port number, destination IP address, destination port
number, and the value of the protocol type) in the packet
header. NPFS uses the CRC-16 hash algorithm to compute
the FID. NPFS uses several match-action tables in the data
plane. The first table is match_queue_table. The key of an
entry in this table is FID and the returned value of the entry
is the identity QID of the queue assigned to the flow. When
matched by a packet, the action of the entry will write the QID
of the entry into the output queue metadata of the packet, thus
directing the packet to the assigned queue. The second table
is match_counter_table. The key of an entry in this table is
FID and the returned value of the entry is counterID. Each
counterID represents the index to a counter used in the data
plane. When matched by a packet, the action of the entry will
add the packet size to the corresponding counter. NPFS uses
these counters to calculate the current sending rates of flows
every second. Figure 5 shows the flowchart of the data plane
operations with the following steps:
Step 1 (Parsing): When a packet arrives, the packet is

parsed into multiple headers (Figure 5 (1)). The parser
extracts the Ethernet header, IP header and the protocol type
(TCP or UDP) from the packet step by step. Because the
match-action tables in the ingress pipeline need the informa-
tion of the protocol type and source/destination port numbers,
NPFS uses several metadata to store and carry them with

the packet. After the values of these metadata are set, the
packet will leave the parsing process.
Step 2 (Computing FID): To compute the FID for each

packet (Figure 5 (2)), NPFS defines a match-action table
whose default action executes a 16-bit hash function to output
a value between 0 and 65,535. This hash function uses the
5-tuple information of the packet to compute the FID. This
table matches every packet and the default action is applied
to each packet.
Step 3 (Determining the QID for a Packet): When a pac-

ket arrives, NPFS uses its FID to check whether it is the first
packet of a newflow or it is a packet of an existing flowwhose
QID has been assigned. For the former case, the entry for this
new flow has not been inserted into the table and the packet
will not match any entry. For the latter case, the entry for this
existing flow has been inserted into the table and the packet
will match it.

NPFS uses match_queue_table to perform the above
checks (Fig. 5 (3)). The key of this table is FID. If a packet
is matched with an entry in the table, it will be processed
by an action that copies the QID stored in the entry to the
packet’s QID metadata, which specifies the output queue for
the packet (Fig. 5 (4)). On the other hand, if a packet matches
no entry in the table, then the default action, which processes
new flows, will be invoked. Since the QID for the new flow
has not been assigned, this default action copies 0 to the
packet’s QID metadata to indicate this situation (Fig. 5 (6)).

NPFS then uses the metadata obtained in Step 1 to deter-
mine whether this new flow is a TCP flow or a UDP flow
(Fig. 5 (7)). If it is a TCP flow, then NPFS writes the FID
of the new flow to a register (Fig. 5 (9)), which will be read
by the control program of NPFS every second to detect the
arrival of a new flow and get its FID. On the other hand, if it
is a UDP flow, then NPFS writes the FID of the new flow plus
100,000 to the register (Fig. 5 (8)). Since the range of FID is
from 0 to 65,535 due to the use of 16 bits and the register has
32 bits, NPFS purposely adds 100,000 to FID for a new UDP
flow. Thus, when the control program reads a value from the
register and the value is above 65,535, it knows that the new
flow is a UDP flow and 100,000 should be deducted from the
read value to get the FID of the new flow. On the other hand,
if the register value is less than 65,536, the control program
knows that the new flow is a TCP flow and the read value is
its FID.
Step 4 (Counting the Bytes of Flows): NPFS needs to

measure the current sending rates of every flows to dynam-
ically assign them to appropriate queues. This can be per-
formed by continuously counting the number of bytes of
every flows and using the number of bytes transmitted in the
last second to compute the current sending rates of flows.
Since the number of flows passing an output port at any
time may be a few hundreds or less, the number of counters
should be flexibly set depending on the real-world traffic
patterns to save the counter resources in a P4 switch. In our
experiments, because the maximum number of flows is a
few hundreds, NPFS uses 1,024 counters and each counter

VOLUME 11, 2023 54037



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 5. The flowchart of data plane operations.

is accessed by its counter ID ranging from 0 to 1,023. NPFS
uses match_counter_table and the FID of a packet as the key
of the table to get the ID of the counter used for the flow
of the packet. With the counter ID, NPFS increases the
indexed counter by the packet length in bytes (Figure 5 (5)).
The control program of NPFS will fetch the values of these
counters every second to measure the current sending rates of
flows.

E. IMPLEMENTATION OF CONTROL PLANE OPERATIONS
Figure 6 shows the workflow of the control plane operations.
The control program uses pre-built APIs to read the register
value every second (Figure 6 (1)). It maintains a list that stores
the IDs of the flows being processed. For each read register
value, the control program checks whether it is a new value
not in the list (Figure 6 (2)). If so, then it starts the process
of adding a new flow. Otherwise, it performs the process of
assigning flows to queues. In the process of adding a new
flow, the control program first determines the protocol type
of the new flow by checking whether the register value is
greater than 100,000 (Figure 6 (8)). If the value is greater
than 100,000, then the new flow is a UDP flow and its FID is
the value minus 100,000 (Figure 6 (9)). Then, the new flow
is assigned to a UDP queue (Figure 6 (10)). Otherwise, the
new flow is a TCP flow (Figure 6 (11)) and the new flow is
assigned to a TCP queue (Figure 6 (12)).
For a new flow, NPFS assigns it to a TCP queue or a UDP

queue depending on its protocol type. In the next second the
new flow will be moved to an appropriate queue determined
by the methods presented in Section V-B and Section V-C.
Let QID be the ID of this initial queue selected for the new
flow. In addition to finding a queue for the new flow, the
control program finds an unused counter (with the identity

FIGURE 6. The flowchart of control plane operations.

FIGURE 7. The network topology used in the experiments.

counterID) for the new flow. Then, the control program
inserts an entry with (FID, QID) intomatch_queue_table and
inserts an entry with (FID, counterID) into match_counter_
table (Figure 6 (13)) so that the flow can start using the
specified queue and counter.

To assign flows to queues, the control program continu-
ously checks the elapsed time from the last update of the
sending rates of flows. When the elapsed time exceeds one
second (Figure 6 (3)), the control program performs the
following operations to assign flows to queues. The control
program first updates the current sending rates of flows by
reading their counter values (Figure 6 (4)). It also checks
whether some flows have stopped sending data in the last
second (Figure 6 (5)). If so, the control program deletes their
entries from match_queue_table and match_counter_table.
In addition, the method in Section V-A is used to update
the weights of the queues that served these flows to release
the bandwidth allocated to them. Also, NPFS uses the
mechanisms presented in Section V-B and Section V-C to
assign flows to queues (Figure 6 (6)). Then, it rewrites
the entries in match_queue_table for the flows whose
queues need to be changed to start using the new mapping
(Figure 6 (7)).

54038 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 8. The fairness ratio of the TCP flow under different aggregate sending rates of three competing UDP flows.

FIGURE 9. The fairness ratio of the TCP flow with different numbers of competing UDP flows.

VI. PERFORMANCE EVALUATION
The experiments include one sending host, one receiving
host, and one D5264-P4 switch, and the used topology is
shown in Figure 7(a). Each of the hosts has a 32-core
Intel 1.8 GHz E5-2675 CPU and a Mellanox MT27800
ConnectX-5 [37] network interface card (NIC). We use iperf
version 2.0.9 [38] to generate traffic in the experiments.
Because this server has 32 CPU cores, many iperf programs
are executed on different CPU cores, and the total sending rate
of all iperf programs in any experiment is less than 30 Gbps,
the sending host is powerful enough to generate the desired
traffic load.

The NICs of hosts and the ports of the P4 switch can sup-
port 100 Gbps bandwidth. To create bottleneck conditions,
we purposely set the bandwidth of the port of the P4 switch

that connects to the receiving host to 10 Gbps in the experi-
ments. This setting can create 10:1 congestion pressure on the
bottleneck port. Effectively, the used topology is equivalent to
the topology shown in Figure 7(b), where each of ten sending
hosts connects to the P4 switch via a 10 Gbps link.

We set the number of queues used in this bottleneck output
port to 8, which is the default number of queues provided
in most commodity switches for an output port [36]. Note
that in this datacenter-grade P4 switch the number of queues
provided in an output port can go up to 32 when the port
bandwidth is 100 Gbps [36].

In each experiment, the sending host and receiving host
run many iperf programs to set up multiple TCP/UDP flows.
The iperf program can specify the application-layer sending
rate of a flow, either TCP or UDP. After receiving traffic

VOLUME 11, 2023 54039



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

from the sending host, the P4 switch forwards the traffic
to the receiving host. After each experiment is finished,
the throughput of each flow reported by the iperf program
running on the receiving host is recorded. Using the fair
share definition presented in Section IV-A, we define the
fairness ratio of a flow as its achieved throughput divided
by its fair share. A flow is fairly treated if its fairness ratio
is 1. In a scenario with multiple competing flows, the ideal
outcome of a FQ scheme is that the fairness ratio of each
flow is 1. If a flow receives a fairness ratio larger than 1,
some flow(s) must receive a fairness ratio smaller than 1,
meaning that the bandwidth allocation among them is not
fair. We repeat each experiment 10 times. In the following
experiments, we compare the performance of NPFS with that
of the baseline scheme, in which only one queue is used to
serve all packets at an output port, and that of the theoretic
optimal scheme, which shows the theoretic optimal results.

Figure 8 shows the fairness ratio of a TCP flow under
different aggregate sending rates of three UDP flows in the
baseline scheme, NPFS, theoretical optimal scheme, respec-
tively. In this set of experiments, a TCP flow and three UDP
flows compete for the 10 Gbps bandwidth of the bottleneck
port. Note that the throughput reported by the iperf program
is the application-layer throughput. Since the preambles,
Ethernet header, IP header, and TCP/UDP headers consume
network bandwidth, the maximum achievable throughput at
the application layer on a 10 Gbps link is about 9.5 Gbps.
Thus, when computing the fairness ratio of a flow, we use
9.5 Gbps rather than 10 Gbps as the bottleneck bandwidth.

The sending duration of each flow in the experiments is
set to 20 seconds. Initially, the sending rates of the TCP flow
and three UDP flows are set to 2 Gbps. Then, we gradually
increase the sending rate of each UDP flow from 2 Gbps to
3.75 Gbps for different experiments. Figure 8 shows the fair-
ness ratio of the TCP flow under different aggregate sending
rates of the three UDP flows, which ranges from 6 = 2 ×
3 Gbps to 11.25 = 3.75 × 3 Gbps. The figure shows that
NPFS avoids the ‘‘TCP-vs-UDP’’ problem and the TCP flow
achieves its fair share in each experiment. In contrast, in the
baseline scheme, the TCP flow can only use the bandwidth
left by the UDP flows and thus its fairness ratio continuously
decreases when the aggregate sending rate of the UDP flows
increases. When the aggregate sending rate is larger than
9.75 Gbps (which is higher than the 9.5 Gbps bandwidth
available at the application layer), the TCP flow cannot send
out any data.

Figure 9 shows the fairness ratio of a TCP flow with
different numbers of competing UDP flows in the system.
At the beginning of the experiment, the sending host launches
a TCP flow whose sending duration is 21 seconds. It then
adds a UDP flow into the system at a 1-second interval until
the number of UDP flows reaches 10. In this experiment,
we do not limit the sending rate of the TCP flow. The sending
duration of each UDP flow is 10 seconds and each UDP
flow uses 2 Gbps as its sending rate. Because the experiment
duration is 21 seconds and the duration of each UDP flow

FIGURE 10. The execution time of Algorithm 3 with different numbers of
flows.

is 10 seconds, the number of UDP flows in the system is
increased from 0 to 10 and then decreased down to 0 during
the experiment. The fairness ratios of the TCP flow in NPFS
are very close to the results of the theoretic optimal scheme,
even when the total number of flows varies. In contrast, in the
baseline scheme, the fairness ratios of the TCP flow drop to
almost 0 when the number of UDP flows is larger than 4.

In the above experiments, we evaluate whether NPFS can
protect TCP flows from competing UDP flows. In the follow-
ing, we evaluate the fairness among competing UDP flows.
Because Algorithm 3 is executed every second to (re)assign
UDP flows to appropriate queues, its execution time should
be less than one second. Figure 10 shows the execution time
of Algorithm 3 running on the operating system of the P4
switch with different numbers of flows. For these flows,
we assign random sending rates to them. To obtain reliable
results, each dot in Figure 10 is the average execution time of
1,000 runs under a given number of flows.

Figure 10 shows that the execution time of Algorithm 3 is
only 0.01 seconds when the number of UDP flows is 1,000.
This number is already higher than the maximum number of
flows that can be effectively supported byNPFS. (Wewill dis-
cuss this issue later.) The execution time can be approximated
by 0.00018nlog(n) − 0.0006n in Figure 10, which confirms
the time complexity analysis of Algorithm 3 performed at the
end of Section V-C.
Figure 11 shows the fairness ratios of ten UDP flows that

are competing for the bottleneck bandwidth, where the send-
ing rate of each flow ranges from 100 Mbps to 5 Gbps. The
duration of each UDP flow is set to 20 seconds. Ideally, the
fairness ratio of each flow should be 1. However, the fairness
ratios of the 4 Gbps flow and 5 Gbps flow are 1.34 and
1.66 in the baseline scheme, which means that they unfairly
take some bandwidth from the fair shares of other flows. For
example, the flows whose sending rates are set to less than
or equal to 2 Gbps unfairly receive a fairness ratio much
less than 1. This is the phenomenon of the ‘‘UDP-vs-UDP’’
problem. In contrast, comparing NPFS with the theoretical
optimal scheme, one can see that in NPFS the ‘‘UDP-vs-
UDP’’ problem is greatlymitigated, evidenced by the fact that
most UDP flows receive a fairness ratio very close to 1.

54040 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 11. The fairness ratio of each UDP flow when ten UDP flows are simultaneously competing.

FIGURE 12. The fairness ratio of each group when the flows of the nine groups are simultaneously competing.

Figure 12 shows the fairness ratios of multiple groups of
flows that are simultaneously competing for the bottleneck
bandwidth. There are nine groups of flows in this experiment
and each of them has either two TCP flows or two UDP
flows with the same sending rate. Different TCP groups use
different sending rates and different UDP groups use different
sending rates. Since each group has two flows, the fairness
ratio of a group is defined as the average of the fairness ratios
of its two flows. In this experiment, the sending duration of
each flow is set to 20 seconds.

From this figure, one can see that in the baseline scheme,
none of the flows in these TCP groups can send out any
data, and thus the fairness ratios of these TCP groups are
0. Besides, the ‘‘UDP-vs-UDP’’ problem occurs among the
UDP groups. In contrast, in NPFS the fairness ratios of both
the TCP groups and UDP groups are all close to 1, which
shows that the performance of NPFS can approach the results
of the theoretic optimal scheme. These results show that in

NPFS, when multiple TCP flows and UDP flows are simul-
taneously competing for the bottleneck bandwidth, they can
still achieve their fair shares. These results also show that the
‘‘TCP-vs-TCP with multiple queues’’ problem presented in
SectionV-B is solved in NPFS. This is because if this problem
is not solved in NPFS, the ‘‘TCP 100 Mbps’’ flows or ‘‘TCP
300 Mbps’’ flows may be assigned to the same queue with
‘‘TCP 1Gbps’’ flows or ‘‘TCP 3Gbps’’ flows. If this is the
case, the ‘‘TCP 1Gbps’’ flows or ‘‘TCP 3Gbps’’ flows will
get a fairness ratio much larger than 1. However, as shown in
the figure, their fairness ratios are very close to 1.

Figure 13 shows the performance of NPFS using different
numbers of queues in an output port. In this experiment,
we design three different traffic sets with 30 flows, 60 flows,
and 90 flows, respectively. In each traffic set, the number
of TCP flows is equal to the UDP flows. The sending rates
of TCP flows are taken from the numbers in an arithmetic
sequence, and the sending rates of UDP flows are also taken

VOLUME 11, 2023 54041



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

FIGURE 13. The average absolute error rate of all competing flows with
different numbers of queues in an output port.

from these numbers. Note that an arithmetic sequence is an
ordered sequence and the difference between two neighbor-
ing numbers is the same. If a is its first number, d is the
difference between two neighboring numbers, and there are
N numbers in the sequence, then the n-th number in the
sequence is a+ (n−1)× d , where n= 1, 2, . . . ,N. The sum
S of all of the numbers in the sequence is n × a+ (n− 1) ×
n× d÷2. For all of the three traffic sets, the starting number
a of their arithmetic sequences is set to 100 Mbps.

To be more specific, the 30-flow traffic set has 15 TCP
flows and 15 UDP flows, and the sending rates of these TCP
flows form an arithmetic sequence starting from 100 Mbps
and ending at 1500 Mbps, with an increment of 100 Mbps.
That is, the sending rates of these TCP flows are 100, 200,
300, 400, . . . , 1, 400, and 1,500 Mbps, respectively. The
sending rate settings for the 15 UDP flows are the same as
those for the TCP flows. With these settings, the sum of the
sending rates of all flows in the 30-flow traffic set is 24 Gbps.

To maintain the same load on the bottleneck bandwidth,
for the 60-flow and 90-flow traffic sets, we also set the sum
of the sending rates of their flows to 24 Gbps. Because the
values of a and N for the 60-flow and 90-flow traffic sets are
known, the d values used for them are set to 48.28 and 19.70,
respectively.

In addition to the above adjustment, to reflect that the total
volume of traffic is increased but the bottleneck bandwidth
remains the same, we also enlarge the sending duration of
each flow in the 60-flow traffic set and 90-flow traffic set to
2 and 3 times of the sending duration of the 30-flow traffic
set, respectively.

For each traffic set, after the experiment is finished,
we compute the fairness ratio of each flow in it and then
subtract 1 from the fairness ratio to get its error rate. Since
the error rate can be positive or negative, we take its absolute
value to reflect how much the fairness ratio deviates from the
ideal value, which is 1. Then, we average such values of the
flows in a traffic set to get the average absolute error rate of
all flows in a traffic set.

The results in Figure 13 show that NPFS can achieve a
lower average error rate when the number of queues used
in an output port increases. When the number of queues
increases from 4 to 12, the error rate decreases significantly.
Over 12 queues, the error rate decreases at a lower speed

with more queues. In addition, when 32 queues are used in
an output port, even though the number of flows grows to 90,
the error rate can still be kept at only 5%. These results show
that NPFS can be a solution for fair queueing in commodity
switches when the number of flows is less than three times
the number of queues in an output port.

VII. DISCUSSIONS
Experiments show that NPFS can avoid ‘‘TCP-vs-UDP’’
problem, mitigate the ‘‘UDP-vs-UDP’’ problem, and allow
competing TCP flows to achieve their fair shares based on
the AIMD property of the TCP congestion control algorithm.
However, these results are achieved with TCP flows using
the same congestion control algorithm where the UDP flows
do not implement congestion control. In a network where
these requirements are not met, the performance of NPFS
may degrade. These issues are discussed below.

Currently, TCP CUBIC is the default TCP congestion con-
trol algorithm used for all Linux hosts. (Note that this TCP
congestion control algorithm is also used in our experiments.)
However, other congestion control algorithms such as ‘‘new
reno’’ and reno can be enabled to replace CUBIC. Since
TCP flows using these different TCP congestion control
algorithms may not share the bottleneck bandwidth fairly
when they compete, NPFS should be deployed in a network
where most TCP hosts use the same TCP congestion control
algorithm.

Another issue is the assumption made by NPFS that the
UDP protocol does not respond to congestion like TCP and
thus NFPS separates UDP flows from TCP flows. As a
transport-layer protocol implemented in the operating sys-
tem (OS), indeed the UDP protocol does not implement any
congestion control inside the OS. However, some network
applications that use the UDP protocol to transmit their data
may implement their own application-layer congestion con-
trol to respond to congestion. For example, the QUIC [40]
protocol is an application-layer library that is based on the
UDP protocol but provides TCP-like congestion control.

For QUIC UDP flows, if NPFS puts them into a queue
based on their initial bandwidth usages and this queue is
shared with other UDP flows that do not respond to con-
gestion, they may not compete fairly with these UDP flows.
However, since QUIC uses UDP port number 443 as its port
number, in the future version of NPFS, we can treat a UDP
flow using 443 as its port number as a TCP flow and process
it as a TCP flow in NPFS. We will consider this issue in our
future work.

Currently, the control-plane program of NPFS measures
the bandwidth usage of every flow, uses Algorithm 3 to
re-assign UDP flows to appropriate queues, and adjusts
the weight of every queue at the 1-second interval. Since
NPFS is aimed to providing fair sharing to elephant flows,
most of which are long-lived, currently we use 1 second as
the monitoring and re-acting interval. This interval can be
shortened to a smaller value such as 0.1 seconds to react
to flow changes more quickly. The reaction speed can be

54042 VOLUME 11, 2023



S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

improved at the cost of increasing CPU usage of the switch.
However, as Figure 10 shows, when the number of flows
regulated by NPFS is less than 1000, the execution time
of Algorithm 3 (which performs the updates) is less than
0.01 second. This means that even when a very short interval
such as 0.1 second is used, the CPU of the switch can still
finish the updates in time in each monitoring and updating
interval.

Due to its simplicity, the baseline with only one queue is
themost widely used scheme in commodity switches and thus
we compare NPFSwith it in Section VI ‘‘Performance Evalu-
ation’’. Several schemes that use multiple queues such as the
priority scheduling scheme and the traffic class-based round-
robin scheduling scheme exist. However, their purposes are
different from ours. For example, the priority scheduling
scheme is used for serving traffic of different priorities while
the traffic class-based round-robin scheduling scheme is used
for providing fair sharing at the per-traffic-class level rather
than at the per-flow level. Thus, we did not compare our
scheme with them.

The FID (flow ID) currently used by NPFS is computed
from the CRC-16 hash function. To reduce the hash collision
probability, the future version of NPFS can use the CRC-32
or even CRC-64 function. If collisions still occur, we can use
several common hash collision resolution methods such as
liner probing to solve it.

The target application of NPFS is to regulate the bandwidth
usages of elephant flows so that small flows and elephant
flows can both get their fair shares. The traffic of elephant
flows in our intended applications can be commodity traf-
fic or other types of traffic such as high-definition video
streaming.

Priority-based scheduling does not conflict with fair band-
width allocation. Traffic flows of different priorities can be
served first by the priority-based scheduling, followed by
traffic flows of the same priorities served using a round-robin
or weighted round-robin approach.

VIII. CONCLUSION AND FUTURE WORK
Network quality of service (QoS) is essential to network
applications. Enabling a flow to get its fair share of available
bandwidth can prevent its data transfer from being blocked
by those flows that do not respond to congestion.

In this paper, we have designed and implemented a near
per-flow queueing scheme named NPFS in P4 hardware
switches and evaluated its performance under many differ-
ent conditions. NPFS outperforms the single-queue-based
baseline scheme in maintaining fair shares among compet-
ing flows. Specifically, the ‘‘TCP-vs-UDP’’ problem can be
avoided and the ‘‘UDP-vs-UDP’’ problem can be greatly
mitigated in our scheme. Experimental results show that, for
the fair share of a flow, NPFS can achieve an error rate of 5%
or less when the number of flows is less than three times the
number of queues in an output port.

In most networks, elephant (i.e., large) flows account for
a very small portion of the total flows of a network but carry

most of the traffic. For example, the authors in [39] found
that on the WIDE network, elephant flows were only 4.7% of
all flows but occupied 41.3% of all data transmitted. NPFS
is a near-optimal per-flow queueing scheme operating on
a limited number of queues. In a practical deployment of
P4 commodity switches with high-bandwidth ports, NFPS is
useful for the networks where around one hundred elephant
flows or more are simultaneously competing for the band-
width of an output port.

In the future, we will perform the mathematical analysis of
NPFS to shed more insight of the performance results.

ACKNOWLEDGMENT
The authors thank Barefoot/Intel for their supports of this
work.

REFERENCES
[1] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach,

7th ed. London, U.K.: Pearson, 2016.
[2] F. Gebali, ‘‘Scheduling algorithms,’’ in Analysis of Computer and Commu-

nication Networks. Boston, MA, USA: Springer, 2008, doi: 10.1007/978-
0-387-74437-7_12.

[3] D. A. Devi and S. Jaga, ‘‘Analysis of scheduled routing algorithms on
5-port router for network on chip application,’’ Int. J. Sci. Technol. Res.,
vol. 8, no. 9, pp. 2148–2153, Sep. 2019.

[4] R. Pan, B. Prabhakar, and K. Psounis, ‘‘CHOKe—A stateless active queue
management scheme for approximating fair bandwidth allocation,’’ in
Proc. IEEE Conf. Comput. Commun., 19th Annu. Joint Conf. IEEE Com-
put. Commun. Soc. (INFOCOM), vol. 2, Mar. 2000, pp. 942–951.

[5] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, ‘‘The BLUE active
queue management algorithms,’’ IEEE/ACM Trans. Netw., vol. 10, no. 4,
pp. 513–528, Aug. 2002.

[6] W. Feng, D. Kandlur, D. Saha, and K. Shin, ‘‘Stochastic fair blue: A queue
management algorithm for enforcing fairness,’’ in Proc. IEEE Conf. Com-
put. Commun., 20th Annu. Joint Conf. IEEE Comput. Commun. Soc.
(INFOCOM), vol. 3, Apr. 2001, pp. 1520–1529.

[7] D. Lin and R. Morris, ‘‘Dynamics of random early detection,’’ in Proc.
ACM SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput. Com-
mun. (SIGCOMM). New York, NY, USA: Association for Computing
Machinery, Oct. 1997, pp. 127–137, doi: 10.1145/263105.263154.

[8] A. Demers, S. Keshav, and S. Shenker, ‘‘Analysis and simulation of a fair
queueing algorithm,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 19,
no. 4, pp. 1–12, Aug. 1989, doi: 10.1145/75247.75248.

[9] P. Goyal, H.M.Vin, andH. Cheng, ‘‘Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks,’’ IEEE/ACM
Trans. Netw., vol. 5, no. 5, pp. 690–704, Oct. 1997.

[10] A. K. Parekh and R. G. Gallager, ‘‘A generalized processor sharing
approach to flow control in integrated services networks: The single-node
case,’’ IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344–357, Jun. 1993.

[11] P. McKenney, ‘‘Stochastic fairness queueing,’’ in Proc. 9th Annu. Joint
Conf. IEEE Comput. Commun. Soc. The Multiple Facets Integr. (INFO-
COM), vol. 2, Jan. 1990, pp. 733–740.

[12] J. C. R. Bennett and H. Zhang, ‘‘WF2Q: Worst-case fair weighted fair
queueing,’’ in Proc. IEEE Conf. Comput. Commun. (INFOCOM), vol. 1,
Mar. 1996, pp. 120–128.

[13] S. J. Golestani, ‘‘A self-clocked fair queueing scheme for broadband
applications,’’ inProc. Conf. Comput. Commun. (INFOCOM), vol. 2, 1994,
pp. 636–646.

[14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
‘‘P4: Programming protocol-independent packet processors,’’ SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014, doi:
10.1145/2656877.2656890.

[15] P4 Website. Accessed: Jun. 5, 2021. [Online]. Available: https://p4.org
[16] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, ‘‘An exhaustive survey on P4

programmable data plane switches: Taxonomy, applications, challenges,
and future trends,’’ IEEE Access, vol. 9, pp. 87094–87155, 2021.

VOLUME 11, 2023 54043

http://dx.doi.org/10.1007/978-0-387-74437-7_12
http://dx.doi.org/10.1007/978-0-387-74437-7_12
http://dx.doi.org/10.1145/263105.263154
http://dx.doi.org/10.1145/75247.75248
http://dx.doi.org/10.1145/2656877.2656890


S.-Y. Wang et al.: Providing Near Per-Flow Scheduling in Commodity Switches Without Per-Flow Queues

[17] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, ‘‘Approx-
imating fair queueing on reconfigurable switches,’’ in Proc. 15th
USENIX Symp. Netw. Syst. Design Implement. (NSDI). Renton, WA,
USA: USENIX Association, Apr. 2018, pp. 1–16. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/sharma

[18] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sansò, ‘‘Towards
approximate fair bandwidth sharing via dynamic priority queuing,’’ in
Proc. IEEE Int. Symp. Local Metrop. Area Netw. (LANMAN), Jun. 2017,
pp. 1–6.

[19] Inventec D5264 Datacenter Programmable 100GbE Switch.
Accessed: Jul. 17, 2021. [Online]. Available: http://productline.inventec.
com/switch/Download/D5264.pdf

[20] J. Nagle, ‘‘On packet switches with infinite storage,’’ IEEE Trans. Com-
mun., vol. COM-35, no. 4, pp. 435–438, Apr. 1987.

[21] M. Shreedhar and G. Varghese, ‘‘Efficient fair queuing using deficit round-
robin,’’ IEEE/ACM Trans. Netw., vol. 4, no. 3, pp. 375–385, Jun. 1996.

[22] S. S. Kanhere, H. Sethu, and A. B. Parekh, ‘‘Fair and efficient packet
scheduling using elastic round Robin,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 13, no. 3, pp. 324–336, Mar. 2002.

[23] I. Stoica, S. Shenker, and H. Zhang, ‘‘Core-stateless fair queueing: A scal-
able architecture to approximate fair bandwidth allocations in high-speed
networks,’’ IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 33–46, Feb. 2003.

[24] Z. Cao, Z. Wang, and E. Zegura, ‘‘Rainbow fair queueing: Fair bandwidth
sharing without per-flow state,’’ in Proc. IEEE Conf. Comput. Commun.,
19th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2,
Mar. 2000, pp. 922–931.

[25] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishnamurthy,
and A. Sivaraman, ‘‘Programmable calendar queues for high-speed
packet scheduling,’’ in Proc. 17th USENIX Symp. Netw. Syst. Design
Implement. (NSDI). Santa Clara, CA, USA: USENIX Association,
Feb. 2020, pp. 685–699. [Online]. Available: https://www.usenix.
org/conference/nsdi20/presentation/sharma

[26] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown, ‘‘Pro-
grammable packet scheduling at line rate,’’ inProc. ACMSIGCOMMConf.
New York, NY, USA: Association for Computing Machinery, Aug. 2016,
pp. 44–57, doi: 10.1145/2934872.2934899.

[27] V. Shrivastav, ‘‘Fast, scalable, and programmable packet scheduler in
hardware,’’ in Proc. ACM Special Interest Group Data Commun. (SIG-
COMM). New York, NY, USA: Association for Computing Machinery,
2019, pp. 367–379, doi: 10.1145/3341302.3342090.

[28] A. G. Alcoz, A. Dietmuller, and L. Vanbever, ‘‘SP-PIFO: Approximating
push-in first-out behaviors using strict-priority queues,’’ in Proc. 17th
USENIX Symp. Netw. Syst. Design Implement. (NSDI). Santa Clara, CA,
USA: USENIX Association, Feb. 2020, pp. 59–76. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/alcoz

[29] Z. Yu, J. Wu, V. Braverman, I. Stoica, and X. Jin, ‘‘Twenty years
after: Hierarchical core-stateless fair queueing,’’ in Proc. 18th USENIX
Symp. Netw. Syst. Design Implement. (NSDI). USENIX Associa-
tion, Apr. 2021, pp. 1–18. [Online]. Available: https://www.usenix.
org/conference/nsdi21/presentation/yu

[30] M. Kang, G. Yang, Y. Yoo, and C. Yoo, ‘‘TensorExpress: In-network
communication scheduling for distributed deep learning,’’ in Proc. IEEE
13th Int. Conf. Cloud Comput. (CLOUD), Beijing, China, Oct. 2020,
pp. 25–27.

[31] C. Zhang, Z. Chen, H. Song, R. Yao, Y. Xu, Y. Wang, J. Miao, and B. Liu,
‘‘PIPO: Efficient programmable scheduling for time sensitive network-
ing,’’ in Proc. IEEE 29th Int. Conf. Netw. Protocols (ICNP), Dallas, TX,
USA, Nov. 2021, pp. 1–11.

[32] H. Huang, P. Li, and S. Guo, ‘‘Traffic scheduling for deep packet inspec-
tion in software-defined networks,’’ Concurrency Comput., Pract. Exper.,
vol. 29, no. 16, p. e3967, 2017.

[33] W. Bai, K. Chen, L. Chen, C. Kim, and H. Wu, ‘‘Enabling ECN over
generic packet scheduling,’’ in Proc. 12th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2016, pp. 191–204.

[34] P4 16 Language Specification Version 1.2.0. Accessed: Jul. 17, 2021.
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.2.0.html

[35] Intel Tofino ASIC Chip. Accessed: Jul. 17, 2021. [Online].
Available: https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series/tofino.html

[36] ‘‘10k-series device family overview,’’ Early Access Product Specifications,
Barefoot Netw. Confidential Proprietary, Oct. 2018.

[37] Mellanox MT27800 ConnectX-5. Accessed: Jul. 17, 2021. [Online].
Available: https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-
card.pdf

[38] Iperf Version 2.0.9. Accessed: Jul. 17, 2021. [Online]. Available:
https://iperf.fr/iperf-doc.php#doc

[39] T. Mori, R. Kawahara, S. Naito, and S. Goto, ‘‘On the characteristics of
Internet traffic variability: Spikes and elephants,’’ in Proc. Int. Symp. Appl.
Internet., 2004, pp. 99–106.

[40] J. Iyengar andM. Thomson,QUIC: A UDP-Based Multiplexed and Secure
Transport, document RFC 9000, IETF, 2021.

SHIE-YUAN WANG (Senior Member, IEEE)
received the master’s and Ph.D. degrees in com-
puter science fromHarvardUniversity, in 1997 and
1999, respectively. He is a Full Professor with
the Department of Computer Science, National
Yang Ming Chiao Tung University (NYCU),
Taiwan. He has published many high-quality jour-
nals and conference papers in the fields of com-
puter networks, such as IEEE/ACM TRANSACTIONS

ON NETWORKING and Journal of Network and Com-
puter Applications (Elsevier). His current research interests include the Inter-
net of Things and P4 programmable networks. He received the Outstanding
Information Technology Elite Award of Taiwan Government, in 2012; the
President Award of Tokyo University of Science, for his contributions to
computer network researches, in 2014; and the 19th Y. Z. Hsu Scientific
Paper Award fromY. Z. Hsu Foundation, Taiwan, in 2021. Since 2021, he has
been selected as a world’s top 2% scientist for his career impact. He has
served as the General Chair, the Technical Program Co-Chair, and a member
for many prestigious IEEE conferences, such as ICC, GLOBECOM, NOMS,
PIMRC, VTC, and ISCC. He is serving as an Associate Editor for ACM
Computing Surveys.

CHEN-YO SUN received the bachelor’s degree in
computer science from the National Yang Ming
Chiao Tung University (NYCU), Taiwan, in 2021.
He is currently pursuing the master’s degree with
Carnegie Mellon University (CMU).

YU-CHEN HSIAO received the bachelor’s degree
in computer science from the National Yang Ming
Chiao Tung University (NYCU), Taiwan, in 2021,
where he is currently pursuing the master’s degree
with the Institute of Computer Science and Engi-
neering.

YI-BING LIN (Fellow, IEEE) received the bache-
lor’s degree from the National Cheng Kung Uni-
versity, Taiwan, in 1983, and the Ph.D. degree
from the University of Washington, USA, in 1990.
He is aWinbond Chair Professor with the National
Yang Ming Chiao Tung University (NYCU).
From 1990 to 1995, he was a Research Scientist
with Bellcore (Telcordia). Then, he joined NCTU,
Taiwan, where he became a lifetime Chair Pro-
fessor, in 2010, and the Vice President, in 2011.

From 2014 to 2016, he was the Deputy Minister of the Ministry of Science
and Technology, Taiwan. Since 2016, he has been the Vice Chancellor of the
University System of Taiwan (for NCTU, NTHU, NCU, and NYM). He is
an AAAS Fellow, an ACM Fellow, and an IET Fellow.

54044 VOLUME 11, 2023

http://dx.doi.org/10.1145/2934872.2934899
http://dx.doi.org/10.1145/3341302.3342090

