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ABSTRACT The privacy protection problem in data mining has received increasingly attention and is a
hot topic of current research. To address the problems of large accuracy loss and instability of clustering
results of clustering algorithms under differential privacy protection requirements, a density peak clustering
algorithm for differential privacy protection (DP-chDPC) is proposed. Firstly, the original DPC algorithm is
improved, by using the dichotomy method to automatically determine the truncation distance to avoid the
subjectivity of manual selection, and by setting the threshold of local density and center offset distance to
automatically obtain the clustering center, which overcomes the uncertainty of the original DPC algorithm
to select the clustering center based on the decision graph. Then, noise is added to the local density by using
the Laplace mechanism to realize the differential privacy protection of the algorithm during the clustering
analysis. Finally, the Chebyshev distance is used to replace the Euclidean distance to calculate the distance
matrix, which reduces the interference on the clustering results after the algorithm adds noise, and reduces
the loss of clustering accuracy, so that the stability of the algorithm is improved. The experimental results
show that the DP-chDPC algorithm can effectively reduce the loss of clustering accuracy after the algorithm
adds noise, and the clustering results are more stable.

INDEX TERMS Cluster analysis, differential privacy, Chebyshev distance, dichotomous method, Laplace
mechanism.

I. INTRODUCTION

In today’s society, various behaviors of people can be saved
by data, and massive data can be obtained in a short time [1],
and with the gradual rise of speech recognition, deep learning
and the rapid development of the Internet, various new data
mining algorithms have been proposed [2]. Data mining can
build different models to analyze data, find out the intrinsic
laws, and obtain valuable information, but when using data
mining algorithms to analyze data, it can lead to the leakage
of personal privacy, which can cause great losses [3], [4], [5],
[6]. Clustering is a common algorithm for data mining, and
how to achieve privacy protection in clustering is a hot topic
of current research [7].
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Differential privacy [8] (DP) was proposed by Dwork in
2006, and it can be proved by rigorous derivation of mathe-
matical knowledge [9]. Its protection mechanism is to distort
the data by adding noise to the data to achieve the effect
of privacy protection, and the processed data is still avail-
able [10]. And in the big data environment, the clustering
algorithm oriented to differential privacy protection has high
compatibility and can be applied to recommendation systems,
face recognition, biomedicine, transportation, etc. to realize
people’s need for personal privacy protection [11].

DPC algorithm is a relatively efficient and novel clustering
algorithm, which has been studied by many scholars.
Wang et al. [12], [13], [14] conducted a series of studies
on clustering algorithms. Firstly, they proposed a varia-
tional density peak clustering algorithm (VDPC), which
constructed a unified clustering framework and could

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

54240

VOLUME 11, 2023


https://orcid.org/0000-0001-9474-6337
https://orcid.org/0000-0003-3139-5992
https://orcid.org/0000-0001-7956-1991
https://orcid.org/0000-0002-2287-8928
https://orcid.org/0009-0004-5707-8682
https://orcid.org/0000-0001-8641-6119

H. Chen et al.: Density Peaking Clustering Algorithm For DP Preservation

IEEE Access

automatically cluster data sets with different density distri-
bution types. Then, a pseudo-label guided density peak clus-
tering algorithm (PLDPC) was proposed. In this algorithm,
a pseudo-label generation method based on co-occurrence
theory was designed, and mutual information maximization
method was used to obtain better clustering results. Finally,
an adaptive and improved CMNN algorithm (AVCMNN)
was proposed. Firstly, the data points in some small clus-
ters were misidentified as noise points, and a new vot-
ing strategy was adopted to redistribute these data points,
which improves the clustering results. Then the parameters
of the proposed method were optimized by using mutual
information maximization to construct the objective func-
tion. Finally, better parameter values and clustering results
were obtained. Li et al. [15] proposed a density peak clus-
tering algorithm (CFDPC) based on clustering fusion strat-
egy, which solved the problem that data point allocation
was prone to joint errors, and selected the clustering cen-
ter correctly. Ding et al. [16] proposed an improved density
peak clustering algorithm (IDPCNNMS) based on the natu-
ral neighborhood merging strategy, which could adaptively
identify the natural neighbor set of each data, obtain its local
density, and effectively eliminate the influence of truncation
parameters on the final result. Zou and Wang [17] introduced
the idea of connectivity on the basis of the original DPC
algorithm, and proposed an improved density peak cluster-
ing algorithm (ConDPC), which improved the acquisition
of clustering center points and the sample allocation strat-
egy, and improved the clustering accuracy of the algorithm.
Yin et al. [18] improved the density peak clustering algo-
rithm. In view of the selection of parameter d,, the K-nearest
neighbor idea was adopted to sort the nearest neighbor dis-
tance of each data, and the global bifurcation points were
found to divide data of different densities. For the selec-
tion of clustering centers, the local density and distance of
each data point in each data partition were found out and
y-map was drawn. The average value of y height difference
was calculated, and the maximum discontinuity point was
found through two screening. The clustering center and the
number of clustering center were determined automatically,
thus improving the clustering accuracy of the algorithm.
Li et al. [19] proposed a new density peak clustering method
based on fuzzy semantic units and introduced relative seman-
tic distance, which made the decision graph of clustering
center selection clearer and the clustering results better. Liu
and Wang [20] proposed a density-based optimal peak density
algorithm (DTDPC), which automatically selected cluster
centers according to the weight trends of cluster centers.
A density-based two-step allocation strategy was designed
to divide core points and boundary points, and the clustering
results were relatively stable.

Applying differential privacy protection in clustering
analysis can protect personal privacy while obtaining valu-
able information. Blum et al. [21] first introduced differen-
tial privacy into clustering analysis by proposing the SuL.Q
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framework and querying the database using the DPk-means
algorithm, but such algorithms were more sensitive to the
type of data set and were prone to obtain local optimal
solutions. Therefore, Wu and Huang et al. [22] proposed the
DP-DBSCAN algorithm based on differential privacy pro-
tection, which combined differential privacy with density
clustering, and could maintain the effectiveness of cluster-
ing while obtaining differential privacy protection, expand-
ing its applicability. Ni et al. [23] proposed a differential
privacy-preserving multicore DBSCAN (DP-MCDBSCAN)
clustering scheme based on differential privacy protection to
address the privacy protection problem in clustering anal-
ysis of web user data, which effectively solved the pri-
vacy leakage problem in data mining and improved the
clustering accuracy of DBSCAN under differential privacy
protection. Wang et al. [24] made improvements in OPTICS
algorithm and introduced differential privacy DP-OPTICS
algorithm, which solved the problem of low data avail-
ability, but required a relatively accurate estimation of the
user’s query probability. Sun et al. [25] combined Euclidean
distance and shared nearest neighbor similarity to redefine
local density and proposed a differential privacy-preserving
algorithm DP-DPCSNNS based on shared nearest neighbor
similarity, which overcame the privacy leakage problem of
the original DPC algorithm and improved the accuracy of
clustering results, but did not consider the stability of cluster-
ing results. Chen et al. [26] introduced the reachable centroid
definition and proposed the DP-rcCFSFDP algorithm, which
could perform effective clustering while protecting data pri-
vacy, but also did not consider the stability problem of the
algorithm after adding noise. Chen et al. [27] proposed an
adaptive clustering center density peak clustering algorithm
based on differential privacy for the poor adaptive ability
of DPC algorithm on high-dimensional data, the inability
to automatically determine the cluster center, and the pri-
vacy problems in cluster analysis. This algorithm not only
solved the privacy problem in cluster analysis but also greatly
improved the clustering accuracy, but still did not consider the
stability problem after the algorithm added noise.

Currently, most of the research on the combination of dif-
ferential privacy with density clustering focuses on improving
the algorithm to improve the accuracy of clustering. However,
the loss of clustering accuracy caused by adding noise and
the stability of clustering results are not taken into account.
In this paper, we combine density peak clustering (DPC)
algorithm with differential privacy, and propose a density
peak clustering algorithm DP-chDPC oriented to differential
privacy protection, aiming to protect personal privacy while
reducing the loss of clustering accuracy after the algorithm
adds noise, improving the stability of clustering results, and
this algorithm has a better clustering effect.

The main works of this paper are summarized as follows.

1) To address the instability of clustering results under
differential privacy protection, a density peak clustering
algorithm DP-chDPC for differential privacy protection is
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proposed. Different from the DP-DPC algorithm, this algo-
rithm can reduce the loss of clustering accuracy and improve
the stability of the algorithm. Privacy analysis proves that the
DP-chDPC clustering algorithm not only clusters the data, but
also prevents the data information from being leaked.

2) To address the problem that the DPC algorithm requires
manual determination of truncation distance and clustering
centroids, we use the dichotomous method to automatically
determine the truncation distance to avoid the subjectivity of
manual selection. The thresholds of local density and center
offset distance is set to automatically obtain the clustering
centroids, which overcomes the uncertainty of the DPC algo-
rithm to select the clustering centers based on the decision
map.

3) We demonstrate the privacy-preserving performance of
the DP-chDPC algorithm and conduct experiments to validate
our algorithm. The experimental results show that the algo-
rithm can effectively improve the stability of the algorithm
on low-dimensional datasets and high-dimensional datasets,
reduce the loss of clustering accuracy after the algorithm adds
noise, and have significant advantages in clustering results on
low-dimensional datasets.

The rest of this paper is organized as follows. In Section II,
we introduce the definition related to differential privacy and
the concepts and specific steps related to the DPC algorithm.
In Section III, we propose the DP-chDPC algorithm and
prove its privacy. In Section IV, we conduct experiments to
evaluate the performance of our proposed algorithm. Finally,
we present the findings of this work and discuss future
research work in Section V.

Il. RELATED WORKS
A. RELEVANT DEFINITIONS OF DIFFERENTIAL PRIVACY
Definition 1 (e-Differential Privacy) [28]: For an algo-
rithm M, M (D) is the set formed by M on a dataset D.
Suppose D1 and D, are two datasets with the same attributes
and the number of records differs by 1. S is a subset of M (D),
and if algorithm M satisfies equation (1), then M is said to
provide e-differential privacy.

P,IM(Dy) € S]1 < € x P [M(D>) € S] ey

where the parameter ¢ represents the privacy protection bud-
get, which can reflect the privacy protection strength provided
by the algorithm M. The smaller the value, the higher the pro-
tection strength, and the practical application needs to balance
the availability of data and the level of privacy protection.

Definition 2 (Global Sensitivity) [29]: Assuming that the
functionf : D — R?, for any input dataset D; and its adjacent
dataset D», the global sensitivity of function f is:

GSr = pnax If (D1) — f(D2)] @

Definition 3 (Local Sensitivity) [30]: Assuming that the
function f : D — RY, the input is the dataset D1, and its
neighboring dataset is D, the local sensitivity of the function
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f on Dy is:
LSy = max If (D1) — f(D2)] (3)

B. IMPLEMENTATION MECHANISM OF DIFFERENTIAL
PRIVACY PROTECTION

The privacy preserving mechanisms commonly used in dif-
ferential privacy are Laplace mechanism and exponential
mechanism, mainly by adding random noise to the algorithm
to make its query results or output results satisfy differential
privacy protection, so as to ensure that the privacy informa-
tion is not leaked, and the size of the added noise depends
on the privacy preserving budget and sensitivity. Among
them, the Laplace mechanism is applicable to the privacy
protection of numerical datasets, while the exponential mech-
anism is applicable to the privacy protection of non-numerical
datasets.

Theorem 1 (Laplace Mechanism) [31]: Given a dataset
D, assume that the function f : D — R¢, the sensitivity
of the function f is Af, and if the algorithm M satisfies
M(D) = f(D) + Lap(b), then M provides e-differential
privacy protection. where Lap(b) obeys a Laplace distribution
with a location parameter of 0 and a scale parameter of
b = Af /e. The magnitude of the provided noise is inversely
proportional to & and proportional to Af.

Theorem 2 (Exponential Mechanism) [31 ]: Given a dataset
D, assume that the output of the randomized algorithm M
is an entity object ¥ € Rpange(M), q(D, r) is the availabil-
ity function, and Agq is the sensitivity of g(D,r). If r is
selected and output from Rgunge(M) with probability M o<
exp(e x q(D, r)/2Aq), then M provides e-differential privacy
protection.

C. DPC ALGORITHM

The DPC algorithm is a density-based clustering method
proposed by Rodriguez and Laio [32] in 2014, which does not
require iteration and enables efficient clustering of arbitrarily
shaped datasets. The algorithm is based on two important
assumptions: 1) the centers of class clusters are surrounded by
other data points of lower density and 2) the distance between
the centers of class clusters is relatively far [33]. In order to
satisfy these two assumptions, it is crucial to calculate the
local density p; of sample point i and the center offset distance
8; between sample point i and other denser points in order to
find the class cluster centers accurately.

Definition 4 (Euclidean Distance) [34]: For any n-
dimensional vectors @ and B, the Euclidean distance is the
true distance between any two points in the n-dimensional
space, which is calculated as:

n

D (ai— i) €

i=1

d(a, p) =

Definition 5 (Local Density) [35]: Suppose there is a
dataset XNXM = (xl y X2y 000, xN)T7 Xi = (xl] s Xi2y t le)$
N is the number of samples and M is the number of sample
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dimensions. Then the local density p; is calculated in two

ways: for larger datasets a truncation kernel is usually used,

and for smaller datasets a Gaussian kernel is usually used.
The truncation kernel is:

1, x<0O
Pi:%X(dij_dc)’ X(X):[O, x>0 %)

The Gaussian kernel is:

di\*

pi=2 x|~ (d—) ©)
i#j

where dj; is the distance between data points after normal-

ization; d, is the truncation distance, which is the only input

parameter, and the truncation percentage is usually set to

about 2%.

Definition 6 (Center Offset Distance) [15]: The center
offset distance §i is the distance closest to sample point i
among all the distances between sample point i and other
points of higher density, and is calculated as follows.

max(di),  p;i = max(p)

si=1 ' @)
min (dj), pi < max(p)
J:p5> pi

That is, for the sample with the highest density, the center
offset distance is calculated as the distance to its farthest
point, and for the remaining data points, the center offset
distance is calculated as the distance to the nearest point of
any other point with higher density [34].

The DPC algorithm is a relatively new clustering algo-
rithm, and its specific steps are shown in Algorithm 1 [33].
First, the input data set is standardized and the distance matrix
is calculated to determine the truncation distance; then, the
local density p; and the center offset distance §; are calculated
for each data point, and the decision map is drawn to select
the clustering center points; finally, the non-clustering center
data points are categorized and the data division results are
output.

lll. DPC ALGORITHM FOR DIFFERENTIAL PRIVACY
PROTECTION
At present, the research of DPC algorithm based on differ-
ential privacy protection mainly improves the original DPC
algorithm and improves the clustering accuracy of the algo-
rithm after adding noise, but does not consider the stability
of the clustering results after the algorithm adds noise. In this
paper, we propose a differential privacy-preserving algorithm
DP-chDPC for the above problems, which can effectively
reduce the loss of clustering accuracy and improve the stabil-
ity of the algorithm after adding noise. The advantages of the
DP-chDPC algorithm are clarified through a detailed com-
parative analysis with the DP-DPC algorithm, and Figure 1
shows the basic flow of each algorithm.

The basic flow of DPC, DP-DPC, and DP-chDPC algo-
rithms is given in Figure 1. The comparative analysis shows
that the DP-DPC algorithm only adds noise to the local
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Algorithm 1 DPC Algorithm

Input: Dataset Xy = (x1, X2, - - - ,xN)T

Output: Category label Y

1: Standardized dataset Xp x /.

2: The distance matrix D = (d;) of the sample dataset
is calculated according to Equation (4), where d; =

> (i — xjp)>.
\ i=1

3: Set the truncation percentage p to calculate the truncation
distance d..

4: calculate the local density p; and the central offset distance
d8; according to Egs. (5), (6) and (7).

5: Plotting decision diagrams based on p; and §; and selecting
cluster centroids.

6: Categorize the non-clustering center data points and output
the data division results.

density using the Laplace mechanism on the basis of the DPC
algorithm, thus achieving the privacy protection of the algo-
rithm. And the DP-chDPC algorithm first uses Chebyshev
distance instead of Euclidean distance to calculate the dis-
tance matrix, which improves the stability of the algorithm.
Then the truncation distance is automatically calculated using
the dichotomy method, which saves the time of finding the
truncation percentage. Then the same Laplace mechanism
is used to add noise to the local density to achieve privacy
protection. Finally, the centroids of clusters are found auto-
matically by setting the thresholds of local density and center
offset distance after adding noise.

A. CHEBYSHEV DISTANCE

Exploring a suitable method to calculate the distance matrix
is beneficial to improve the performance of clustering after
adding noise. The DP-chDPC algorithm calculates the dis-
tance matrix in terms of Chebyshev distance, which can
improve the stability of the algorithm after adding noise. For
any n-dimensional vectors « and §, the Chebyshev distance
between them is specifically defined as:

de.f)= _max o~ B ®)

B. DICHOTOMOUS METHOD TO DETERMINE THE
TRUNCATION DISTANCE

The original DPC algorithm is selected manually according to
experience, and the truncation percentage is artificially given
a value to calculate the truncation distance d.., so the selection
is too subjective and it is difficult to get good results by only
relying on one parameter. In contrast, this paper introduces
two new parameters to automatically calculate the truncation
distance d. by simply giving a range. In comparison, this
new method can reduce the searching time and achieve better
clustering results. In this paper, we use the dichotomous
method to calculate the truncation distance, and determine
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FIGURE 1. Basic flow of different algorithms.

the truncation distance automatically by setting the values of
parameters r1, 72, and the specific steps are:

Algorithm 2 Dichotomous Method to Determine the Trunca-
tion Distance

Input: Distance matrix D = (d;j)

Output: Truncation distance d,

1: Initialize the truncation distance d. as the average of the
maximum and minimum values of the distance matrix, and
let dimax, dmin denote the maximum and minimum values of
D respectively, then d. = (dmax + dmin)/2.

2: Calculate the number n of points with d;; less than d. and
calculate its percentage r = n/N, where N denotes the total
number of samples.

3:If r < rp, assign d, to dmin, return to step 1, and continue
the loop.

4:If r > rp, assign d, to dpmax, return to step 1, and continue
the loop with the new d, instead of the initial value.

5:Ifry <r < ryordmax — dmin < 0.0001, then exit the loop
and output d,.

C. DP-DPC ALGORITHM

The DP-DPC algorithm can protect the information of the
data from being leaked while clustering and analyzing the
data, and its specific steps are shown in Algorithm 3. Firstly,
the input data set is standardized and the distance matrix
is calculated using Euclidean distance. Then, the truncation
percentage p is set manually, and the truncation distance is
calculated. Next, the local density p; is calculated and noise
is added to obtain p;, followed by the center offset distance
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8.. Finally, a decision diagram is drawn based on p! and &/,
cluster centroids are selected, and non-cluster centroid data
points are grouped, and the data division results are output.

Algorithm 3 DP-DPC Algorithm

Input: dataset Xyxy = (x1,x2, - ,xN)T, privacy-
preserving budget &, Truncation percentage p, number of
clustering centers

Output: Category label Y

1: Standardized dataset Xp 7.

2: Calculate the distance matrix D = (d;;) of the sample data

n
set according to Eq. (4), where djj = | > (xjx — xjk)z.
k=1

3: Set the truncation percentage p to calculate the truncation

distance d..

4: Calculate the local density p; according to equations (5)

and (6), and then add Laplace noise to p; by Laplace mecha-

nism, then the local density p; = > exp(—(d;;/ d:-)?)+Lap(b)
i#]

after adding noise.

5: Calculate the center offset distance §; according to p; and
equation (7).

6: Plotting decision diagrams based on p; and & and selecting
cluster centroids.

7: Categorize the non-clustering center data points and output
the data division results.

D. DP-CHDPC ALGORITHM

The DP-chDPC algorithm is mainly used to solve the problem
of loss of clustering accuracy after the algorithm adds noise,
so as to improve the stability of the algorithm. The specific
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steps are shown in Algorithm 4. Firstly, the input data set
is standardized and the Chebyshev distance is used to cal-
culate the distance matrix. Then, according to algorithm 2,
the dichotomy method is used to automatically determine the
truncation distance. Secondly, the local density p; is calcu-
lated, and the noise is added to get ,ol.’ , and then the center
deviation distance §; is calculated. Finally, by setting the
threshold values of local density and center offset distance,
the clustering central points are automatically selected, and
the non-clustering central data points are classified, and the
data division results are output.

TABLE 1. Experimental datasets.

Dataset Attributes Size Clusters Sources
Aggregation 2 788 7 Synthetic
Compound 2 399 6 Synthetic
Flame 2 240 2 Synthetic
Jain 2 373 2 Synthetic
Pathbased 2 300 3 Synthetic
RIS 2 600 15 Synthetic
Banknote 4 1372 2 uct
Seeds 7 210 3 ucrt
Iris 4 150 3 ucr
Wine 13 178 3 ucl
Abalone 8 4177 3 ucrt
Ecoli 7 336 8 UCl

Algorithm 4 DP-chDPC Algorithm

Input: dataset Xyxy =
preserving budget ¢

Output: Category label Y

1: Standardized dataset Xy 7.
2: Calculate the distance matrix D = (d;) of the sample data
set according to Eq. (8), where d;j = k_rlnzau.(” . [xik — Xk |-

T .
(x1,x2, -+, xn)", privacy-

3: Calculate the truncation distance d. according to Algo-

rithm 2.

4: Calculate the local density p; according to equations (5)

and (6), and then add Laplace noise to p; by Laplace mecha-

nism, then the local density ,olf => exp(—(d;; /dc)2)+Lap(b)
l

after adding noise. 7

5: Calculate the center offset distance §; according to p; and

equation (7).

6: Let the thresholds of local density and central offset dis-

tance be P = (Iomin + /Omax)/27 6 = (8min + Smax)/z, respec-

tively, and select the points of p; > p and §; > & as cluster

centroids. Where pmin, Pmax are the minimum and maximum

values in plf , 8min» Omax are the minimum and maximum values

in 8, respectively.

7: Categorize the non-clustering center data points and output

the data division results.

E. ANALYSIS OF PRIVACY

The DP-chDPC algorithm achieves differential privacy pro-
tection by adding Laplace noise to the local density p; and
setting the privacy budget to . Assuming that D and D,
are mutually neighboring datasets, M is a noise-addition
algorithm, and p; is p] after noise addition, the privacy proof
procedure of the DP-chDPC algorithm is as follows.

PriM(p) = pil _
PrM (o)) = il

exp(_5|ﬁ£;ﬂi|)

eloi—r]l

exp(— AT

e(lpi — pil — |pi — pil)

Af
elpi —p{l)
Af
£(max | p; — p{l)
Af

= exp(

)

IA

xp(

IA

xp(
= exp(e)

)
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From the above: the clustering algorithm DP-chDPC with
noise addition to the local density p; satisfies e-differential
privacy protection.

F. ANALYSIS OF ALGORITHM COMPLEXITY

For a dataset with sample size n, the time complexity of the
DPC algorithm is determined by 3 main parts: a) Calculate
the distance matrix using Euclidean distance. b) Calculate the
local density p; for each sample. ¢) Calculate the center offset
distance §; for each sample. The time complexity of each part
is O(n?), so the total time complexity is o(n?).

The time complexity of the DP-chDPC algorithm proposed
in this paper is determined by six main components: a) Cal-
culating the distance matrix using Chebyshev distance with a
time complexity of 0(n?).b) Compute the truncated distance
d. using the dichotomous method with a time complexity of
O(logn). c) Calculate the local density p; for each sample
with time complexity O(n?). d) Add Laplace noise to the local
density p; to get the local density p; after adding noise, with
time complexity O(n). ) Calculate the center offset distance
8 from p; with time complexity O(n?). 1) Set the thresholds
of local density and center offset distance to automatically
select the clustering centroids with time complexity O(n).

Therefore, the time complexity of DP-chDPC algorithm is
O(nz), which is of the same order of magnitude as the time
complexity of the DPC algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the performance of the DP-chDPC algorithm,
this paper uses the operating system Windows 11, Python
3.9.7 development environment, processor Intel(R) Core
(TM) i5-1155G7@2.50GHz2.50GHz, and 8.00 GB of mem-
ory. experimental data are used in six classical synthetic
datasets and six UCI real datasets to test and evaluate
the algorithm, and each experimental dataset is shown in
Table 1, which describes the characteristics of each dataset
respectively.

A. EVALUATION INDICATORS

The DP-chDPC algorithm can not only perform cluster anal-
ysis on data, but also prevent the disclosure of privacy infor-
mation. It also considers the stability of clustering results
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after the algorithm adds noise. Its evaluation index needs
to be considered from two perspectives, namely differential
privacy protection intensity and clustering accuracy.

(1) Differential privacy protection strength. The DP-
chDPC algorithm realizes differential privacy protection
based on Laplace noise mechanism, and its protection
strength is related to Af and €. By |f(D1) — f(D2)| = 1is
Af = 1. Then the smaller ¢, add the greater the noise, protect
the higher strength; The larger the ¢, the less noise is added
and the lower the protection strength.

(2) The accuracy of clustering. The experimental datasets
used in this paper all contain true labels, so the external met-
rics of clustering are used for the metrics. Adjusted mutual
information [36] (AMI), adjusted Rand coefficient [37]
(ARI), and Fowlkes-mallows index [38] (FMI) are chosen as
the accuracy evaluation criteria of clustering by DP-chDPC
algorithm, and all three metrics take values in the range of
[0,1], and the larger the value the better the clustering effect.

Suppose Yyye and Yy are two classes of labels for the
sample data set, Yy 18 the true label and Y4 is the cluster-
ing label, and the entropy of these two classes of labels is:

‘ yfrIAt’ |
H(Yime) = Y P(i)log(P(i)),
i=1
‘Ypred |
H(Yprea) = D, P(j)log(P() ©)
j=1
where P(i) = |YyueD|/N, P() = |Yprea())I/N, respectively,
denotes the number of percentages of each label in the dataset.
Then the adjusted mutual information AMI is:

|Ytrue| |YI"‘<’d‘ P(i ])
AMI = (10)

vV H(Ytrue)H(Ypred)
Adjusting the Rand coefficient ARI and the Fowlkes-
Mallows index FMI for:
2AxD—-B x C)

“GBiDat+O+Crarn P
FMI = A (12)
JATBATO

where A denotes the number of data point pairs that are the
same class in both Y, and Ypq. B denotes the number of
data point pairs that are the same class in Y3, but not the
same class in Y).¢. C denotes the number of data point pairs
that are not the same class in Y, but the same class in Yeq.
D denotes the number of data point pairs that are not the same
class in both Yy and Ypyeq.

B. THE SETTING OF EXPERIMENTAL PARAMETERS

In order to test the clustering performance of each algorithm
on each dataset more objectively, the parameter settings of
each algorithm are tuned in different datasets. chDPC, DP-
chDPC algorithm requires setting parameters ry, r» to calcu-
late the truncation distance d, so that the average number of
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neighbors of each sample point is about 1%-2% of the total
number of sample points in the dataset, but this does not apply
to all datasets and it is necessary to adjust the parameters
for clustering according to the characteristics of the dataset.
For Aggregation, Flame and Wine datasets 1 = 0.01 and
rp = 0.04; for Compound, Jain, Seeds and Ecoli datasets
r1 = 0.01 and r, = 0.03; for Pathbased, R15, Banknote, Iris
and Abalone datasets r; = 0.02 and r, = 0.04.The DPC,
DP-DPC algorithms need to set the parameter truncation
percentage p, p = 2 on the Jain, Pathbased, Seeds, Banknote,
Wine, Abalone, Ecoli datasets. p = 3 on Compound, Flame
and Iris datasets. p = 4 in Aggregation and R15 datasets.

C. ANALYSIS OF EXPERIMENTAL RESULTS OF SYNTHETIC
DATASETS

In order to verify that the DP-chDPC algorithm using Cheby-
shev distance can effectively reduce the loss of clustering
accuracy after the algorithm adds noise, six representative
synthetic datasets are selected for comparison experiments
with Euclidean distance. The other conditions of this experi-
ment are consistent and only the distance is compared. When
noise is added, its privacy-preserving budget ¢ is taken as (0.1,
10) with a step size of 0.5, and the average values of ARI,
AMI, and FMI corresponding to all ¢ are calculated, and then
the same experiment is repeated 10 times, and the average
values of ARI, AMI, and FMI of 10 times are taken as the
final clustering results. Where, the parameter c represents the
number of clustering centers of the algorithm. As shown in
Table 2, for Aggregation, Compound and Jain datasets, the
DP-chDPC algorithm has the same clustering results using
Euclidean distance and Chebyshev distance before adding
noise, but after adding noise, the clustering results using
Chebyshev distance are better. On the Flame dataset, the DP-
chDPC algorithm has slightly better clustering results using
Euclidean distance than Chebyshev distance before adding
noise, but also better clustering results using Chebyshev dis-
tance after adding noise. On the Pathbased dataset, the clus-
tering results of Euclidean distance using Euclidean distance
are slightly better than Chebyshev distance before adding
noise, but after adding noise, Euclidean distance is slightly
higher than Chebyshev distance on AMI, and Chebyshev
distance is better than ARI and FMI. On the R15 dataset, the
clustering results of DP-chDPC algorithm using Euclidean
distance are better than those of Chebyshev distance before
adding noise, but after adding noise, Euclidean distance is
slightly higher than Chebyshev distance in ARI, and Cheby-
shev distance performs better in AMI and FML.

The loss of clustering accuracy of DP-chDPC algorithm
before and after adding noise is further analyzed. As can be
seen from Table 3, on the Aggregation dataset, the losses of
ARI, AMI, and FMI using Chebyshev distance are 0.0088,
0.0062, and 0.0052, respectively, which are lower than the
results of Euclidean distance. On the Compound dataset, the
losses of ARI, AMI, and FMI using Chebyshev distance
are 0.0111, 0.0209, and 0.0079, respectively, which are also
lower than the results of Euclidean distance. On the Flame
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TABLE 2. Comparison results of synthetic datasets before and after
adding noise.

Dataset Distance Noise ARI AMI FMI c
Euclidean No 0.8266  0.9021 08761 5
distance Yes 0.7678  0.8597  0.8407
Aggregation
Chebyshev No 0.8266 09021 0.8761 s
distance Yes 0.8178 0.8959 0.8709
Euclidean No 0.7402  0.8041 0.8304 ;
distance Yes 0.7061  0.7620 08116
Compound
Chebyshev No 0.7402  0.8041 0.8304 p
distance Yes 0.7291 0.7832 0.8225
Euclidean No 1.0000  1.0000  1.0000 5
distance Yes 0.7728 0.8061 08714
Flame
Chebyshev No 0.9832 09632 0.9922 5
distance Yes 0.8768 0.8656 0.9266
Euclidean No 0.7055  0.6439  0.8779 5
Jai distance Yes 0.5786  0.5437  0.8206
ain
Chebyshev No 0.7055  0.6439  0.8779 5
distance Yes 0.6228 0.5769 0.8463
Euclidean No 0.5031 0.5737 0.6812 3
distance Yes 04734  0.5526  0.6679
Pathbased
Chebyshev No 0.5006  0.5640  0.6799 5
distance Yes 0.4821 05524 0.6714
Euclidean No 0.9927 09938 0.9932 I
RIS distance Yes 0.9789 0.9782 0.9723
Chebyshev No 0.9785  0.9833 09799 /s
distance Yes 09741  0.9816 0.9759
TABLE 3. Accuracy decline of synthetic datasets.
Dataset Distance ARI AMI FMI
Euclidean distance 0.0588 0.0424 0.0354
Aggregation
Chebyshev distance 0.0088 0.0062 0.0052
Euclidean distance 0.0341 0.0421 0.0188
Compound
Chebyshev distance 0.0111 0.0209  0.0079
Euclidean distance 0.2272 0.1939 0.1286
Flame
Chebyshev distance 0.1064 0.0976  0.0656
. Euclidean distance 0.1269 0.1002 0.0573
ain
Chebyshev distance 0.0767 0.0670  0.0316
Euclidean distance 0.0297 0.0211 0.0133
Pathbased
Chebyshev distance 0.0185 0.0116  0.0085
RIS Euclidean distance 0.0138 0.0156 0.0209
Chebyshev distance 0.0044 0.0017  0.0040

dataset, the losses of ARI, AMI, and FMI using Chebyshev
distance are 0.1064, 0.0976, and 0.0656, respectively, which
are still lower than the results of Euclidean distance. On the
Jain, Pathbased and R15 datasets, it remains that the loss
of clustering accuracy using Chebyshev distance is smaller.
It can be seen that the DP-chDPC algorithm can effectively
reduce the loss of clustering accuracy when the algorithm
adds noise on the low-dimensional datasets.
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The trend of clustering accuracy with privacy protection
budget is further analyzed. FMI is taken as the evaluation
index. It can be seen from Figure 2 that, on the Aggregation
data set, the FMI with Chebyshev distance increases in a
certain range first, reaches a critical value at ¢ = 0.6, and
then maintains a steady state. However, the variation trend
of FMI using Euclidean distance firstly increases within a
certain range and reaches a critical value at ¢ = 1.1, and
then the variation has a small amplitude fluctuation. In the
Compound data set, FMI using Chebyshev distance has a sta-
ble variation trend, while FMI using Euclidean distance has a
large fluctuation in a certain range, reaches a critical value at
& = 1.9, and then has a stable variation trend. On Flame data
set, FMI with Chebyshev distance has a tendency to fluctuate
and increase within a certain range, reaching a critical value
at ¢ = 1.8, and then remaining stationary. However, the FMI
with Euclidean distance first fluctuates and increases within
a certain range, and then reaches a critical value at ¢ = 2.4,
and then the variation still has a large fluctuation range.
In Jain data set, FMI with Chebyshev distance first fluctuates
in a certain range, reaches a critical value at ¢ = 1.9, and
then changes very steadily. However, the FMI with Euclidean
distance always fluctuates greatly. In the Pathbased dataset,
the trend of FMI using Chebyshev distance and Euclidean
distance is consistent, which first increases within a certain
range, reaches a critical value at ¢ = 1.3, and then maintains a
stable state. In R15 data set, the FMI with Chebyshev distance
keeps steady, while the FMI with Euclidean distance first
increases in a certain range and reaches a critical value at
¢ = 0.7, and then maintains a steady state. It can be seen that
the DP-chDPC algorithm is not only effective in reducing the
loss of clustering accuracy after the algorithm adds noise on
low-dimensional data sets, but also improves the stability of
the algorithm.

D. ANALYSIS OF EXPERIMENTAL RESULTS OF UCI
DATASETS

It is further verified that the DP-chDPC algorithm using
Chebyshev distance on the UCI dataset can effectively reduce
the loss of clustering accuracy after the algorithm adds noise,
and its privacy-preserving budget ¢ takes the same value
as the synthetic dataset when noise is added, and the same
experiment is still repeated 10 times, and the average of
ARI, AMI, and FMI of 10 times is taken as the final clus-
tering result. Where, the parameter ¢ represents the number
of clustering centers of the algorithm. As can be seen from
Table 4, on the Banknote dataset, the clustering results of
the DP-chDPC algorithm using Chebyshev distance before
adding noise performed better on ARI and AMI, and the
clustering results using Euclidean distance performed better
on FMI. However, after adding noise, the clustering results
using Chebyshev distance were better on both. On Seeds and
Wine datasets, the clustering results using Euclidean distance
were better on DP-chDPC algorithm before adding noise.
However, after adding noise, the clustering results using
Euclidean distance performed better on AMI and FMI, and
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FMI

FIGURE 2. Trends of FMI in synthetic datasets.

the clustering results using Chebyshev distance performed
better on ARI. On the Iris and Ecoli datasets, the clustering
results using Euclidean distance were better on DP-chDPC
algorithm before adding noise. However, after adding noise,
the clustering results using Euclidean distance performed bet-
ter on ARI and AMI, and the clustering results using Cheby-
shev distance performed better on FMI. On the Abalone
dataset, the DP-chDPC algorithm has better clustering results
using Euclidean distance before adding noise. However, after
adding noise, the clustering results using Euclidean distance
performed better on ARI, and the clustering results using
Chebyshev distance performed better on AMI and FMI.

The loss of clustering accuracy of DP-chDPC algorithm
before and after adding noise was further analyzed. As shown
in Table 5, on the Banknote dataset, the losses of ARI,
AMI, and FMI using Chebyshev distance are 0.0321, 0.0409,
and 0.0343, respectively, which are lower than the results
of Euclidean distance. On the Seeds dataset, the losses of
ARI, AMI, and FMI using Chebyshev distance are 0.0035,
0.0174, and 0.0254, respectively, which are also lower than
the results of Euclidean distance. On the Iris dataset, the
losses of ARI, AMI, and FMI using Chebyshev distance are
0.0035, 0.0068, and 0.0067, respectively, which are still lower
than the results of Euclidean distance. In the Wine, Abalone
and Ecoli datasets, Chebyshev distance is still used to reduce
the loss of clustering accuracy. It can be seen that the DP-
chDPC algorithm is also effective in reducing the loss of
clustering accuracy after the algorithm adds noise on high-
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dimensional data sets.
Further analysis of the trends of clustering accuracy with
the privacy protection budget on the UCI datasets, taking FMI

as the evaluation index, it can be seen from Figure 3 that on
the Banknote dataset, the trends of FMI using Chebyshev
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TABLE 4. Comparison results of UCI datasets before and after adding

noise.

Dataset Distance Noise ARI AMI FMI c

Euclidean ~ No 0.7067  0.7097  0.8422
Bannote distance Yes 0.6238  0.6603  0.7894 !
Chebyshev ~ No 0.7579  0.7955  0.8303 p

distance Yes 0.7258  0.7546  0.7960

Euclidean ~ No 0.7997  0.7542  0.8659
Seeds distance Yes 0.6941  0.6798  0.8103 I
Chebyshev  No 0.7407  0.6953  0.8265 3

distance Yes 0.7372  0.6779  0.8011
Euclidean ~ No 0.5681  0.7316 0.7715 5

) distance Yes 0.5437  0.7014  0.7463
s Chebyshev ~ No 0.5438  0.6900  0.7580 5

distance Yes 0.5403  0.6832  0.7513
Euclidean ~ No 0.6637  0.6982  0.7549 5

) distance Yes 0.6379  0.6647  0.7058
Wine Chebyshev ~ No 0.6483  0.6539  0.6917 5

distance Yes 0.6428  0.6407  0.6785
Euclidean ~ No 0.8258  0.8349  0.8875 5

Abalone distance Yes 0.8147  0.8193 0.8673
Chebyshev  No 0.8129  0.8243  0.8748 3

distance Yes 0.8022  0.8204 0.8674
Euclidean ~ No 0.3760  0.4479  0.6494 3

Ecoli distance Yes 0.3620  0.4245  0.6269
Chebyshev ~ No 0.3566 04148  0.6354 3

distance Yes 0.3536 04137  0.6339

critical value at ¢

distance increases within a certain range first, reaches a

1.8, and then remains a steady state.
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TABLE 5. Accuracy decline of UCI datasets.

Dataset Distance ARI AMI FMI
Euclidean distance 0.0829 0.0494 0.0528
Banknote
Chebyshev distance 0.0321 0.0409 0.0343
Seed Euclidean distance 0.1056 0.0744 0.0556
e Chebyshev distance 0.0035 0.0174  0.0254
i Euclidean distance 0.0244 0.0302  0.0252
ris
Chebyshev distance 0.0035 0.0068 0.0067
Wi Euclidean distance 0.0258 0.0335  0.0491
e Chebyshev disiance  0.0055 00132 0.0132
Euclidean distance 0.0111 0.0156  0.0202
Abalone
Chebyshev distance 0.0107 0.0039 0.0074
Ecoli FEuclidean distance 0.0140 0.0234  0.0225
oli
‘ Chebyshev distance 0.0030 0.0011 0.0015

However, the variation trend of FMI using Euclidean distance
has been fluctuating, and the fluctuation range is large. In the
Seeds data set, FMI using Chebyshev distance first increases
in a certain range, reaches a critical value at ¢ = 1.6, and
then changes steadily. However, the variation trend of FMI
using Euclidean distance is that it first increases within a
certain range, reaches the critical value at ¢ = 2.1, and then
still has a small amplitude fluctuation. In Iris data set, FMI
with Chebyshev distance increases in a certain range at first,
reaches a critical value at ¢ = 2.1, and then changes steadily.
However, the variation trend of FMI using Euclidean distance
first fluctuates within a certain range and also reaches the
critical value at ¢ = 2.1, and then changes very steadily.
On the Wine dataset, FMI with Chebyshev distance increases
in a certain range, reaches a critical value at ¢ = 1.6, and
then maintains a steady state. FMI using Euclidean distance
first fluctuates within a certain range, reaches a critical value
at ¢ = 2.2, and then changes very steadily. In Abalone data
set, FMI with Chebyshev distance has a tendency to fluctuate
slightly in a certain range at first, reach a critical value at
& = 2.1, and then maintain a stable state, while FMI with
Euclidean distance always has a small fluctuation. In the
Ecoli data set, the FMI of Chebyshev distance and Euclidean
distance both increase in a certain range at first, but the FMI
of Chebyshev distance changes in a small range, reaches a
critical value at ¢ = 0.4 and then maintains a stable state.
It can be seen that the performance of DP-chDPC algorithm
on high-dimensional data sets is consistent with that on low-
dimensional data sets, which can not only effectively reduce
the loss of clustering accuracy after the algorithm adds noise,
but also improve the stability of the algorithm.

E. COMPARATIVE ANALYSIS OF CLUSTERING RESULTS

In this experiment, the clustering results of DP-DPC algo-
rithm and DP-chDPC algorithm are compared and analyzed,
as shown in Figure 4 and Figure 5. The first parameter in both
Figure 4 and Figure 5 represents the number of clustering
centers.
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Through comparative analysis, the clustering result of DP-
chDPC algorithm is better than that of DP-DPC algorithm
on the whole. Aggregation data set has 7 cluster centers,
5 cluster centers were obtained by DP-DPC algorithm, and
6 cluster centers were obtained by DP-chDPC algorithm.
The clustering result of DP-chDPC algorithm is closer to the
original data set, and the clustering result is better. Compound
data set has 6 cluster centers, 3 cluster centers were obtained
by DP-DPC algorithm, and 4 cluster centers were obtained
by DP-chDPC algorithm. The clustering result of DP-chDPC
algorithm is closer to the original data set, and the clustering
result is better. Flame dataset has two cluster centers, and
two cluster centers can be obtained by DP-chDPC algorithm
and DP-DPC algorithm, but it can be seen from the graph
results that the DP-chDPC algorithm has better clustering
results. For Jain, Pathbased and R15 data sets, the number
of clustering centers obtained by DP-chDPC algorithm and
DP-DPC algorithm is the same, respectively 2,3,15, which is
consistent with the number of cluster centers in the original
data set, and the graphs obtained by clustering are similar,
so the clustering results of the two algorithms are basically
the same.

F. COMPARISON ANALYSIS WITH OTHER ALGORITHMS
To further verify the effectiveness of the DP-chDPC algo-
rithm, the DP-chDPC algorithm is compared with other den-
sity peak clustering algorithms based on differential privacy
protection for experiments. The DP-DPC, DP-ADPC, and
DP-KNNDPC algorithms are included. Among them, the
DP-DPC algorithm is described in detail in Algorithm 3
in Section III of this paper, the DP-KNNDPC algorithm is
derived from the literature [25], and the DP-ADPC algorithm
is derived from the literature [27]. We use ARI, AMI and
FMI as the evaluation criteria for clustering accuracy, and
the privacy preserving budget ¢ is taken as (0.1, 10) with
a step size of 0.1, and calculate the average value of all
corresponding ARI, AMI and FMI, and then repeat the same
experiment 10 times, and take the average value of 10 times
of ARI, AMI and FMI as the final result, which can not only
reduce the random noise caused by random error, but also can
balance the privacy protection strength of the algorithm with
the clustering accuracy. The parameter € indicates the value
of the privacy protection budget when the FMI reaches the
smooth state. “-” indicates that the FMI does not reach the
steady state. Par represents the value of the parameters after
each algorithm has been tuned. The DP-ADPC algorithm
needs to set the value of truncation percentage p and the DP-
KNNDPC algorithm needs to set the value of the number of
nearest neighbors K.

As shown in Table 6, for the synthetic dataset, the clus-
tering accuracy of DP-chDPC algorithm is higher on Aggre-
gation, Compound dataset and significantly better than other
algorithms. On the Flame dataset, the DP-chDPC algorithm
performs better on ARI, FMI, and the DP-ADPC algorithm
performs better on AMI. On the Jain dataset, the DP-ADPC
algorithm performs better on ARI, AMI, and the DP-chDPC
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FIGURE 4. Clustering results of DP-DPC algorithm.

algorithm performs better on FMI. On the Pathbased dataset,
the DP-chDPC algorithm performs better on ARI, AMI, and
the DP-ADPC algorithm performs better on FMI. On the
R15 dataset, the DP-chDPC algorithm performs better on
AMI, FMI, and the DP-DPC algorithm performs better
on ARI.

For the UCI dataset, on the Banknote dataset, the
DP-chDPC algorithm performs better on AMI, FMI, and the
DP-DPC algorithm performs better on ARI. On the Seeds
dataset, the DP-chDPC algorithm performs better on ARI,
the DP-KNNDPC algorithm performs better on AMI, and

54250

the DP-DPC algorithm performs better on FMI. On the Iris
dataset, the DP-chDPC algorithm performs better on FMI,
the DP-DPC algorithm performs better on ARI, and the
DP-ADPC algorithm performs better on AMI. On the wine
dataset, the DP-chDPC algorithm performs better on ARI,
and the DP-DPC algorithm performs better on AMI and FMI.
On the Abalone dataset, the clustering accuracy of the DP-
chDPC algorithm is higher and significantly better than the
other algorithms. On the Ecoli dataset, the DP-chDPC algo-
rithm performs better on FMI, and the DP-ADPC algorithm
performs better on ARI, AMIL.
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TABLE 6. Algorithm comparison results.
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(HRI5(15, 7, = 0.02, 1, = 0.04)

Algorithm € ARI AMI FMI Par € ARI AMI FMI Par
Aggregation Compound
DP-DPC 1.1 07141 08135 0.7539 4 1.8 05013 0.6837 0.6178 3
DP-ADPC 3 0.0898 0.1163 0.5064 4 - 0.4366  0.5853 0.6763 6.5
DP-KNNDPC 5 0.2871 04753 0.4821 9 03761 04386 0.5297 8
DP-chDPC 0.6 0.8204 0.8971 08725 0.01,0.04 19 0.7263 0.7752 0.8055 0.0, 0.03
Flame Jain
DP-DPC 24 0.7966 0.7842  0.9061 3 - 0.5786  0.5438  0.8206 2
DP-ADPC - 0.8321 0.8665 09141 3 - 0.6754  0.6257 0.8301 0.5
DP-KNNDPC - 0.8149  0.8073  0.8948 4 7 0.5859 05982 08107 5
DP-chDPC 1.8 0.8726 0.8593 0.9205 0.01,0.04 19 0.6207 0.5669 0.8363 0.0, 0.03
Pathbased RIS
DP-DPC 1.3 04684 0.5386 0.6566 2 0.7 09775 09728 0.9739 4
DP-ADPC 3 04209 0.5091 0.6673 2.1 6 02244 04262 04179 4
DP-KNNDPC 2.3 0.4482 0.5295 0.6437 9 3 0.6394 0.6529 0.7297 12
DP-chDPC 1.3 04759 0.5422 0.6623 0.02,0.04 03 09721 0.9793 0.9757 0.02, 0.04
Banknote Seeds
DP-DPC - 0.7482  0.7292  0.7861 2 2.1 0.7308 0.7043  0.8156 2
DP-ADPC 2 03248 03599 0.5954 0.5 5 04887 0.5659 0.7184 0.5
DP-KNNDPC 5 0.6382 0.6738 0.7561 4 4.2 07246 0.7493 0.8086 6
DP-chDPC 1.8 0.7234 0.7489 0.7935 0.02,0.04 1.6 0.7351 0.6746 0.7939 0.01, 0.03
Iris Wine
DP-DPC 2.1 06177 0.6926 0.7429 3 2.2 0.6394 0.6678 0.7351 2
DP-ADPC 0.5606 0.7039 0.7447 0.1 6 04582 05912 0.7142 14.1
DP-KNNDPC 0.2681 03074  0.3885 6 - 0.1082  0.2973  0.4657 8
DP-chDPC 2.1 0.5393 0.6786 0.7502 0.02,0.04 1.6 0.6417 0.6382 0.6739 0.01, 0.04
Abalone Ecoli
DP-DPC - 0.5713  0.7114 0.6972 2 04 03575 04273 0.6219 2
DP-ADPC 0.1950 0.1806  0.5291 2.9 45 03781 0.4457 0.6371 0.5
DP-KNNDPC 8  0.4862 05061 0.5349 5 & 0.1972 0.2085 0.2365 6
DP-chDPC 2.1 08007 0.8186 0.8607 0.02,0.04 04 03573 0.4158 0.6387 0.01,0.03

25

the DP-ADPC algorithm does not reach the steady state on
the Compound, Flame, and Jain datasets. the DP-KNNDPC
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For the parameter €, the DP-DPC algorithm does not reach
the steady state on the Jain, Banknote, and Abalone datasets.
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algorithm does not reach the steady state on the Flame, and
Wine datasets. The DP-chDPC algorithm was able to achieve
steady state on all datasets and took lower values, indicating
that the algorithm is more stable than the other algorithms.

It can be seen that the clustering results of the DP-chDPC
algorithm perform better on the low-dimensional dataset, and
the clustering results on the high-dimensional dataset still
need to be improved. However, the stability of DP-chDPC
algorithm is higher than other algorithms.

V. CONCLUSION

In this paper, we propose a density peak clustering algorithm
DP-chDPC for differential privacy preservation. The algo-
rithm uses Chebyshev distance instead of Euclidean distance
to calculate the distance matrix, which reduces the inter-
ference of noise on clustering, reduces the loss of cluster-
ing accuracy, and improves the stability of the algorithm.
Through the comparative analysis with Euclidean distance
and other algorithms, it can be seen that the DP-chDPC
algorithm has good privacy preserving performance, and
it can effectively reduce the loss of clustering accuracy
after the algorithm adds noise, and improve the stability
of the algorithm on both low-dimensional data sets and
high-dimensional data sets. And the clustering results on
low-dimensional data sets also perform better. However, the
problem of poor adaptation of the DPC algorithm to high-
dimensional data still needs to be studied, so how to improve
the adaptation of the algorithm on high-dimensional data sets
is the focus of future research, and its application to practical
problems is also an important research direction.
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