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ABSTRACT This paper presents a data-driven adaptive steady state-integral-derivative (SS-ID) control
algorithm that uses gradient descent and recursive least squares (RLS) with a forgetting factor. A simplified
first-order differential equation of the control system was designed and its parameters were estimated in
real-time using the RLS algorithm. The steady-state control input for target-state tracking was derived based
on the estimated parameters and steady-state performance conditions. The gradient of the integrated control
error to the gain was estimated based on the least-squares method, using the saved past error and gain
data in a finite sliding window to determine the control input. The integral gain was adapted based on
the gradient descent method, using the estimated gradient, integrated error, and adaptation rate. Simplified
control error dynamics were designed, and their parameter was estimated using the RLS algorithm. The
derivative control gain can be adapted in real time using the estimated parameters from the simplified control
error dynamics and time constant-based performance conditions. The proposed controller was designed in the
MATLAB/Simulink environment. A performance evaluation was conducted under various scenarios using
a DC motor simulation model and an actual test platform equipped with an optical encoder.

INDEX TERMS Data-driven adaptive control, steady state-integral-derivative control, gradient descent,
recursive least squares, forgetting factor, performance condition.

I. INTRODUCTION
Modern robot systems, including humanoid robots, drones,
and vehicles, have used various actuators such as electric
and hydraulic motors to control translational and rotational
motion. Robot systems have been improved by integrating
actuators to make human life safer, more efficient, and more
convenient. However, robot systems have become increas-
ingly complex, and their nonlinearity has increased accord-
ingly because several types of actuators and subsystems are
used. Suppose that a robot system is complex and its non-
linearity is relatively high. In such a case, it is not easy
to derive the mathematical model of the system. Various
uncertainties exist between the mathematical model and the
existing system, such as unmodelled dynamics and parameter
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uncertainties. If an inaccurate mathematical model (the sys-
tem is unpredictable by existing uncertainties) is used, system
behavior cannot be predicted, and current behavior cannot
be precisely represented. The comparatively massive uncer-
tainty can harm control performance because of inaccuracy,
and it may be necessary to design an adaptation algorithm to
improve performance. In order to overcome these limitations,
various studies on control technologies such as optimal, adap-
tive, and model-free control algorithms have been conducted
by research institutes and prominent universities.

Liu et al. [1] proposed a robust fractional-order
proportional-integral-derivative controller design for an
autonomous underwater vehicle’s yaw control system
using a three-dimensional stability region analysis method.
Wang et al. [2] presented an improved fuzzy PID control
method considering hydrogen fuel cell (HFC) voltage-output
characteristics. They realized coordinated control of the
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HFC and power cell by developing an electrochemical and
dynamic model for HFC vehicles. Phu and Choi [3] devel-
oped a modified Riccati-like equation-based controller with
an interval type 2 fuzzy model to ensure robustness to
parameter uncertainties and support the calculation progress.
Guerrero et al. [4] designed a nonlinear PID controller based
on a set of saturation functions for trajectory tracking on
underwater vehicles to consider the drawback that the previ-
ous methodology needs to be more robust to encompass large
and persistent parameter uncertainties. The main advantages
of the proposed controller are that it preserves the advantages
of a robust control algorithm and allows easy tuning of
the control parameters in real applications. Mandava and
Vundavilli [5] developed a gain modification algorithm for a
torque-based PID controller using a neural network trained by
nature-inspired optimization algorithms. The effectiveness of
the developed algorithm was tested in computer simulations
and on a real bipedal robot. Previous have studies men-
tioned the aforementioned adaptation laws and used fuzzy
algorithms for tracking control algorithm design; however,
an unreasonable determination of the adaptation rate or law
can harm the target tracking control performance. Therefore,
studies on the proportional-integral-derivative (PID) control
of various systems have been conducted to ensure robust
control stability and improve performance by integrating
other control algorithms, such as the sliding-mode control
algorithm.

Noordin et al. [6] proposed an adaptive proportional
integral derivative control scheme based on second-order
sliding-mode control to tune the parameter gains of a PID
controller. Moreover, a fuzzy compensator was used to
reduce the chattering of the adaptive controller. In addi-
tion, Noordin et al. [7] proposed an auto-tuning adaptive
proportional-integral-derivative control system for the atti-
tude and position stabilization of quadrotor unmanned
aerial vehicles under parameter uncertainties and exter-
nal disturbances by employing sliding-mode control as the
adaptive mechanism. Guo and Ahn [8] investigated an adap-
tive fault-tolerant pseudo-proportional-integral-derivative
sliding-mode control scheme for a high-speed train subject
to actuator faults, asymmetric nonlinear actuator saturation,
and integral quadratic constraints. They presented simulation
results based on a real train dynamic model to demonstrate
the main contributions of their study and the effectiveness
and feasibility of the proposed schemes. Zhong et al. [9]
proposed a trajectory-tracking control method for redun-
dant manipulators using a fuzzy logic system and adaptive
control-based chattering attenuation. They integrated the
continuous approximation law to eliminate the real-time
chattering during the control process without affecting the
system’s robustness. In addition, they designed a fuzzy
adaptive control law to estimate the dynamic system’s error
and the disturbance’s upper bound. They demonstrated the
proposed method using experimental data from the Baxter
robot, which showed better performance than the previous

method. To solve the problem of leader tracking control,
Lui et al. [10] proposed a novel distributed PID-like control
strategy with a Lyapunov-based adaptation mechanism for
control parameters. Yang et al. [11] proposed an adaptive
sliding-mode PID control method for underwater manipula-
tors based on the Legendre polynomial function approxima-
tion technique. They designed a sliding-mode PID controller
to accelerate the system response and reduce joint lag using
the adaptive law. Zhang et al. [12] designed a hybrid control
strategy for particle swarm sliding-mode fuzzy PID control
to weaken the chattering of the sliding-mode control using
particle swarm optimization. To solve the problem of tuning
PID parameters, Kobaku et al. [13] proposed a designmethod
that uses quantitative feedback theory in conjunction with
particle swarm optimization to perform automatic loop shap-
ing. Mahmoodabadi and Nejadkourki [14] proposed an opti-
mal fuzzy adaptive robust proportional-integral-derivative
controller for a quarter-car model with an active suspen-
sion system based on integral sliding surfaces defined by
control errors. Kavyashree et al. [15] presented an observer-
and state-estimator-based anti-windup robust proportional-
integral-derivative controller for a damped outrigger structure
using a magnetorheological damper to mitigate the seismic
response. They designed a full-order Kalman observer to
estimate the states of a damped outrigger system based on
the feedback of the system output. The previous studies
proposed rules for the adaptation of control parameters using
robust control methods or optimization strategies to ensure
control stability. However, excessive smoothing of the robust
control input, such as the discrete sliding-mode control input,
can cause a loss of stability depending on the individual
circumstances. Those circumstances include unreasonable
uncertainty estimation and improper parameter determination
used for control input calculation. Therefore, various studies
using data-driven and learning methods have been conducted
to improve system control performance.

Jeyaraj and Nadar [16] designed a deep learning-based
data-driven PID controller for unmodeled dynamics com-
pensation of complex industrial processes. The authors
investigated specific modeling of data-driven proportional-
integral-derivative for complex industrial processes with
consideration of online PID parameter tuning. To eval-
uate the performance, they employed the proposed deep
learning-based PID controller in a twin-tank control system.
Yu et al. [17] presented a new design scheme for PID con-
trollers based on adaptive updating rules and data-driven tech-
niques. They provided a rigorous Lyapunov-based proof of
stability to ensure the convergence of the tracking errors when
the initial states belong to a compact set. Makarem et al. [18]
proposed data-driven techniques for the iterative feedback
tuning of proportional-integral-derivative controller parame-
ters and compared different motor driving techniques. Li and
Yu [19] developed a novel deep-reinforcement-learning algo-
rithm called the two-stage training strategy large-scale twin
delayed deep determination policy gradient. Zhu et al. [20]
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proposed a data-driven approach for the online tuning of
minimum-variance PID controllers for a linear system subject
to stochastic conditions. Rahmani and Redkar [21] developed
a fractional-order PID controller to control a dynamic model
linearized by the Koopman operator based on dynamic mode
decomposition. They showed that the proposed controller
performed better than other controllers in terms of low track-
ing errors and low control effort. Shuprajhaa et al. [22] devel-
oped an adaptive PID controller for controlling open-loop
unstable processes based on generic data-driven modified
proximal policy-optimization reinforcement learning. The
main feature of the proposed control scheme is that it can
eliminate the need for process modeling, as well as prereq-
uisite knowledge of system dynamics and control param-
eter tuning. Wang et al. [23] proposed a linear model and
an uncertain nonlinear dynamic system that described the
unknown time-varying dynamics of nonlinearity and cou-
plings among controlled variables. The authors developed
a feed-forward and one-step optimal control algorithms to
obtain two signal compensators to eliminate the negative
impact of frequent unexpected variations in the uncertain-
ties. Saad et al. [24] presented the implementation of PID
controller tuning using two heuristic techniques which are
differential evolution and genetic algorithm. The PID control
parameters were applied for higher order system and the per-
formance was evaluated based on mean square error and inte-
gral absolute error. Zamani et al. [25] presented and studied
application of fractional order PID controller to an automatic
voltage regulator with particle swarm optimization and novel
cost function. Hsu and Lee [26] proposed an adaptive PID
controller and fuzzy compensator. The proposed controller
can automatically online tune the control gains based on the
gradient descent method and the fuzzy compensator without
requiring preliminary offline learning.

This study proposes a data-driven adaptive steady state-
integral-derivative control algorithm that uses recursive least
squares with forgetting factors. The steady-state control input
is derived using simplified error dynamics with real-time
parameter estimation. An adaptation algorithm was con-
structed based on the designed performance conditions
for the integral and derivative control inputs. To evalu-
ate the performance of the proposed control algorithm, the
proposed control algorithm was evaluated based on simu-
lations and an actual test platform using a DC motor sys-
tem. The main contributions of this study are summarized as
follows.

Problem statement: System state and environmental condi-
tion changes can have a negative impact on the performance
of PID control with constant gains.

Contribution 1: A novel adaptive feedback control method
called the steady-state-integral-derivative (SS-ID) controller
using only control error data is proposed in this study.

Contribution 2: A self-tuning algorithm for control inputs,
such as steady-state, integral, and derivative inputs, was
designed for target value tracking based on RLS with a for-
getting factor.

FIGURE 1. Concept of data-driven adaptive SS-ID control algorithm.

The remainder of this paper is organized as follows.
Section II describes the concept of the proposed data-driven
adaptive SSID controller. Section III describes the mathe-
matical design procedure for the data-driven adaptive SS-ID
control algorithm. Section IV describes the controller simu-
lation and actual test-platform-based performance evaluation
results. Finally, concluding remarks are provided along with
the scope for future work in Section V.

II. CONCEPT OF DATA-DRIVEN ADAPTIVE
STEADY-STATE-INTEGRAL-DERIVATIVE CONTROLLER
Fig. 1 illustrates the main concept of the proposed data-driven
adaptive steady state-integral-derivative controller.

The control algorithm proposed in this study uses the sys-
tem state, target state, and certain control parameters to derive
the SS-ID control input. The parameter estimation block
was designed to estimate parameters, simplify the system
dynamics, and control the error dynamics using RLS with
forgetting. Moreover, a parameter representing the partial
derivative of the defined error with respect to the integral gain
has been estimated using the least-squares method. The total
control input of the proposed control consists of three control
inputs: steady-state, integral, and derivative control. The pro-
posed control algorithm has the advantage of not needing any
system parameters and dynamics for target value tracking.
Related previous works are based on model-free adaptive
control [3], [4], [5], [6], [7], [8], [9], [10], [11], data-driven
control, and artificial intelligence control [16], [17], [18],
[19], [20], [21]. In the previous related works, generally, the
conventional proportional-integral-derivative control scheme
was adopted, and the gain adaptation law was proposed using
various methods. This study proposes a novel control scheme
of a steady-state-integral-derivative controller using recursive
least squares with a forgetting factor. Therefore, the propor-
tional gain used in the conventional PID control scheme is
not used in the proposed approach. However, because the
proposed controller is based on simplified first-order differ-
ential equations, determining appropriate initial parameters is
necessary for reasonably stable performance in the early eval-
uation stage. The following section describes the proposed
data-driven adaptive SS-ID controller.

III. DATA-DRIVEN ADAPTIVE SS-ID CONTROLLER
Fig. 2 shows a detailed block diagram of the data-driven adap-
tive steady state-integral-derivative controller. The control
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FIGURE 2. Detailed block diagram of data-driven adaptive SS-ID control
algorithm proposed in this study.

block consists of three sub-blocks: an adaptive steady-state
control input derivation block, adaptive integral control input
derivation block, and adaptive derivative control input deriva-
tion block with three estimation sub-blocks.

In the parameter estimation block using RLS-1, the param-
eter ĉSS is estimated based on a simplified first-order differen-
tial equation using the system state x; based on the estimated
parameter ĉSS and state x, the steady-state control input uSS is
computed. This was designed such that the control error (the
difference between state x and target state xtg, e = xtg − x)
is used to estimate parameters ĉI and ĉD. Finally, the integral
and derivative control inputs uI and uD are computed using
the estimated parameters ĉI and ĉD. Equations (1) and (2)
represent the total control input designed in this study and
the definition of each control input, respectively.

uSS−ID = uSS + uI + uD (1)

uSS + uI + uD = ĉSSxtg + kI

∫
edt + kDė (2)

where kI and kD are the integral and derivative feedback
gains, respectively. The steady-state control input designed in
this study is computed by multiplying the estimated parame-
ter and target state. The following subsections describe the
mathematical formulation of the steady-state, integral, and
derivative control inputs for target state tracking.

A. STEADY-STATE CONTROL INPUT
In this study, a steady-state condition-based control input
was designed using the target state and system parameters.
Generally, the larger the target state applied to the control
system, the larger the control input required for target state
tracking. Therefore, based on this relationship, the control
input can be designed according to the target state and sys-
tem parameters. To compute the steady-state control input,
the following simplified first-order differential equation was
designed and used in this study.

ẋ + cSSx = uSS +

(
1

1 − kD

)
uI (3)

The parameter cSS is time-varying, and its dimension is
1 × 1. Therefore, The kD in Equation (3) should not equal

one to prevent divergence of the input value of the simplified
first-order differential equation. In this study, the parame-
ters cSS were estimated using RLS with a forgetting factor
because the past dynamic data can be considered for param-
eter estimation by using a forgetting factor. In steady-state
conditions, the steady-state control input can be computed
by the vector production of the estimated parameters cSS and
target state xtgwith the designed adaptation rule for integral
control input. Equations (4)–(8) are the RLS equations for
state estimation with covariance updates.

y = ϕθ (4)

y = uSS +

(
1

1 − kD

)
uI − ẋ, ϕ = x, θ = cSS (5)

θ̂k = θ̂k−1 + Lk
(
yk − ϕk θ̂k−1

)
(6)

Lk = Pk−1ϕk

(
λ + ϕ2

kPk−1

)−1
(7)

Pk = (I − Lkϕk)Pk−1/λ (8)

where L ∈ R1×1 and P ∈ R1×1 are gain and covariance for
RLS estimation, respectively. Based on the assumptions that
the derivative of the state x with respect to time t is negligible
and that the control inputs uI and uD are zero, the steady-state
control input can be computed using the estimated parameter
ĉSS and target state xtg. Equation (9) shows the steady-state
control input designed in this study.

uSS = f (ĉSS , xtg) = ĉSSxtg (9)

Using the computed steady-state control input, the mag-
nitude of the control input can be reasonably determined
using the target state and estimated system parameters. The
following subsection describes the mathematical formulation
of the integral control input derivation.

B. INTEGRAL CONTROL INPUT
The integral control input in this study was designed using
only the current and saved past control error data and adap-
tation parameters using the gradient descent method. The
gradient descent method requires a partial derivative of the
adaptation parameter to the control error for gradient descent.
To reduce the current and integrated control errors complexly,
(10) was used to derive a partial derivative of the integral
feedback gain to the integrated control error (wI e+

∫
edt).

d
dt

(
wI e+

∫
edt

)
= cI

d
dt

(kI ) (10)

where wI is the weighting factor for the design of the inte-
grated control error for the adaptation of the integral feedback
gain. This relationship function is newly designed in this
study. The parameter cI is estimated using the least-squares
method according to the current and saved past data of the
integrated error and integral feedback gain. Fig. 3 shows the
estimation concept of the parameter cI using the least-squares
method based on the designed weighted error and adapted
integral feedback gain.
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FIGURE 3. Estimation concept of the parameter cI based on the
least-squares method.

The points on the derivatives of the integrated control error
and integral feedback gain plane were used to estimate the
first-order polynomial equation (y = ax + b), illustrated as
the straight red line in Fig. 3. In the current step, the a and b
are estimated simultaneously by the least-squares method to
consider changing characteristic of the past data points in the
plane. The number of points in the plane is N and the value
is defined as 1,000. The slope a of the estimated first-order
polynomial equation was used as the estimated parameter ĉI
and for the integral feedback gain adaptation. Equation (11)
describes the gradient descent method using the estimated
parameter ĉI .

d
dt

(kI ) = −γ

(
wI e+

∫
edt

)
ĉI (11)

where γ is the adaptation gain. Equation (11) can be rewritten
by integrating both sides.

kI = −γ

∫ (
wI e+

∫
edt

)
ĉIdt (12)

Based on the adapted integral gain and integrated control
error, the integral control input is computed as follows.

uI = kI

∫
edt = −γ

∫ (
wI e+

∫
edt

)
ĉIdt

∫
edt (13)

The following subsection describes the design procedure
for the derivative control input for target state tracking.

C. DERIVATIVE CONTROL INPUT
This subsection presents the derivative control input design
method for target state tracking based on the designed
first-order differential equation of error dynamics under
the designed performance conditions. The following is the
first-order differential equation designed in this study for
derivative gain adaptation under the designed performance
conditions.

ė+ cDe = uI + uD, (14)

Based on the partial control input uI + uD and the control
error rate, parameter cD in Equation (14) was estimated using
RLS with a forgetting factor. The same procedures as in

(4)–(8) were used to estimate cD. Equation (15) defines the
response, regressor, and estimate.

y = uI + uD − ė, ϕ = e, θ = cD (15)

Using the definition of the derivative control input uD =

kDė, the designed first-order differential equation can be
rewritten using the estimated parameter ĉD as follows.

ė+

(
ĉD

1 − kD

)
e =

(
1

1 − kD

)
uI (16)

This study designed performance conditions for reason-
able target state tracking using the desired time constant τD.
The kD in Equation (16) should not equal one to prevent
divergence of the input value of the simplified first-order
differential equation. Equation (17) expresses the perfor-
mance condition defined in this study using the desired time
constant.

ĉD
1 − kD

=
1
τD

(17)

Based on the defined performance condition, the deriva-
tive gain kD for target state tracking is computed using the
estimated parameter and the desired time constant.

kD = 1 − ĉDτD (18)

With the derived steady state control input, integral control
input, and derivative control input, the total control input for
target state tracking can be computed as follows.

uSS−ID = ĉSSxtg −

(
γ

∫ (
wI e+

∫
edt

)
ĉIdt

) ∫
edt

+ (1 − ĉDτD)ė (19)

The following subsection describes the Lyapunov theorem-
based stability analysis of the proposed steady state-integral
derivative control algorithm.

D. STABILITY ANALYSIS
The Lyapunov direct method was used in this study for stabil-
ity analysis of the proposed control algorithm. The following
energy-like Lyapunov candidate was used to check the con-
trol stability and derive the conditions.

J =
1
2
e2 (20)

Because the derivative of function of the Lyapunov can-
didate with respect to time t should always be negative for
asymptotic stability, the derivative of the function J with
respect to time t was derived and used for stability analysis.
Using (16), the derivative of J with respect to time t can be
derived as follows [10], [17].

J̇ = eė = e
(

−
1
τD
e+

(
1

1 − kD

)
uI

)
(21)

The integral control input in (21) can be replaced by the
integral control input derived from (3). Under the steady-state
condition, the integral control input can be derived using the
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FIGURE 4. (a) Schematic of the model used for performance evaluation.
(b) Actual test platform: DC motor system with optical encoder.

following equation with the defined steady-state control input
in (9).

uI = − (1 − kD) ĉSSe (22)

Using the derived integral control input in (22), the deriva-
tive of the Lyapunov candidate function with respect to time
t in (21) can be rewritten as follows.

J̇ = −

(
1
τD

+ ĉSS

)
e2 (23)

To ensure the stability of the control algorithm, the deriva-
tive of the Lyapunov candidate function with respect to time t
should be less than or equal to zero. Therefore, one condition
that stabilizes the control system can be derived as follows.

ĉSS ≥ −
1
τD

(24)

Based on the stability condition, estimation parameters
such as the covariance, initial value, and forgetting factor that
can satisfy the inequality condition in (24) were determined
for control stability. Equation (23) can be rewritten as follows
using the stability condition in (24).

J̇ = −

(
1
τD

+ ĉSS

)
e2 < 0,e ̸= 0 (25)

The next section presents the performance evaluation
results and analysis based on the simulation and test platform.

IV. PERFORMANCE EVALUATION
Fig. 4 shows a schematic of the model used for the perfor-
mance evaluation of the proposed control algorithm.

TABLE 1. Used system parameters.

TABLE 2. Used PID gains for performance evaluation.

FIGURE 5. Simulation-based results (step target velocity): angular
velocity - target, fixed, and adaptive.

An actual DC motor test platform (QUBE-Servo 2)
equipped with an optical rotary encoder to measure the
angular displacement was used to evaluate the performance
of the proposed control algorithm. A transfer function was
designed using Simulink to estimate the angular velocity
of the motor. The control algorithm was designed in the
MATLAB/Simulink environment, and the actual test platform
was connected to MATLAB/Simulink for real-time measure-
ment and control for the performance evaluation. The system
parameters of the DC motor provided by the company are
listed in Table 1, and it was used for the simulation-based
performance evaluation. Table 2 lists the applied control gains
for each performance evaluation case. The control gains for
fixed case were determined to represent the case that the sys-
tem or load applied to the system varies with time. Evaluation
times of 50 s and 20 s were applied to the simulation and
experiment, respectively.

A. SIMULATION-BASED EVALUATION
• Step target velocity (simulation)

Figs. 5–13 show the simulation-based performance evalua-
tion results when the step target velocity was applied.

As shown in Figs. 4 and 5, the tracking result in the adaptive
case showed better tracking performance than that in the fixed
case. The result in the adaptive case showed that there was
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FIGURE 6. Simulation-based results (step target velocity): control error -
fixed and adaptive.

FIGURE 7. Simulation-based results (step target velocity): control input
voltage - fixed and adaptive.

FIGURE 8. Simulation-based results (step target velocity): estimated
parameter - cSS.

FIGURE 9. Simulation-based results (step target velocity): estimated
parameter - ci (left) and cd (right).

an overshoot, but the control errors in the transient region
were relatively small. Fig. 7 shows the applied control inputs
for each case. Figs. 8 and 9 show the estimated parameters

FIGURE 10. Simulation-based results (step target velocity): feedback
gains – integral (left) and derivative (right).

FIGURE 11. Simulation-based results (step target velocity): proportional
control input - fixed and adaptive.

FIGURE 12. Simulation-based results (step target velocity): integral
control input - fixed and adaptive.

FIGURE 13. Simulation-based results (step target velocity): derivative
control input - fixed and adaptive.

used to calculate the proportional control input and integral
and derivative gains. Fig. 10 shows the computed integral
and derivative gains obtained using the estimated parameters.
Figs. 11-13 shows the proportional, integral, and derivative
control inputs, respectively.

• Sinusoidal target velocity (simulation)
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FIGURE 14. Simulation-based results (sinusoidal target velocity): angular
velocity - target, fixed, adaptive.

FIGURE 15. Simulation-based results (sinusoidal target velocity): control
error - fixed, adaptive.

FIGURE 16. Simulation-based results (sinusoidal target velocity): control
input voltage - fixed, adaptive.

Figs. 14–22 show the simulation-based performance evalua-
tion results when a sinusoidal target velocity was applied as
the target state.

As shown in Figs. 14 and 15, the tracking result in the adap-
tive case shows better performance than that in the fixed case.
The result for the fixed case showed that there was a relatively
large tracking error (maximum ∼200 deg/s). Fig. 16 shows
the applied control inputs for each case. Figs. 17 and 18 show
the estimated parameters for calculating the proportional
control input and the integral and derivative gains. Fig. 19
shows the computed integral and derivative gains online using
the estimated parameters. Figs. 20-22 show the proportional,
integral, and derivative control inputs. The magnitude of

FIGURE 17. Simulation-based results (sinusoidal target velocity):
estimated parameter - cSS.

FIGURE 18. Simulation-based results (sinusoidal target velocity):
estimated parameter - ci (left) and cd (right).

FIGURE 19. Simulation-based results (sinusoidal target velocity):
feedback gains – integral (left), derivative (right).

FIGURE 20. Simulation-based results (sinusoidal target velocity):
proportional control input - fixed, adaptive.

the integral control input in the adaptive case was grad-
ually reduced by the designed adaptation rule. Table 3
summarizes the tracking control error in the evaluation
results.

The RMS values from the evaluation results when the
proposed control algorithm was used were smaller than those
in the fixed case.
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FIGURE 21. Simulation-based results (sinusoidal target velocity): integral
control input - fixed, adaptive.

FIGURE 22. Results (sinusoidal target velocity): derivative control input -
fixed, adaptive.

TABLE 3. Tracking error summary of evaluation results (simulation).

FIGURE 23. Actual test-platform-based results (step target velocity):
angular velocity - target, fixed, adaptive.

B. ACTUAL TEST-PLATFORM-BASED EVALUATION
• Step target velocity (using actual test platform)
Figs. 23–32 show the actual test-platform-based evaluation

results when a sinusoidal target velocity was applied.
As shown in Figs. 23 and 24, the proposed control algo-

rithm (in the adaptive case) allowed the DCmotor to track the
step target velocity with a relatively small control error. How-
ever, the tracking result in the fixed case showed a relatively

FIGURE 24. Actual test-platform-based results (step target velocity):
control error - fixed, adaptive.

FIGURE 25. Actual test-platform-based results (step target velocity):
control input voltage - fixed, adaptive.

FIGURE 26. Actual test-platform-based results (step target velocity):
estimated parameter - cSS.

FIGURE 27. Actual test-platform-based results (step target velocity):
estimated parameter - ci (left) and cd (right).

large tracking error (maximum ∼900 deg/s) in the transient
region. The applied control inputs are shown in Fig. 25; there
was a relatively large oscillation in the adaptive case early in
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FIGURE 28. Actual test-platform-based results (step target velocity):
normalized histogram – gain (left) and weighted error (right).

FIGURE 29. Actual test-platform-based results (step target velocity):
feedback gains – integral (left), derivative (right).

FIGURE 30. Actual test-platform-based results (step target velocity):
proportional control input – fixed, adaptive.

FIGURE 31. Actual test-platform-based results (step target velocity):
integral control input – fixed, adaptive.

the evaluation. Figs. 26 and 27 show the estimated param-
eters for calculating the proportional control input and the
integral and derivative gains. Fig. 28 shows the normalized
histograms of derivatives of integral gain and weighted error
with respect to time. Fig. 29 shows the calculated integral
and derivative gains obtained using the estimated real-time
parameters. Figs. 30-32 show the proportional, integral, and

FIGURE 32. Actual test-platform-based results (step target velocity):
derivative control input – fixed, adaptive.

FIGURE 33. Actual test-platform-based results (sinusoidal target
velocity): angular velocity - target, fixed, adaptive.

FIGURE 34. Actual test-platform-based results (sinusoidal target
velocity): control error - fixed, adaptive.

derivative control inputs. The value of the integral control
input in the adaptive case was found to be greater than that
in the fixed case.

• Sinusoidal target velocity (using actual test platform)
Figs. 33–42 show the actual test-platform-based evaluation

results when a sinusoidal target velocity was applied.
As shown in Figs. 33 and 34, the DC motor could track

the sinusoidal target velocity with a relatively small control
error after adaptation (after approximately 5 s). However,
the tracking result in the fixed case showed a relatively
large tracking error (maximum ∼200 deg/s) in the steady-
state region. Fig. 35 shows the applied control inputs; as
shown, that there was a relatively large oscillation result-
ing from adaptation in the adaptive case early in the eval-
uation. Figs. 36 and 37 show the estimated parameters for
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FIGURE 35. Actual test-platform-based results (sinusoidal target
velocity): control input voltage - fixed, adaptive.

FIGURE 36. Actual test-platform-based results (sinusoidal target
velocity): estimated parameter - cSS.

FIGURE 37. Actual test-platform-based results (sinusoidal target
velocity): estimated parameter - ci (left) and cd (right).

FIGURE 38. Actual test-platform-based results (sinusoidal target
velocity): normalized histogram – gain (left) and weighted error (right).

calculating the proportional control input and the integral and
derivative gains. Fig. 38 shows the normalized histograms of
derivatives of integral gain and weighted error with respect
to time. Fig. 39 shows the integral and derivative gains cal-
culated using the estimated parameters. Figs. 40-42 show

FIGURE 39. Actual test-platform-based results (sinusoidal target
velocity): feedback gains - integral (left), derivative (right).

FIGURE 40. Actual test-platform-based results (sinusoidal target
velocity): proportional control input - fixed, adaptive.

FIGURE 41. Actual test-platform-based results (sinusoidal target
velocity): integral control input - fixed, adaptive.

FIGURE 42. Actual test-platform-based results (sinusoidal target
velocity): derivative control input - fixed, adaptive.

the proportional, integral, and derivative control inputs. The
value of integral control input in the adaptive case was more
than that in the fixed case, similar to the case of the step
target velocity-based evaluation result. Table 4 summarizes
the tracking control error of the evaluation results after an
evaluation time of 10 s.
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TABLE 4. Tracking error summary of evaluation results (actual test).

The RMS values from the step target velocity-based
evaluation results in the adaptive case were smaller than
those in the fixed case. However, for the sinusoidal target
velocity-based evaluation results, the RMS value in the adap-
tive case was larger than that in the fixed case because of the
adaptation process early in the evaluation.

V. CONCLUSION
This study proposed and evaluated a new data-driven adap-
tive SS-ID control algorithm for target state tracking using
a simulation technique and an actual test platform. The
steady-state proportional control input was derived using sim-
plified dynamics based on the estimated coefficient. With the
computed integral and derivative gains, the data-driven adap-
tation rule and RLS-based estimationmethodswere usedwith
the performance conditions. The control inputs were designed
to be derived using the computed gains in real time. Based
on the steady-state, integral, and derivative control inputs, the
total SS-ID control input was computed and used as a control
input for target state tracking. A performance evaluation was
conducted based on the simulation technique and an actual
test platform using a DC motor for evaluation. The results
indicate that the DC motor could effectively track the tar-
get velocity using the proposed data-driven adaptive SS-ID
control algorithm. However, the proposed adaptive control
algorithm has certain limitations. First, the assumptions for
the steady-state control input are for the limited condition that
the derivative of the state x with respect to time t , the control
inputs uI and uD are near zero. Therefore, improvement of
steady-state control method is considered as a future work to
cope with the condition that the derivative of the state x with
respect to time t , the control inputs uI and uD are not zero.
Second, the determination of appropriate initial parameters is
necessary for reasonably stable performance in the early stage
of evaluation. Third, the convergence time for robust perfor-
mance has not been ensured. Therefore, the improvement of
the controller’s adaptation rule to achieve more robust perfor-
mance and evaluation under various scenarios are considered
as future work, and it is also planned that the finite-time
convergence condition will be applied to the proposed control
algorithm based on the sliding-mode approach. Nevertheless,
the proposed adaptive controller does not require any system
information or a mathematical model, and it is expected that
the data-driven adaptive control algorithm can be used as a
target tracking control algorithm for various complex systems
that have relatively high nonlinearity.
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