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ABSTRACT Dynamic networks are complex networks as their structures and node features change over
time. However, they can better represent the real world, thus attracting the interest of researchers. Although
realistic dynamic networks often exhibit changes in their patterns, the existing dynamic network models tend
to classify all the snapshots as having the same pattern to learn during their embedding. These embedding
models ignore a large amount of information about the patterns of dynamic networks. So, it is necessary
to design a dedicated framework for learning the patterns of dynamic networks. Accordingly, this paper
proposes a new framework, namely the NFE-PCN framework for effectively extracting information about
the change in the patterns of networks. Specifically, the framework first determines the pattern in which
the dynamic network snapshot is located, and then enhances the node information between networks by
maintaining the same pattern. We conduct experiments with both real and artificial datasets for predicting
links and classifying nodes. The obtained results show that the existingmodel under this framework decreases
the computational effort in dynamic network embedding. The performance in the network embedding is
improved by up to 29%, which is quite significant.

INDEX TERMS Dynamic network, node feature, snapshot, link prediction, graph neural network.

I. INTRODUCTION
A wide variety of networks exist in the real world. With the
proliferation of smart devices, network information can be
better captured, allowing people to use network data to better
reflect the implicit features lying behind a network, such as
the social relationships between individuals in community
networks [1], chemical structure of substances in chemical
molecular networks [2], and assistance to merchants in rec-
ommending products to consumers [3]. Due to the presence
of a large number of networks with complex and variable
structures, we usually map a network onto a computationally
convenient dense space. Network embedding converts a
network into a regular machine learning problem by learning
a low-dimensional spatial representation of the nodes of the
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network. Therefore, network embedding has become a matter
of interest to researchers.

The existing network embeddingmethods are broadly clas-
sified into three categories: random wander-based network
embedding, matrix decomposition-based network embedding
and deep learning-based network embedding methods [4].
With the development of deep learning, graph neural
networks (GNN) have gradually become the mainstream
method for network embedding. These network models
usually focus only on known and static networks. However,
real-life networks have highly dynamic characteristics,
involving frequent changes in the network structure and
node features. The process of network changes leaves rich
historical information that can be used in subsequent analysis.
Therefore, static network embeddingmethods no longer meet
realistic needs, and hence we need to focus our research on
dynamic networks.
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With the continuous development of graph neural networks
and increased attention to dynamic networks, academic
research has put increasing attention on dynamic graph
neural networks (DGNN). Among them, Kumar et al. [5]
proposed the JODIE method, which can compute network
embedding anytime without depending on the segmen-
tation of snapshots, but the applied network scenarios
are applicable only to bipartite graph networks and its
generalization performance is weak. Goyal et al. [6] pro-
posed the DynGEM method, which is a deep auto-encoder
based on graph embedding that can handle increasing
dynamic graphs. Pareja et al. [7] proposed EvolveGCN as
a good blend of GCN and recurrent neural network
approaches, where the previously studied dynamic embed-
ding of GCNs trains the static networks in each snapshot
separately and then concatenates them through the recurrent
neural networks. EvolveGCN uses RNNs to evolve GNN,
so that the dynamic information can be captured from the
evolved network parameters, and the model can then be made
flexible to handle dynamic data without the need for nodes to
be present all the time. Sankar et al. [8] also proposed a new
approach, namely, DySAT, where a self-attentive mechanism
was introduced in dynamic graph neural networks for the
first time and a multi-headed attention mechanism was used
to parallelize the computation. DySAT is capable to capture
certain dynamic periodic information with better embedding
performance. In addition to the classical dynamic network
embedding methods as described above, many other dynamic
network embedding models exist [9], [10], [11]. The above
dynamic graph neural network models can embed dynamic
networks, but they do not take into account the changes in
the network patterns. However, a real situation usually has
multiple patterns with significant differences in the networks,
and there are sudden transitions between those patterns. For
example, a company communicates more internally on Fri-
days and less at the same time on the weekends. This situation
presents a challenge to the existing dynamic graph neural
network.

We propose the NFE-PCN framework to cope with
the changes in the patterns of dynamic networks. NFE-
PCN first discovers patterns of networks and then embeds
snapshot networks in different patterns differently based
on the discriminated results. The specific operation first
determines the pattern to which the snapshot belongs and
then passes the node features of the previous snapshot
network to the following network of the same pattern in a
chronological order. The features are passed for improving
the difference of the same network pattern from other
network patterns, so as to get a better network embedding
effect.

We used three different datasets for predicting links
and classifying nodes. The obtained results show that the
method with the inclusion of the NFE-PCN framework
yields a significant embedding improvement (about 9.2% on
average). The main contributions of this paper are areas as
follows:

• We illustrate the impact of changes in the patterns of
dynamic networks on network embedding.

• We propose an embedding framework that can effec-
tively exploit the changes in the patterns of networks in
adapting to the existing dynamic graph neural models.

• We conduct extensive experiments with real datasets
to demonstrate that the effectiveness of the existing
dynamic network embedding models can be improved
significantly by applying the NFE-PCN framework.

II. PROBLEM DEFINITION
A. DYNAMIC NETWORK
We denote the dynamic network as G = (V ,E,X ), where V
represents the set of nodes, E represents the set of links and
X represents the set of node features in the network, all of
which change over time. The dynamic network considered in
this paper consists of a series of snapshot networks, i.e., G =

{g0, g1, . . . , gN−1}, whereN is the number of snapshots. Each
snapshot carries its network structure gt = (Vt ,Et ,Xt ),where
Vt is the set of nodes, Et is the set of links and Xt is the node
features on snapshot t.

B. NETWORK PATTERN
Network patterns in this paper are defined as the clusters
inherent in dynamic networks, which reflect the structure and
state of a network during the performance of different tasks
and functions. Network patterns are often changed in real life,
and one of their concretemanifestations is the regular changes
of nodes and links in dynamic networks as shown in Figure 1.
The pattern evolution of the network in Fig. 1 is as follows:
there are a total of 20 nodes, and they belong to different
communities at different moments. At time T0, community
2 has the largest number of nodes and community 0 has the
least number of nodes. So, the network is considered to be in
pattern A. At time Ti, community 2 has many nodes. A large
number of nodes from community 2 flow into community
0 and a small number into community 1. So, the network is
considered in pattern B. At time Tj, community 2 has many
nodes again. So, we can consider the network to be in pattern
A again.

FIGURE 1. Schematic illustration of evolution of network pattern.

C. IMPACT OF NETWORK MODEL ON DYNAMIC
NETWORK EMBEDDING
Frequent changes in network patterns may degrade the
performance of the existing dynamic graph embedding
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methods. In order to better illustrate the impact of network
pattern changes on the existing dynamic graph embedding
methods, we use Dancer [12] to generate a dynamic network
with two patterns (pattern A and pattern B) and use
the average clustering coefficient of the network as an
indicator to indicate the extent of changes in the network
as shown in Figure 2. We can visualize the changes in
the network pattern, where it is seen that a significant
change in the average clustering coefficient takes place
at the end of the seventh snapshot, at which point the
network is considered to get changed from Pattern A
to Pattern B.

FIGURE 2. Variation of the average clustering coefficient of the dynamic
network generated by Dancer.

After generating the two patterns of the network, we first
train the models using the data of each network pattern
separately. We then combine the data the two network
patterns to train the models without distinguishing their
pattern. Finally, we obtain three models (Model A, Model
B, and Model AB). Model A is a DySAT model trained by
8 snapshot data of pattern A, model B is a DySAT model
trained by 12 snapshot data of pattern B, and model AB is
trained with 20 snapshot data of both patterns. Then, the three
models are tested using the data of both network patterns A
and B. Finally, the data of models A and B are subjected to
a network reconstruction task under these three models, and
the reduced network structure is compared with the original
network structure. The distribution of the obtained results is
shown in Figure 3.

Upon training with the data of pattern A only, model A
exhibits the best performance and model B exhibits the worst
one. The same results are obtained in the case of the data of
pattern B also. The performance of model AB obtained upon
training jointly with the data of both patterns A and B is found
to be worse than those of model A under data of pattern A and
model B under data of pattern B.

The reason for obtaining such results is that when the two
patterns are trained jointly, their changes can interfere with
the effect of dynamic network embedding. From this, we get
that the distinction of network patterns is essential and can
affect the performance of the network embedding to some
extent. So, we propose the NFE-PCN framework for solving
this problem.

FIGURE 3. Embedding performance of patterns A and B under different
network models. The horizontal coordinates are the four trained models,
and the vertical coordinates are the embedding effects (AUC) of patterns
A and B. Orange color indicates pattern A, blue color indicates pattern B.

III. METHOD
In this section, we describe the NFE-PCN framework in
detail, which has two main components: pattern discovery
unit and enhancement unit as shown in Figure 4. The
pattern discovery unit acts as a discriminator of patterns in
the network before dynamic network embedding, and the
enhancement unit enables snapshots with pattern labels to
reinforce node features in the same pattern network through
recurrent neural networks (RNNs). Next, we describe each
unit component in detail.

FIGURE 4. Flow chart of NFE-PCN framework. The pattern labels of the
snapshot are obtained after the pattern discovery unit clusters the
snapshots. Then, the enhancement unit is used to enhance the node
features in the snapshot according to different patterns. Finally, the
snapshot is fed into the general dynamic network model.

A. PATTERN DISCOVERY UNIT
In this subsection, we discuss the use of the pattern discovery
unit. The pattern discovery unit obtains a snapshot of the
network in the same pattern by clustering. The unit consists
of the following two main steps:
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1) Pattern discrimination of network snapshot, and
2) Aggregate snapshots according to network patterns.

In the process of network pattern discrimination, GED
(graph edit distance) [13] used in this paper first measures
the distance between snapshot networks. Then, we use the
DBSCAN clustering algorithm for obtaining snapshots with
different patterns by clustering them. This process is defined
as follows:

Jij = GED(gi, gj) (1)

J =

 J00 . . . J0j
...

. . .
...

Ji0 · · · Jij

 (2)

(gP00 , gP11 , . . . , gPKN−1) = DBSCAN (J) (3)

where g is the snapshot, N is the number of snapshots, J is the
distance matrix between snapshots, P is the pattern to which
the snapshot belongs after clustering, and K is the number of
types of patterns. After getting snapshots with pattern labels,
we can aggregate multiple adjacent snapshots of the same
pattern into one. This process is defined as follow:

Agg(gP00 , gP11 , . . . , gPKN−1) = (G0,G1, . . .GM ) (4)

where M is the number of snapshots after aggregation; and
Agg can be regarded as the maximum selection, minimum
selection, specific selection, etc. The maximum selection is
specifically represented by selecting all the nodes and links
in these networks, which will be assigned to the aggregated
snapshots as long as they exist in any of the networks. In order
to better understand the process of the pattern discovery unit,
we draw an example of pattern change over time, where
13 snapshots are aggregated by the clustering algorithm, and
then distributed in time order to obtain Figure 5 showing the
pattern change of the dynamic network, where the circular,
rectangular, and triangular snapshots are different patterns,
i.e., (0 − T1), (T1 − T2), (T2 − T3), (T3 − T4) are pattern B,
pattern C, pattern A, and pattern C, respectively.

FIGURE 5. Change in pattern with time.

In this section, the pattern discovery unit also highlights
the valid information in the snapshot network of the same
pattern by aggregating neighboring snapshots of the pattern
under certain circumstances as shown in Figure 6. The
operation of aggregating the snapshots can also reduce the
amount of data, which can improve the performance of

the model under certain circumstances and significantly
reduce the computational time during the model training
(see Section IV-G for detail).

FIGURE 6. Schematic diagram of aggregating snapshots by pattern.

B. ENHANCEMENT UNIT
After processing in the pattern discovery unit, the dynamic
network is divided into multiple network patterns. It is
worth noting that the snapshot networks in the same pattern
often have similar network structures and node features.
In order to capture the network pattern evolution, we use
the enhancement unit. According to the pattern in which
the current snapshot is located, the node features of the
previous snapshot in the same pattern are passed to the current
snapshot by a recursive neural unit (GRU [14] is used in this
paper).

FIGURE 7. Schematic diagram of node feature enhancement unit.

In the snapshot without aggregation, the structure of the
enhancement unit is schematically shown in Figure 7, which
shows 10 snapshots divided into three patterns (rectangular,
triangular and circular). We take the rectangular pattern as
an example. Since networks G0,G1,G7,G8 and G9 have the
same pattern, the node features in G1,G7 and G8 are passed
through RNN, to G7, G8, G9, respectively. The unit assigns
the information of the snapshot features from the same pattern
in the past to those in the current snapshot through an RNN
structure, which enhances the node information of the current
snapshot as shown in (3), where XAt and XAt−1 are the node
features in pattern A at moments t and t-1, respectively.

XAt =

{
RNN (XAt ,XAt−1)t ̸= 0
XAt t = 0

(5)

In the case of snapshot aggregation as shown in Figure 8,
we pass the feature information to two non-adjacent identical

54572 VOLUME 11, 2023



T. Zhang et al.: NFE-PCN: A Node Feature Enhanced Embedding Framework

pattern snapshots through the RNN structure. In Figure 8,
we aggregate by selecting the first snapshot in the adjacent
identical pattern snapshots as the aggregated snapshot.

FIGURE 8. Schematic diagram of feature enhancement unit after
snapshot aggregation.

We focus on the changes in the features of nodes. The
nodes in a network have different features in different modes.
Since there is some similarity between snapshots of the
same pattern, the processing of the enhancement unit can
use the pattern information of the network to enhance the
node features at the current moment, so that the embedding
performance of the model is improved.

IV. RESULTS
A. DATASET
In this paper, three datasets are used to test the model
performance under the NFE-PCN framework, which includes
two real-world datasets and a synthetic dataset generated by
Dancer. Their basic information is shown in Table 1. We next
present these three datasets separately.

TABLE 1. Three datasets used in experiments.

Real-world datasets: We use two publicly available social
network datasets, email-Eu-core-temporal-Dept1 and email-
Eu-core-temporal-Dept2. These two networks are generated
using email data from a large European research institution,
and the two datasets are collected from different departments.

Synthetic dataset (DAGG): Dancer is a dynamic network
generator that can generate many dynamic snapshot networks
based on users’ input, such as the number of nodes, number of
communities, probability of node feature change, probability
of node migration, etc. Since the probability of change
between each snapshot generated in Dancer is always the
same, we modify it based on Dancer to simulate the real
world more accurately. We add two parameters: moment of
network pattern mutation, and probability of node migration

and node feature change. Once the network mutates, both
features and labels of a large number of nodes in the network
change (i.e., the community changes in which the nodes are
located). We treat this situation as the generation of a new
pattern.

B. TASK ASSIGNMENT
Our proposed NFE-PCN framework can support various
tasks. The experiments conducted in this paper use a link
prediction task and a node classification task to verify the
effectiveness of the framework.

1) LINK PREDICTION
Here, the information before time t is used to predict the
network links at time t + 1. Since the historical information
of a dynamic network is included in the model parameters,
we obtain the probability of a link through a fully connected
network.

2) NODE CLASSIFICATION
The task of node classification is to predict the label
information of the nodes in the network at time t. Due to
the small number of publicly available datasets for node
classification in dynamic networks, we use only the Dancer
dataset for the purpose of demonstration.

C. EXPERIMENTAL MODEL
In order to demonstrate the superiority of the NFE-PCN
framework, three dynamic graph neural network embedding
models are selected for validation in this paper, which are
GCN-GRU [15], EGCN, DYSAT and DynGEM.

• GCN-GRU is a classical approach that uses recursive
mechanisms to obtain dynamic network embedding by
concatenating network features.

• EvolveGCN(EGCN) is a classical approach of the type
of recursive dynamic graph neural network. Unlike
GCN-GRU, it analyzes the network at the level of
structure using an RNN to concatenate the parameter
weights in the network.

• DYSAT is a typical approach for the dynamic graph
neural network with attention mechanism, which uses
the self-attention mechanism to learn the connections
between snapshots for the dynamic embedding of the
network.

• DynGEM is a graph self-encoder approach for node
embedding, which uses the self-encoder parameters
learned in the previous snapshot as the initialization
parameters in the current snapshot, thus enabling
dynamic embedding.

D. EVALUATION METHODOLOGY
The area-AUC metric under the ROC curve is used in
the experiments for predicting links, and the MAP (Mean
Average Precision) metric is used for classifying nodes. MAP
generally refers to the average AP value of all the categories
in all networks, which in this paper can be understood as
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the classification accuracy of all kinds of nodes in all the
snapshots. A higher MAP represents a better effect of the
model.

E. RESULTS OF LINK PREDICTION
In this experiment, the control method and NFE-PCN
framework are used to test the merits of the model through
the link prediction task. The performance results of AUC
obtained on the three datasets are presented in Table 2,
which shows that the dynamic network embedding model
in the NFE-PCN framework obtains a great improvement
in performance and achieves a more desirable result, where
the EGCN model performance in dataset core2 could be
improved by 29%.

TABLE 2. Performance of link prediction.

F. RESULTS OF NODE CLASSIFICATION
The experiments for node classification are conducted on
the Dancer dataset, and their comparative performance in
the form of histograms is shown in Figure 9, where yellow
bars represent the dynamic network model in the NFE-PCN
framework and green bars represent the original dynamic
network model. Performances of three control methods are
improved after incorporating the NFE-PCN framework, thus
confirming the effectiveness of the framework.

G. EXPERIMENTAL ANALYSIS OF AGGREGATION
In order to enrich the performance of the NFE-PCN
framework and to demonstrate the clustering role of the
pattern discovery unit, we take the snapshots after clustering
separately for conducting experiments.We set the experimen-
tal objectives to incorporate the original dynamic network
model, pattern discovery clustering model, NFE-PCNmodel,
and the NFE-PCN and pattern discovery clustering models.
We use the dataset of pattern A for the experiments of
link prediction. The obtained embedding results and model
training time results are shown in Tables 3 and 4, respectively.

FIGURE 9. Performance of node classification on Dancer dataset.

TABLE 3. Performance of link prediction on core1.

TABLE 4. Training time required by dynamic network models.

The results reported in Table 3 show that the network
embedding is generally enhanced when there is no pattern
discovery unit, and it is enhanced to approximate the
embedding performance of the NFE-PCN framework. The
embedding performance of the network is not changed
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significantly when there is no enhancement unit. This
indicates that the units, which play a role in improving
the network embedding effect for dynamic networks, are
mainly enhanced units. The results presented in Table 4
demonstrate that the training speed of the model decreases
significantly after adding only the pattern discovery unit.
Although the computation of themodel increases after adding
the augmentation unit, the training of the network model
can be reduced after adding the pattern discovery unit.
From Table 4, we can see that the pattern discovery unit
can reduce the training time of the model. In summary,
we can conclude that the pattern discovery unit reduces the
model training time, and the enhancement unit improves the
network embedding performance. The NFE-PCN framework
that combines both of them has the best comprehensive
performance.

H. EXPERIMENTAL EXPANSION
As discussed in Section II. The three models were trained
separately using data of pattern A and B. The corresponding
results are shown in Figure 3. After designing the NFE-
PCN framework, we put the AB model into the NFE-PCN
framework for training and then repeat the same experiments
as performed in Section II. The obtained corresponding
results are shown in Figure 10.

FIGURE 10. Embedding performance of AB model in NFE-PCN framework.

We can see from Figure 10 that ABmodel in the NFE-PCN
framework get some degree of performance improvement
compared to that of the AB model, but not yet to the same
extent as done when exactly the same network pattern is used
for training. Therefore, the research on network embedding
using network pattern still needs to be explore.

I. COMPLEXITY ANALYSIS
The NFE-PCN framework proposed in this paper is mainly
divided into pattern discovery unit and enhancement unit.
A set of a network data has n nodes,m edges, d features, and S
snapshots. The framework first obtains the distance between
the snapshots using the GED algorithm as it is the minimum
operand to find the transformation between networks. The

GED algorithm has a complexity of O(m + n). The distance
between S snapshots obtained by GED, and obtain the pattern
information of the network using the DBSCAN algorithm.
Since the complexity of DBSCAN is O(S log S), so the
complexity of the pattern discovery unit isO(n+m+S log S).

The main role of the augmentation unit is to add the GRU
model to the original model to convey the network pattern
information. Since the complexity of GRU is equal toO(nd2),
the complexity of enhancement unit also is O(nd2). So the
total complexity of the NFE-PCN framework is O(n + m +

S log S + nd2). For large-scale networks, n,m ≫ d, S, the
above equation can be approximated as O(n + m + nd2),
where d is a constant. So, it can be concluded that the
complexity of the NFE-PCN framework is linear, i.e., O(n).
Because of the low complexity of the framework, it has a good
scalability.

V. CONCLUSION
A large number of embedding models for dealing with
dynamic networks were proposed and their effectiveness was
demonstrated by many researchers. Since dynamic networks
in real situations possess many regular implicit features,
we propose the NFE-PCN framework. We present the pattern
discovery unit and enhancement unit for addressing the
pattern discovery of networks and enhancement of network
information of the same pattern, respectively.We propose this
concept of node feature enhancement as it is closer to real life
and it will use more information about the node features in the
network.

Our proposed approach currently has some limitations as
well. Firstly, for changing the network patterns, we use only
the enhancement of network embedding from the direction of
node attributes. It does not consider the effect of the network
structure level. So, another potential option for this topic
is to enhance the network embedding through the network
structure. Secondly, our NFE-PCN framework can be applied
only to dynamic networks in the form of snapshots. It cannot
be applied to continuous dynamic networks, which is a
research breakthrough at present.

We note two directions for future work. Firstly, synthetic
data is used in this paper as the existing dynamic network
dataset is fewer, and the labels and features of nodes could not
be changed over time. Therefore, we expect to improve the
dynamic network generator (Dancer) to be closer to real life.
Secondly, for the snapshot clustering method of the pattern
discovery unit, we expect that more features in the network
can be extracted in future research to make the clustering of
network patterns more accurate.
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