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ABSTRACT Single-pixel imaging (SPI) has recently drawn considerable attention as a new imaging
technique. An SPI system using a multi-core fiber (MCF-SPI system) that we proposed has the potential
to make the system very compact. This study is concerned with the features and reconstruction properties
of MCF-SPI system. In this system, the reconstruction quality varies widely depending on the number and
placement of cores. It is necessary to use reconstruction algorithms suitable for the system, considering
the performance limitations of the patterns, to improve the output reconstruction quality. The features
and properties of speckle patterns generated by MCFs with different core layouts and algorithms were
investigated to improve the reconstruction performance based on numerical simulation. Four existing
algorithms were compared under several conditions to evaluate the algorithms that improve reconstruction
quality. Compressive sensing based on total variation is the most compatible algorithm for MCF-SPI. It was
confirmed that the MCF-SPI system performs well in terms of imaging quality if a suitable core layout and
algorithm for the application are set.

INDEX TERMS Single-pixel imaging, multi-core fiber, image reconstruction, compressive sensing.

I. INTRODUCTION
Single-pixel imaging (SPI) is a technique that uses struc-
tured illumination (called patterns) and a single-pixel detector
instead of a conventional 2D array sensor [1]. Reconstructed
images can be obtained using illumination patterns sequen-
tially modulated by a light modulator and the intensity of
the reflected light from the target object. Because of its
wide spectral range and high signal-to-noise ratio, SPI has
been applied in various applications fields, such as multi-
spectral imaging [2], [3], X-ray imaging [4], [5], terahertz
imaging [6], [7], 3D imaging [8], [9], imaging in turbid
water [10], [11], and optical encryption [12], [13].

Although general SPI systems employ spatial light mod-
ulators (SLMs) for pattern modulation, reducing the system
size is challenging. To address this issue, SPI systems based
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on optical communication devices, such as multimode fibers
(MMFs) [14], optical fiber phased arrays (OFPAs) [15], and
multi-core fibers (MCFs) [16], have been proposed. AnMCF
is an optical fiber with multiple light waveguides (cores) in
a cladding that has been actively studied for space-division
multiplexing [17], [18]. The SPI system using an MCF
(MCF-SPI system) generates patterns using an MCF and
has been experimentally demonstrated using a seven-core
fiber [19]. In MCF-SPI system, light output from multiple
cores at the end face of an MCF produces speckle patterns
by diffraction and interference of each light. In addition,
the MCF may receive the light reflected from the target
objects [20]. Because an MCF can perform both pattern
generation and light reception, very compact systems with
diameters of approximately 125–200 µm can be realized.
In addition, the modulation of patterns generated by MCFs
is several tens of gigahertz in theory, which is significantly
faster than the frame rate of SLMs, up to several tens of
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kilohertz owing to the high-speed modulation based on opti-
cal communication techniques. MCF-SPI systems are advan-
tageous compared to other SPI systems based on optical
fibers because they are more compact than those with OFPAs
and have higher modulation speeds than those with MMFs.

Generally, the image quality of reconstructed images in SPI
depends on the resolution of the patterns and the sampling
number. To reconstruct the objects perfectly, high-resolution
patterns are required to obtain detailed information about the
objects with sufficient sampling numbers. However, in the
MCF-SPI system, MCF patterns have limited complexity
and variety owing to the limited number of cores placed in
the cladding. Hence, the reconstruction quality varies widely
depending on the number and placement of cores. There-
fore, the reconstruction features and properties of speckle
patterns generated by MCFs with different core layouts must
be investigated. Furthermore, in order to improve the recon-
struction quality of MCF-SPI, algorithms suitable for the
system must also be identified considering the performance
limitations of the patterns because in SPI, revising recon-
struction algorithms for inverse problems improves the qual-
ity of the reconstructed images and reduces the calculation
costs [21].

This study is concerned with the features and recon-
struction properties of MCF-SPI system. We investigated
the algorithms that improve the reconstruction performance
of the system. Specifically, we prepared target objects
and evaluated their compatibility with the existing recon-
struction algorithms and objects. The results of this study
provide new knowledge regarding SPI using speckle pat-
terns. The remainder of this paper is organized as follows.
Section II introduces MCF-SPI and the reconstruction algo-
rithm methodology. Section III describes the simulation
setup. Section IV presents the simulation results and a cor-
responding discussion. Finally, Section V summarizes the
conclusions of the study.

II. METHODOLOGY
A. MCF-SPI
The light emitted by the light source is split and
phase-modulated by the modulators. The split lights are then
coupled to each core and emitted by the end face of the
MCF. The spatial pattern, called theMCF pattern, is projected
onto an object, and the pattern texture can be changed by
phase modulation of the light in each core. The light intensity
reflected by the object is received by a core of the MCF
and detected by a single-pixel detector. The light intensity
Bi detected by a single-pixel detector can be calculated by
integrating the pattern Ii(x, y) and object T (x, y), written
as

Bi =

∫
Ii(x, y)T (x, y)dxdy (1)

where i is the number of pattern measurements. Using the
patterns and detected light intensities, reconstructed images
can be obtained by employing reconstruction algorithms.

B. RECONSTRUCTION ALGORITHMS
After M time measurements, we can obtain the linear
equation

B = IO, (2)

where B = [B1,B2, · · ·,BM ]T is theM × 1 matrix represent-
ing the set of light intensities, I = [I1, I2, · · ·, IM ]T is the
M × N matrix (N is the number of pixels of patterns or the
object) representing the set of illumination patterns, and O is
the N × 1 unknown matrix.

In this study, we applied four algorithms: compres-
sive sensing (CS) based on the discrete cosine transform
(DCT), CS based on total variation (TVCS), CS based on
low-rank constraints (LRCS), and the iterative compressive
(IC) method.

1) CS
CS is a technique for reconstructing signals with fewer mea-
surements than the number of unknowns by introducing a
sparse prior [22], [23]. To ensure the sparsity of natural
images, the DCT, total variation (TV), and low-rank con-
straints were employed.

a: CS BASED ON DCT [24], [25]
The DCT expresses images in the frequency domain and
is well known for JPEG compression. A large amount of
information about natural images is stored in low-frequency
components, and other frequencies exhibit sparsity. The DCT
is the most common sparse expression in SPI reconstruction;
therefore, we call this method CS. Specifically, using the
DCT matrix φ, the reconstruction algorithm can be obtained
by solving the following minimization problem consisting of
l2 and l1 norms:

min
O

{
1
2τ

∥B− IO∥
2
2 + ∥φO∥1

}
, (3)

where τ is a regularization parameter. Here, we describe
φO = v, and (3) can be expressed as

min
v

{
1
2τ

∥∥∥B− Iφ−1v
∥∥∥2
2
+ ∥v∥1

}
. (4)

b: TVCS [26]
TVCS is a CS algorithm that uses the property that the
gradient of adjacent pixels ensures sparsity while effectively
preserving the edge information by minimizing the TV of
images. The gradient of images is the differential of adjacent
pixel values because images are 2D discrete functions. TVCS
is a minimization problem that replaces the l1 norm of (3)
with the l1 norm of TV. The TV norm of image O is denoted
as ∥O∥TV, and is written as

∥O∥TV = ∥TV(O)∥1

=

m−1∑
i=1

n−1∑
j=1

√
(oi+1,j − oi,j)2 + (oi,j+1 − oi,j)2, (5)
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where oi,j is the pixel value at coordinate (i, j). The minimiza-
tion problem of the TVCS is as follows:

min
O

{
1
2τ

∥B− IO∥
2
2 + ∥O∥TV

}
. (6)

c: LRCS [27], [28]
Natural images have self-similarity (the rows or columns of
the image look alike, or patches are similar to other nonlocal
structures within an entire image), which can be expressed by
a low-rank prior. The matrix stacks similar patch vectors of
the same image are low-rank and have sparse singular values.
Using the nuclear norm, the minimization problem of the
LRCS can be written as

min
O

{
1
2τ

∥B− IO∥
2
2 + ∥O∥∗

}
, (7)

where ∥·∥∗ represents the nuclear norm and is the sum of the
singular values of the matrix.

2) IC METHOD [29], [30]
IC alternately repeats the regularization and denoising steps
to obtain reconstructed images instead of solving the mini-
mization problem, which we described in Section II-B1). The
projected Landweber regularization is defined as

Ot = Ot−1 + αDIT(B− IOt−1), t = 1, 2, 3, · · · , (8)

where D is a pseudo-inverse matrix of ITI , α is the gain
factor to control the convergence speed,Ot is the approximate
solution of (2), and Ot−1 is an approximate solution to the
previous equation. Here, the initial supposition is O0 =

[0, 0, · · · , 0]T.
After projected Landweber regularization, undersampling

noise still exists in the approximate image. To remove noise,
Ot is processed using a guided filter. The filtered image is
denoted as

qt = guidedfilter(P t ,Ot ), t = 1, 2, 3, · · · , (9)

where P t is the guidance image (t = 1,P t = O1, t > 1 :

P t = qt−1). The filtering output at pixel i is expressed as a
weighted average

qti =

∑
j

Wi,j(P t )Ot,j, (10)

where i and j are pixel indexes. The filter kernel Wi,j is a
function of guidance image I and is independent of O, which
is defined as follows:

Wi,j(P) =
1

|ω|
2

∑
k:(i,j)∈ωk

[
1 +

(O′
i − µk )(O′

j − µk )

(σ 2
k + ε)

]
, (11)

where O′ is the coordinate of the pixel value, ωk is the k-th
kernel function window, |ω| is the number of pixels in ωk , ε
is a regularization parameter, andµk and σ 2

k are the mean and
variance of O in ωk , respectively.

FIGURE 1. Target objects.

III. SIMULATION SETUP
A. TARGET OBJECTS
Three target objects were used, as shown in Fig. 1.
Figures 1(a) and (c) present self-made images, and Fig. 1(b)
shows one of the images from the MNIST [31].

The image size of all the target objects was 64 × 64 pixels.
To discuss the system performance and complexity of the
objects, we applied the local entropy of the images [32]. The
entropy H in a window is defined as

H = −

k−1∑
i=0

Ui log2(Ui), (12)

where Ui is the number of level i pixels in a window divided
by the total number of pixels in the window. The entropy
of the entire image is the average of all local entropies. The
higher the entropy value, the more complex is the image.

Because the entropy of the images increases with the bit
depth, we transformed the bit depth of object 2, which is
grayscale, into 1 bit (binary). When the window size was 4 ×

4, the entropies of objects 1–3 were 0.064, 0.119, and 0.132,
respectively, and the three objects had different complexities.
To evaluate the features of MCF-SPI system, these simple
objects, which can be reconstructed sufficiently by MCF
patterns, were mainly used. Reconstruction results for more
complex objects are shown in section IV-D.

B. CORE LAYOUT OF MCFs AND MCF PATTERNS
This study compared 7-core, 14-core, and 21-core MCFs in
the simulation. The 7-core MCF was designed and devel-
oped to achieve long-distance transmission [33], and the
same core layout was used in previous research [16]. The
complexity and variations of MCF patterns change signif-
icantly with the core layout. To quantitatively evaluate the
complexity change of MCF patterns and pattern variations
with core layout changes and select an appropriate layout,
the entropy, rank, and correlation coefficient were introduced.
We employed local entropy to compare the complexities of
the MCF patterns quantitatively. Here, the bit depth was 4,
the window size was 4 × 4, and we calculated the average
of 1000 patterns. Pattern variation can be estimated by the
rank of the pattern matrix I in the case of no noise. The
average of correlation coefficient (C. C.), used for evaluating
the randomness of patterns, of 1000 patterns were also calcu-
lated. Based on the results of our preliminary investigation of
entropy H , rank R, and C. C. for 14-core and 21-core MCFs
with several types of core placement, we selected the core
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FIGURE 2. Designed MCFs and their pattern examples. (a) 7-core, 14-core,
and 21-core MCFs. (b) Patten examples generated by each MCF.

TABLE 1. Entropy and rank of MCF patterns.

placements (Figure 2(a)) with the highest ranks shown in
Table 1. Figure 2 shows the MCFs that we designed and their
pattern examples, and Table 1 lists the entropy, rank, and C.C.
of each MCF pattern.

Here, the cladding diameter was 125 µm, and we assumed
that there was no crosstalk. The wavelength of the input light
was 1550 nm, the propagation mode of each core was a single
mode, and the mode-field diameter was 10 µm. Figure 2(b)
shows pattern examples generated by each MCF. The MCF
patterns can be obtained using the Fraunhofer diffraction
calculation of the light intensity and phase distribution at
the MCF end face. We assumed that the patterns could be
modulated by a random phase shift of light in each core.
We also used 64 × 64 random binary patterns, which are
generally applied in SPI.

1) ILLUMINATION AREA OF MCF PATTERNS
The light emitted by an MCF diverges with the distance from
the end surface of the MCF to the object. Therefore, the
pattern area illuminated on the target object changes with dis-
tance when the object size is maintained. The reconstructed
image quality could differ, even if we used the same MCF
core layout. Hence, we investigated the appropriate distance
and illumination area for each MCF. For an object size of
5 mm × 5 mm and wavelength of 1550 nm, z is 165.2 mm
for 7-core, 38.9 mm for 14-core, 24.5 mm for 21-core. The
relationship between the propagation distance z and spread of
pattern for Fraunhofer diffraction calculation based on FFT is
expressed as follows:

z =
Qs
λ

, (13)

where Q is the calculation width of the MCF end surface, s is
the pixel pitch of pattern at the target object plane, and λ is the
wavelength of the input light. To unify the size and number of
pixels of the object and make the number of pixels of all MCF
patterns equal to that of pixels of the object, we generated
MCF patterns with a resolution of 64×64 pixels by changing
the value of Q based on the equation (13) for each MCF core
layouts by zero-padding in the simulation.

C. EVALUATION METRICS OF RECONSTRUCTED IMAGES
For quantitative evaluation of the reconstructed images,
we used the peak signal to noise ratio (PSNR) as
the metric [34]. The PSNR is defined as PSNR =

10 log10(MAX2/MSE), where MAX and MSE are the max-
imum possible pixel value of the image and mean squared
error, respectively. Notably, there could be a discrepancy
between the apparent quality of the reconstructed images and
the PSNR values.

IV. SIMULATION RESULTS AND DISCUSSION
A. RECONSTRUCTION UNDER IDEAL CONDITIONS
First, we compared the reconstruction quality under ideal
conditions without measurement noise.We used CVXPY ver.
1.1.7, one of the Python modules, to solve the minimiza-
tion problem of CS algorithms. Figure 3 shows the recon-
structed images with 1000 samplings (as we can see from
the rank of the MCF patterns, the image quality converges
sufficiently with 1000 samplings). Seven-core MCF patterns
cannot obtain sufficient information about the objects. The
reconstruction quality of the 14-core MCF and 21-core MCF
is almost the same for objects 1–3. For object 1, TVCS and IC
are the best for the MCF patterns, whereas random patterns
can perfectly reconstruct the object using either algorithm.
For object 2, the image quality achieved using CS and LRCS
is better than that obtained using TVCS and IC. TVCS and IC
are unable to restore blurry-edge information. For object 3,
TVCS has the best quality for all types of patterns, but we
could obtain perfect reconstructed images for either algo-
rithm if we set random binary patterns to sufficient sampling
numbers. Therefore, it was confirmed that the algorithms
compatible with MCF-SPI differ depending on the target
object image. In almost all cases, TVCS is the best algorithm,
although there are a few exceptions, such as object 2, which
has blurred edge information.

B. SAMPLING RATE
To obtain images within a short measurement time, it is
desirable to reduce the sampling number. In this section,
we discuss the reconstruction quality with different sampling
rates (= M/N , whereM is the sampling number, andN is the
number of pixels in each object). We prepared 2000 patterns
for each type of illumination pattern and randomly extracted
M patterns 15 times to obtain the average PSNR. The results
are shown in Figure 4.
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FIGURE 3. Reconstructed images and PSNRs under ideal conditions. Reconstructed images of object 1 (a), object 2 (b), and
object 3 (c). The values under the reconstructed images are their PSNR values.

FIGURE 4. Quality of reconstructed images with different sampling rates. PSNR values of object (a) 1, (b) 2, and (c) 3 using four kinds of patterns
with different sampling rates. Sampling rates are 0%–20%.

The results of the algorithm comparison are almost the
same with different sampling rates. No algorithm is superior
under low-sampling rate conditions. However, the higher the
number of cores, the smaller is the sampling rate required
for PSNR convergence. For example, for object 2, the sam-
pling rate when the PSNR converges is approximately 5%
for the 14-core MCF and approximately 7% for the 21-core
MCF. As described in Section IV-A, objects 1 and 2 were
perfectly reconstructed by compatible algorithms using a
14-core MCF. Because the 14-core MCF and 21-core MCF
have almost the same entropy value, the rank of the 14-core
MCF patterns is sufficient to obtain object information with
an entropy of∼0.119. Therefore, we can reduce the sampling
number and time using MCFs, in which the number of cores

is limited to a certain degree. We can also reduce the cost by
decreasing the number of cores because fewer modulators are
needed. Moreover, the convergence speed of MCF patterns is
overwhelmingly faster than that of random binary patterns,
so MCF patterns have advantages in terms of sampling num-
ber and time for a simple object.

C. MEASUREMENT NOISE
In the aforementioned investigation, we assumed no mea-
surement noise. However, there is always some noise in
experimental imaging. Hence, we compared the reconstruc-
tion quality by assuming pseudo-noise. In this system, fiber
bending, pattern fluctuations, and environmental light cause
noise. Because noises result in the error between pattern
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FIGURE 5. Quality of the reconstructed images with different noise levels. PSNR values of object (a) 1, (b) 2, and (c) 3 using four kinds of
patterns with different noise levels. The noise level is 22–8 dB.

FIGURE 6. Reconstructed images with 10 dB noise. Reconstructed images of object 1 (a), object 2 (b), and object 3 (c).

matrix and light intensity matrix for solving the equation
(2), we only consider the noise added to the intensity of the
reflected light detected by a single-pixel detector. We assume
Gaussian noise, with a probability distribution is defined
as

N (x) =
1

√
2πσ

exp(−
(x − µ)2

2σ 2 ), (14)

where µ is the average and σ is the standard deviation.
Random data obtained with a Gaussian distribution were
treated as percentages of the light intensity. We defined the
noise level as 10 log10(B/3σ ) dB, where B is the average
light intensity. Figure 5 shows the quality of the reconstructed
images with different noise levels, and Figure 6 presents the
reconstructed images at a noise level of 10 dB. Here, the
sampling rate is 24%.

In the MCF patterns, the slope of the PSNR with all noise
levels is similar, and no algorithms are superior when mea-
surement noise is added. Regardless of the noise level, the
compatibility between the objects and algorithms determines
the quality of the reconstructed images. However, the images
reconstructed using IC are deteriorated significantly, even
at a low noise level. IC and TVCS show almost the same
reconstruction quality under ideal conditions, but TVCS is
superior if measurement noise is considered. Similar to the
sampling rate results, the slope of PSNR increases as the
number of cores increases. The larger the entropy and rank
values, the more information the MCF patterns can obtain
about the, but the sensitivity to noise also increases. The
results demonstrate that the reconstruction quality with mea-
surement noise increases when using MCFs, and the number
of cores is limited to a certain degree if the object entropy is
approximately 0.119.
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FIGURE 7. Reconstructed images of the complex objects. The numbers
under the objects are the entropy values, and the figures under the
reconstructed images are the PSNRs.

D. RECONSTRUCTION OF COMPLEX IMAGES
We investigated the reconstruction quality of complex images
to evaluate the imaging performance ofMCF patterns in more
realistic scenes. We used TVCS, which was superior to the
other algorithms in the above simulations. Figure 7 shows the
reconstructed images with 24% sampling rate.

As shown in Fig. 7, the image quality of the 21-core
MCF is superior to that of the 14-core MCF when the object
is complex. The rank of the 14-core MCF is too small to
obtain sufficient information about the objects; the entropy is
greater than approximately 0.186. The reconstruction quality
is improved because of the increase in rank as the number
of cores increases. Notably, the number of cores must be
increased to reconstruct complex objects completely, and the
cladding diameter will be more extensive with an increasing
number of cores.

V. CONCLUSION
We investigated the features and properties of speckle pat-
terns generated by MCFs. Furthermore, we investigated
reconstruction algorithms that are compatible with the SPI
system. From the results of numerical simulations under
ideal conditions without noise, different sampling rates, and
measurement noise, TVCS is the most suitable algorithm
for the system. However, TVCS is weak in restoring blurry-
edge information. The entropy and rank of the MCF patterns
differ depending on the number and placement of cores. For
simple objects with an entropy of ∼0.119, MCF patterns
have an entropy of approximately 1.5, and a rank of 183 can
provide sufficient information about the objects. However,
MCF patterns cannot obtain sufficient information even if a
21-core MCF is used when the entropy of the objects exceeds
approximately 0.186. In conclusion, this study demonstrated
that MCF-SPI has the potential to improve the measurement
time and noise robustness compared to SPI using random
binary patterns if a suitable core layout for the complexity of

the target objects and application is set. This study provides
information that can be used to reduce the system size of SPI
effectively while maintaining sufficient image reconstruction
quality.
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