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ABSTRACT This manuscript presents a ring-core Bragg Fiber (RC-BF) for orbital angular momentum
(OAM)modes propagation and supercontinuum generation. The proposed RC-BF is composed of alternating
layers of soft glasses SF57 and LLF1 to render high nonlinearity to the fiber. Mode analysis using full-
vectorial finite element method resulted in obtaining HE/EH modes to support vector modes as well as
orbital angular momentum modes. The optimized fiber supports 22 OAM modes and exhibits a zero-
dispersion wavelength (ZDW). The small effective area of Fiber 3 aided in achieving the highest nonlinearity,
γ = 91.51 W−1km−1. A near-infrared supercontinuum is generated with a 35 dB flatness over a bandwidth
of ∼1087 - 2024 nm in a 20 cm long RC-BF using a chirp-free hyperbolic secant pulse of width 200 fs and
peak power of 5 kW.

INDEX TERMS Bragg fiber, finite element method, OAM modes, zero-dispersion wavelength, supercon-
tinuum generation.

I. INTRODUCTION
Communication infrastructure connects servers, data centres
and people around the world, and in the recent past, it has
been accomplished largely due to optical networks. To over-
come capacity issues that the current optical communication
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systems are facing, Space Division Multiplexing (SDM) is
frequently utilized [1]. The research nowadays has piqued
towards making sure that a huge number of modes are
transmitted [2]. By multiplexing several orthogonal OAM
modes, SDM employing orbital angular momentum (OAM)
also holds the key for improving transmission capacity as
well as spectrum efficiency [3], [4]. OAM beams possess a
unique doughnut-shaped profile with a phase front of helical
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nature given by exp(ilφ), with the angle being represented
by the azimuthal φ and the topological charge l. Stimulated
Emission Depletion (STED) microscopy is an application of
OAMwhich enables applications like super-resolution imag-
ing where Gaussian and doughnut-shaped depletion beams
are aligned [5]. The applications of OAM extend further in
quantum communication [6], [7], optical trapping [8], [9] and
sensing [10] etc.

When a laser beam propagates through a nonlinear
medium, it undergoes spectral broadening. This process is
called as supercontinuum generation [11]. It is clear from the
GNLSE equation that it depends on the peak power as well
as the nonlinear coefficient, fiber loss (which is necessary
for dispersion), distance (fiber length) and time (pulse dura-
tion) [12]. Supercontinuum generation has found its appli-
cations in numerous broadband communication applications
based on OCDMA [13], imaging through optical coherence
tomography [14], [15], white light generation [16], chemical
sensing and microscopy [17] etc.

Self Phase Modulation (SPM) generates an input pulse-
centric, bell-shaped spectrum in conventional fibers. On the
contrary, diverse effects such as SRS (stimulated Raman scat-
tering), XPM (cross-phase modulation), GVD (group veloc-
ity dispersion), higher-order soliton generation, third-order
dispersion, self-steeping and birefringence play significant
role in the phenomenon of supercontinuum generation in
photonic cystal fibers. [18]. Unlike conventional fibers, pho-
tonic crystal fibers acquire their characteristics from the air
hole capillaries that are placed tightly throughout the fiber’s
length [19]. PCFs are preferred as they provide flexibility
in designing of desired properties such as high nonlinearity
and flat chromatic dispersion and their suitability for OAM
mode transmission. Plethora of structures have been consid-
ered for OAM mode propagation such as hexagonal lattice
PCF [20], circular PCF [21] and spiral shaped PCF [22].
Highly nonlinear PCFs are being designed either by mod-
elling them with a very small effective area to have a tight
mode confinement [23] or using materials that have very
high intrinsic nonlinearity coefficients such as tellurites [24],
[25], chalcogenides [26], [27] and lead silicate glasses
[28], [29].When amode is tightly confined using these highly
nonlinear materials, high values of γ are achieved. Supercon-
tinuum generation has been previously demonstrated in spe-
ciality optical fibers such as in hollow core fibers filled with
gases [30] and in all - normal dispersion fibers [31]. Further,
Leong et al. [32], at 1.55 µm, have designed and fabricated a
speciality optical fiber (PCF) for supercontinuum generation
using soft glass lead silicate SF57 and have reported a very
high nonlinearity, γ = 1860 W−1km−1. Agarwal et al. [33]
have designed an ES-PCF using SF57 and have reported a
nonlinearity of 2150 W−1km−1 at 1.55 µm.
This work intended to present a ring-core Bragg Fiber

designed using a combination of soft glasses available
commercially by Schott, SF57 and LLF1. Bragg fibers
are simpler to fabricate through the insertion of concentric

arrangement of high-low index capillaries which forms the
preform that can be drawn into fibers through fiber drawing
process [34]. Nandam et al. [35] worked on a spiral shaped
PCF with 12 arms and reported that the PCF sustained 14
OAMmodes. However, due to the complexity of the structure,
the fabrication of the structure becomes complex. Moreover,
supercontinuum generation is not discussed for the structure.
Wang et al. [36] propose a PCF with As2S3 and SiO2 and
report a wavelength of zero dispersion (ZDW) at 5300 nm.
In this work, the proposed RC-BF comprises of two com-
patible nonlinear glasses with simpler structure in compari-
son to PCF and exhibit a ZDW near the telecommunication
operating window of 1.55 µm and is optimized for OAM
mode propagation and supercontinuumgeneration at 1.55µm
which serves as the pump wavelength. In the previous works,
the focus has been on using the Bragg fiber either for OAM
mode propagation [37] or supercontinuum generation [38].
In this work, both the OAM modes and the generation of
supercontinuum spectrum have been demonstrated in the
same Bragg fiber.

II. RING CORE- BRAGG FIBER DESIGN
A Full-vectorial Finite Element Method (FEM) is used for
mode analysis and for the investigation of OAM modes in
all three fibers using COMSOLMultiphysics. The schematic
design of the proposed RC-BF is shown in Fig. 1. The fiber
is designed in such a way that a ring core is encompassed
by concentric arrangement of circles with alternating refrac-
tive indices. The concentric circles in the cladding region
are arranged with an alternating high-low distribution of the
refractive index. The central air hole radius is R = 2 µm. The
exterior geometry is spread over a region of 6 circles with
radii of R1 = 4.1 µm, R2 = 4.2 µm, R3 = 4.3 µm, R4 =

4.4 µm, R5 = 4.5 µm, R6 = 5 µm. The layers between R-R1
(core), R2-R3 and R4-R5 have a high linear refractive index
material i.e. dense flint SF57 (n = 1.8015) while the material
in the layers between R1-R2, R3-R4 and R5-R6 is low index
very light flint LLF1 (n= 1.5286) at 1.55µm. Both materials
used in the design have a higher nonlinear refractive index in
comparison to silica and low loss and are easier to fabricate
in comparison to chalcogenides, tellurites, and other infrared
glasses due to their high Tg (glass transition temperature)
and low thermal expansion coefficient [39]. They are also
thermally compatible, and their temperature characteristics
are further shown in Table 1 [40].

TABLE 1. Temperature characteristics of Schott SF57 and Schott LLF1.

where, T 7.6
10 is the softening point.

The aforementioned glasses have been fabricated and
reported by [41]. The Sellmeier equation and coefficients of
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TABLE 2. Sellmeier coefficients of SF57 and LLF1.

FIGURE 1. Schematic of proposed ring-core Bragg Fiber.

FIGURE 2. Index Profile of proposed ring-core Bragg Fiber.

both the glasses are presented in the following Eq. (1) and
Table 2, respectively [40], [42].

n2 − 1 =

3∑
i=1

Pi(Xi)λ2

λ2 − Qi(Yi)
(1)

A. DESIGN OPTIMIZATION
Three fibers were initially included for optimization to
achieve high nonlinearity and for the careful tailoring of
dispersion to achieve a ZDW near pump wavelength, as well
as to achieve the maximum OAM modes. Further, adding
more rings would reduce the leaking of radiation that might

FIGURE 3. (a). Effective refractive index (b). Dispersion profile and
(c). Nonlinearity variation of the three fibers.

happen due to quantum tunneling and only few layers would
aid in achieving very low losses and hence we have restricted
our discussion to 4 rings in the exterior geometry [43]. Next,
the diameter of the central air hole was taken to be the primary
parameter which controls the optimization objectives. The
three fibers are named Fiber 1, Fiber 2 and Fiber 3 for
feasibility, and these names will be further used throughout
the manuscript.

The design specifications of the three fibers are presented
in Table 3. As shown in the table, the central air hole radius
of Fiber 1 to Fiber 3 is increased by 1 µm. This variation
assists in achieving an increased nonlinearity due to decrease
in effective area and a ZDW tailoring as per need.
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FIGURE 4. Confinement losses for Fibers 1, 2 and 3.

TABLE 3. Geometrical parameters of fibers (All values in µm).

FIGURE 5. HE2,1, HE3,1 and EH1,1 modes in the Fibers 1, 2 and 3.

Dispersion is calculated using the Eq. (2) [44]. Effective
area, described in Eq. (3) [21] and nonlinearity have an
inverse relationship with each other. Hence, the study of
effective area becomes very significant while considering
nonlinear applications. The equation supporting this relation
is given by Eq. (4) [45], where nonlinear refractive index of
the material is denoted by n2. The n2 for the proposed SF57
is 4.1 × 10−19 m2/W [42].

D = −
λ

c
d2Re[neff ]

dλ2
(2)

Aeff =
(
∫∫

|E(x, y)|2dxdy)2∫∫
|E(x, y)|4dxdy

(3)

γ =
2πn2
λAeff

(4)

Fig. 3(a) to 3(c) demonstrate the change in effective refrac-
tive index (Neff ), dispersion (D) and nonlinearity (γ ) for the
three fibers for the wavelengths from 0.5 µm to 2.5 µm for
the HE1,1 mode. In the Fig. 3(a), the effective refractive index
is decreasing in each of the three fibers for higher wave-
lengths due to tighter field confinement in the core region
with increase in wavelength. The highest index is achieved
for Fiber 1 with the lowest central air hole radius, which
effectively has the highest core area with the high index mate-
rial thus increasing the effective refractive index. For Fibers
2 and 3, the central air hole radius increases causing the ring-
core to shrink and thus reducing the effective refractive index.
Fig. 3(b) shows the dispersion versus wavelength curve for
the three fibers. The fiber has been engineered so that a ZDW
is achieved for the three fibers at approximately 1.55 µm,
which is the wavelength at which OAM mode transmission
is tested. In the Fig. 3(c), the change in nonlinearity with
the wavelength is demonstrated. The reason for the high
nonlinearity for the Fiber 3 is due to the lower effective area
as compared to Fibers 1 and 2. The nonlinearity achieved for
Fiber 3 at 1.55 µm is 91.51 W−1km−1.

Bulk loss of SF57 is taken to be 1.6 dB/m [28]. Further, the
confinement losses in the three fibres are depicted in Fig. 4
for HE1,1 mode. For the three fibers, the losses we report
are 1.68 dB/m, 1.69 dB/m and 1.72 dB/m at 1.55 µm. The
calculations for the confinement losses are performed using
the imaginary part of the effective refractive index as shown
in Eq. (5) [46].

LC = 8.686 · k0 · Im(nneff ) (5)

III. OAM MODES
A few vector modes obtained in the three fibers such as
HE2,1, HE3,1 and EH1,1 are plotted in Fig. 5. Further in
Fig. 6, the OAMmode generation and transmission has been
shown for the modes HE2,1, HE4,1 and HE2,2 in the Fibers 1,
2 and 3 respectively as per Eq. (6) and Eq. (7) at 1.55 µm.
Remaining OAM modes are listed in Table 4. The OAM
modes are the result of the combination of HE/EH even and
odd eigenvectors. The following equations govern the process
of OAM mode formation [47], [48].{

OAM±

±l,m = HEevenl+1,m ± jHEoddl+1,m
OAM∓

±l,m = EH even
l−1,m ± jEHodd

l−1,m

}
; (l > 1) (6){

OAM±

±1,m = HEeven2,m ± jHEodd2,m
OAM∓

±1,m = TM0,m ± jTE0,m

}
; (l = 1) (7)

From Fig. 6, for the HE2,1 mode in Fiber 1, OAM±

±1,1

is obtained. Similarly, in the Fibers 2 and 3, OAM±

±3,1
and OAM±

±1,2 are obtained for HE4,1 and HE2,2 modes
respectively.

From Table 4, a total of 16 OAM modes, 18 OAM modes
and 22 OAM modes are obtained in the Fibers 1, 2 and 3
respectively.
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FIGURE 6. OAM mode generation and transmission for HE2,1 in Fiber 1, HE4,1 in Fiber 2 and HE2,2 in Fiber 3.

TABLE 4. OAM modes obtained in Fibers 1, 2 and 3.

IV. SUPERCONTINUUM GENERATION
GNLSE is used to mathematically analyze the ultrashort
pulse propagation in the aforementioned fibres [36].

The equation is a combination of linear as well as nonlinear
components.

∂A
∂z

=

(
D̂+ N̂

)
A (8)

Here D̂ accounts for all of the dispersion terms, and N̂ con-
siders the nonlinear propagation effects of the pulse. These
terms are further explained as:

D̂ = −
α

2
+

∑
n≥2

in+1

n!
βn

∂n

∂T n

 (9)

N̂ = iγ
(
1 +

i
ω0

∂

∂t

)∫
∞

−∞

R(T ′)|A(z,T − T ′)|2dT ′ (10)

FromEq. (9) and (10), α is the fiber loss coefficient, optical
field envelope is denoted by A(z, t), z is the distance, time is
denoted by T , βn is the propagation constant’s derivative of
the nth order and γ is the nonlinear coefficient.

The mathematical way to show the response of nonlinear
function R(t) is shown as

R(T ) = (1 − fr )δ(T ) + frhr (T ) (11)

In Eq. (11), δ(T ) and hr (T) are denoted as instanta-
neous electronic response and delayed Raman response
respectively.
fr = 0.1 for SF57 [49], therefore hr is shown as:

hr (T ) =
τ 21 + τ 22

τ1τ
2
2

exp
(

−t
τ2

)
sin
(
t
τ1

)
(12)

For SF57, τ1 and τ2 are 5.5 fs and 32.0 fs respectively [50].
GNLSE has been calculated involving the split-step

Fourier method [51].
The laser used in the simulation has been modeled after

Origami - 15HP laser as a hyperbolic secant pulse at an
average power of about 57 mW, and time period, TFWHM =

200 fs. Further, 50 MHz is the pulse repetition rate and the
fiber length is 20 cm at an operating wavelength of 1.55 µm.
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FIGURE 7. (a) Temporal and (b) Spatial domain evolution of 5 kW, 200 fs, 1.55 µm pulse in 20 cm RC-BF (Fiber 3).

FIGURE 8. SC spectra at 20 cm fiber length.

The equation describing the hyperbolic secant function is
as follows [41]:

A(z = 0, t) =

√
P0sech

(
t
t0

)
exp

(
−i
C
2
t2

t20

)
t0 = tFWHM/1.7627 (13)

Here the peak power of the pulse is P0 = 5 kW.
Supercontinuum spectrum for Fiber 3 is being shown in

Fig. 7 because it has shown to transmit the highest number
of OAM modes at 1.55 µm which is also the input pump
wavelength. Fig. 7 (a) and 7 (b) demonstrate the evolution
of the pulse through Fiber 3 of length 20 cm. High fiber
nonlinearity and the position and properties of the input pulse
with respect to ZDW significantly affect the SC generation.
The pump wavelength is 1.55 µm and is close to ZDW of
the fiber. Initially symmetric broadening is observed in the
fiber. SPM is responsible for this uniform broadening. At the
ZDW, the GVD parameter β2 almost becomes negligible and
hence the effects of third-order dispersion become prominent.
Along with third-order dispersion, Raman scattering is also
significant in spectral broadening and together they perturb
the pulse evolution and initiate the formation of soliton fis-
sion [52]. Further the spectrum gets transferred to the anoma-
lous dispersion region and the effects of soliton dynamics
are observed here. Higher order dispersion effects are much
more significant in PCFs than in conventional fibers and
cause the unstable solitons to break and form fundamental
solitons. This is termed as soliton decay. The solitons emit

nonsolitonic radiation which are shifted towards the blue
region of the spectrum to maintain their shape. The wave-
length at which the nonsolitonic radiation is emitted relies on
how well the phases match. The solitons, however get shifted
to the infrared part of spectrum to achieve stability. After this,
an interplay of complex processes such as stimulated Raman
scattering and dispersion of the fiber cause the spectrum to
broaden. These processes are also significant in achieving a
flat supercontinuum [53].

The SC spectra of the pulse at 200 mm in Fiber 3 is shown
in Fig. 8. The SC obtained spans from 1087 nm to 2024 nm
with a flatness of 35 dB.

V. CONCLUSION
This work presents a ring-core Bragg Fiber designed with
a combination of Schott flint glasses, SF57 and LLF1.
Moreover, the fabrication of the Bragg fiber is also simple.
After careful optimization, the fiber is capable of supporting
22 OAMmodes propagating at 1.55µm and producing a very
flat supercontinuum spectra of 35 dB from 1087 - 2024 nm
by launching a chirp-free hyperbolic secant pulse of having
a pulse width of 200 fs with a maximum power of 5 kW.
The SC spectra extends in the mentioned wavelength range
with a flat spectrum. Due to the higher nonlinear refractive
index of the glasses used in the design, it is more suitable
for nonlinear applications in comparison to silica and offers
low loss in comparison to chalcogenide, tellurite, and other
infrared glasses. This makes them suitable for both applica-
tions mentioned in the paper. Furthermore, soft glass fibers
are also easier to fabricate when compared to chalcogenide,
tellurite, and other infrared glasses due to high glass transition
temperature, low thermal expansion coefficient, and high
thermal conductivity.
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