
Received 16 May 2023, accepted 27 May 2023, date of publication 30 May 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281337

Fast Approximate Convex Hull Construction in
Networks via Node Embedding
DMITRII GAVRILEV 1 AND ILYA MAKAROV 2,3
1Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
2AI Center, NUST MISiS, 119991 Moscow, Russia
3Artificial Intelligence Research Institute (AIRI), 105064 Moscow, Russia

Corresponding author: Dmitrii Gavrilev (dmitrygavrilyev@gmail.com)

The work of Ilya Makarov was supported by the Strategic Project Digital Business within the Framework of the Strategic Academic
Leadership Program ‘‘Priority 2030’’ with National University of Science and Technology (NUST) MISiS.

ABSTRACT Geodesic convexity in networks is an intrinsic property of graphs. It aids in distinguishing
between real-world networks and random graphs. One possible application is recommending new
connections in a collaborative network by searching for them in the so-called convex hull, which is a
minimal subgraph containing all the shortest paths between its nodes. However, the existing algorithms
for constructing convex hulls from subsets of nodes involve extensive search over subgraphs and have poor
scalability. Thus, they become inapplicable to large graphs such as social networks. In this paper, we propose
a new approach for fast convex hull construction for a subset of nodes on a network using graph embeddings.
We apply the well-known convexity concept in embedding space to a similar problem for geometric learning
on a graph, optimizing the process of finding all the shortest paths in the induced subgraph. To preserve the
metric characteristics of a network, we train a graph neural network with an L1-distance loss. As a result,
the trained model enables us to approximately verify the convexity of subgraphs in linear time, contrary to
the previous approaches, which have cubic complexity.

INDEX TERMS Network convexity, graph neural networks, node embedding, shortest path, network
science.

I. INTRODUCTION
Recent years have seen substantial growth of interest in the
technologies and algorithms that study data and provide its
efficient representation. One of the most widespread data
representations is a graph, which is usually represented as a
collection of nodes and edges connecting them. Nowadays,
graphs are ubiquitously used for organizing information:
social interactions, scientific citations, road maps, etc. For
example, in online social networks, an edge can display that
users, who are represented by nodes, are following each
other. Thus, graphs are useful for representing relationships
between objects and patterns within data.

Convexity is a property common to various mathematical
objects. In a metric space (X , d), a set S is convex if
for any x1, x2 ∈ S, all elements y ∈ X satisfying

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

d(x1, y) + d(y, x2) = d(x1, x2) belong to S [1]. Any
undirected connected graph without self-loops can be seen
as a metric space by setting X as the vertex set V and d :
V × V → R as the shortest paths (geodesics) between
the vertices. Consequently, convexity can be extended to
subgraphs. Consider a connected graph G and a subgraph on
a subset of nodes S. A subgraph is called convex if all the
geodesics between the nodes in S are entirely included into
S [2]. Further, convex hull in the context of graphs can also
be defined similarly to the one in a metric space: the convex
hull of S ⊆ V is the minimal convex subgraph comprising
S [3]. Although there are different types of graph convexity,
we focus on geodesic convexity throughout this paper.

Unfortunately, classical graph algorithms are computa-
tionally expensive, especially when applied to real-world
networks with millions of nodes and links. For example,
to measure the distance between two nodes in an unweighted
graph, we have to solve the problem of finding the shortest

54588
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0005-6904-2852
https://orcid.org/0000-0002-3308-8825
https://orcid.org/0000-0002-1939-4842

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

path, which depends on the number of vertices and edges
(O(|V | + |E|) with applying breadth-first search [4]).
On the other hand, machine learning methods, which provide
solutions to many novel problems on graphs, expect the data
to be in a vector space of independent features, and hence
cannot be applied to graph structures in a straightforward
manner. Therefore, graph embeddings were introduced as
a method of data representation that maps the nodes of
the graph to low-dimensional vectors, conserving their
core properties presented by certain similarity or distance
functions.

For the purposes of demonstration, consider Figure 1,
which depicts a graph with 8 nodes and one of the possible
embeddings. Consider the problem of searching the convex
hull of nodes with labels 0, 2, 3 and 6. In order to do this,
standard graph algorithms could be applied. The result would
be the subset of base nodes combined with node 4. The
subgraph induced by the obtained subset contains all the
geodesic paths between its nodes; therefore, it is convex. It is
also minimal, meaning that the exclusion of node 4 would
destroy its convexity. The same problem could be approached
via node embedding. The right side of Figure 1 illustrates the
3-dimensional embedding space of the graph from the left
side, in which the nodes are mapped to the points. If the node
embedding indeed preserves convexity, then the problem of
searching for the convex hull is reduced to constructing one
in a metric space.

The aim of the paper is to research and devise a method
for fast approximate convex hull construction in networks.
The model is expected to preserve convexity as well as
metric properties. This enables us to solve the problems
of search and evaluation of convex subgraphs with much
faster algorithms that have lower computational costs. Since
convexity is a property inherent to real networks, the
research may prove useful in various applications of network
classification as well as in distinguishing the networks from
random graphs [5]. Another direction for research involves
community detection in networks based on their convex
skeleton [6], which can be viewed as a generalization of a
spanning tree. The research results might also be applied
to the problem of finding the optimal subgraph of roads
in transportation networks [5], [6], active and online node
classification [7], [8].

We reduce the initial problem of finding convex subgraphs
to finding convex hulls in a node embedding space [9].
We leverage the properties of the L1 embedding space to
decrease the computational complexity. To that end, we use
the framework of Graph Neural Networks (GNN) to find
the optimal embeddings which preserve the geodesics in
a graph, similar to link prediction [10], [11] and link
regression [12], [13] tasks but in more constrained geometric
setting. We design an efficient loss function suited for
mini-batched learning. Our proposed method is linear w.r.t
the number of nodes, contrary to the existing graph-based
algorithms which have the cubic complexity in the worst-case
scenario. The exact complexity of querying convex hulls in

the L1 metric space is O(|V | · d), where d is the embedding
dimension.

The rest of the paper is structured as follows. In Section II,
we overview the related work relevant to our research area.
Section III includes a description of various methods and
techniques for graph embedding construction and convexity
verification. Section IV contains the outline of an experimen-
tal part where our model is tested. In Section V, we conclude
with the closing remarks as well as outline the directions for
future research.

II. RELATED WORK
The earliest instance of convex hull algorithm for graphs
has the time complexity of O(| conv(S)| · |E|), where conv(S)
is the convex hull of set S ⊆ V [14]. An algorithm that does
not depend on the number of edges was described in [7],
and has the complexity of O(|V |3). A heuristic algorithm
proposed in [15] approximates the dense core of a graph by
first spanning p random outerplanar [16] subgraphs. Then,
it computes a convex hull in each of the p subgraphs in
O(|V | · f), where f is the number of interior faces in the
outerplanar graph. Finally, a node from the original graph is
considered to be in the convex hull iff it frequently appears in
the outerplanar convex hulls. A shortcoming of this approach
is the lack of control over the expected runtime as f implicitly
depends on the graph. In the worst case, f = O(|V |) [15],
which makes the overall complexity quadratic. On the other
hand, the runtime of our proposed method can be controlled
in advance.

Convexity on graphs was studied in three distinct forms: a
global one, which refers to a tree of cliques and grows at a
noticeably low pace; a local one, which is more typical for
random graphs than for real networks; and a regional one,
which refers to any partly convex heterogeneous network [5].
Furthermore, the authors show that convexity is a structural
property inherent to real-world networks. According to their
research, random graph models like Erdos-Renyi, Barabasi-
Albert, and Watts-Strogatz fail to recreate convexity in
networks (see [17] for random graphs description).

Moreover, convexity in networks can be measured by
observing the growth of convex subgraphs. The procedure
starts with initializing subset S with a random node. On each
next step, a random node out of the neighboring nodes of S is
added to the subset. Then, S is expanded by the nodes of its
convex hull. Thus, on each step, the induced subgraph on S
is its convex hull. This process of expansion is repeated until
S covers the entire network. Finally, network convexity X is
measured as

X = 1−
n−1∑
t=1

max
{
1s(t)−

1
n
, 0

}
, (1)

where n is the number of nodes in a network and 1s(t)
is the average increase in the size of S at step t . Due to
the stochasticity of the procedure, the expansion should be
run several times. Hence, 1s(t) is the average over the

VOLUME 11, 2023 54589

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

FIGURE 1. An example of a graph (A) and its 3-dimensional embedding (B). The base nodes of the convex hull are colored red. An orange
node denotes another node that belongs to the convex hull. The edges that are induced by the convex hull are colored red. The induced
subgraph is convex since it contains every geodesic path between its nodes. Nodes that do not belong to the subgraph are colored blue.

independent runs of the procedure. Convexity X ∈ [0, 1],
with the higher values corresponding to globally convex
networks such as trees of cliques. The lower value of X
indicates that there is a dramatic expansion of the convex hulls
in a network.

In [9] and [18], the authors present a survey on the graph
embedding algorithms and methods. The overview includes
a taxonomy of methods (division into three main categories:
matrix factorization, random walks, and Deep Learning),
their comparison in time complexity, preserved properties,
and embedding under different scenarios (supervised and
unsupervised learning, learning embeddings for homoge-
neous and heterogeneous networks, etc.). Hamilton et al.
incorporate various neural network models, such as Graph
Convolutional Networks (GCN) and GraphSAGE, into a
category called neighborhood aggregation algorithms. These
algorithms take both the node feature matrix and adjacency
matrix as input. Hence, they account for individual node
parameters and the graph structure. The output of each
layer of a network is a matrix of node embeddings.
A node’s embedding is assigned as a combination of the
aggregated neighborhood and an embedding corresponding
to the previous layer.Â

For instance, a variation of GNNs, GraphSAGE [19], uses
an aggregation rule in the form of

z(l)v = σ
([

W(l)
· AGG

({
z(l−1)u ,∀u ∈ N (v)

})
,B(l)z(l−1)v

])
,

(2)

where zlv is the embedding for node v, W(l) and B(l)

are trainable matrices in the l-th layer. The concatenation
operator [·, ·] is applied to the weighted aggregation of
the neighbors and previous representation of v, which is

then followed by a (non-linear) activation function σ . The
aggregation function AGG can be viewed as a convolutional
kernel andmay differ frommodel to model. In particular, [19]
propose to use permutation invariant aggregators such as
mean, LSTM, and max-pooling. Stacking convolutional
layers allows information to propagate not only from the
local neighborhood but also from the distant neighbor nodes.
In addition, methods for joint node and edge embedding allow
to train semi-supervised [20], [21] and self-supervised [22]
models for certain sparse graphs.

III. METHODS
In the following section, we discuss methods for convex set
creation in graphs and vector spaces. We review the overall
approach to the construction and cover the computational
complexity of the algorithms. First, we present traditional
convex hull algorithms in graphs. Next, we examine convex
set methods in a taxicab space induced by the L1 norm,
and introduce a relaxation for the convex hull operator.
Finally, we present the training procedure for learning the
L1 embeddings.

A. EXACT CONVEX HULL CONSTRUCTION
To construct H = conv(S), [14] first initialize it with H = S.
Next, they run bread-first search from each node of H , and
include all the new nodes along the geodesics if they cross
H . The resulting time complexity is O(| conv(S)| · |E|).
Alternatively, as presented in [7] (see Algorithm 1), we can

precompute the distance matrix and search the triplets for
which the triangle inequality holds with equality. In the
case of unweighted networks, the distance matrix can be
constructed by running breadth-first search from each node.

54590 VOLUME 11, 2023

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

FIGURE 2. The difference between convex hulls in a Euclidean space
(A) and a taxicab space (B).

Despite the O(|V | · (|V | + |E|)) complexity, we only have to
calculate it once.

Algorithm 1 Exact Convex Hull Construction
Data: subset S
Result: the vertex set of the convex hull H
H ← S while new node is added to H do

for all pairs a, b in H do
for all nodes c except nodes in H do

if dist(a, b) > 1 and dist(a, c) + dist(c, b) =
dist(a, b) then
H ← H ∪ {c}

end
end

end
end

Both exact algorithms are asymptotically equivalent in the
sense that they are O(|V |3) in the worst-case scenario.

B. CONVEX SETS IN A TAXICAB SPACE
In the following section, we refer to a real vector space
equipped with the L1 norm as a taxicab space. In other words,
we consider a vector space with a norm

∥z∥1 =
d∑
k=1

|zk |. (3)

Consequently, the distance between two points x and y in
a d-dimensional taxicab space is

d(x, y) = ∥x− y∥1 =
d∑
k=1

|xk − yk |. (4)

A simplex in a d-dimensional taxicab space is an orthotope
whose facets are parallel to axes. Let πk be the orthogonal
projection onto axis k . Then, we can define the convex hull
of a set of points S as

conv(S) = {minπ1(S) ≤ x1 ≤ maxπ1(S), . . . ,

minπd (S) ≤ xd ≤ maxπd (S)}. (5)

To construct the convex hull in a taxicab space, it is
sufficient to find the coordinate-wise minima and maxima of
a given set. Hence, the computational complexity is O(n · d),
where n is the total number of points. Due to its linear
complexity, building convex sets with L1 distance is fast even
on higher dimensions, as opposed to the convexity algorithms
in a Euclidean space, whose complexities explode with the
increase in the number of dimensions [23].

Another advantage of a taxicab space lies in the fact that
there are multiple geodesics between two points, whereas the
geodesics are always unique in a space with the L2 distance.
Moreover, we are not limited by the dimension of a space.
In a Euclidean space, the cardinality of a set needs to be
greater than d + 1 for it to have a convex hull with non-zero
volume. The same does not hold true for a taxicab space: the
convex hull of a set S has positive volume unless S is affinely
dependent. Figure 2 illustrates the difference between convex
hulls in Euclidean and taxicab spaces. Note that a convex
taxicab set tends to encompass more space.

In practice, the nodes may not be perfectly embedded into
a taxicab space, and they are likely to be distorted, either the-
oretically or numerically. To address this issue, we introduce
a simple yet effective extension to our algorithm. Instead of
directly operating with conv(S), we approximate the convex
hull in a graph with convϵ(S), a weakened version of conv(S):

convϵ(S) = {minπ1(S)− ϵ ≤ x1 ≤ maxπ1(S)+ ϵ, . . . ,

minπd (S)− ϵ ≤ xd ≤ maxπd (S)+ ϵ}, (6)

where ϵ is the thresholding hyperparameter. Note that at
ϵ = 0, convϵ(S) is reduced to conv(S).

C. LEARNING THE DISTANCES
We consider the problem of mapping a graph to a taxicab
space as the problem of learning the distance matrix. As in
Algorithm 1, we precompute the distance matrix, which we
further leverage in our target objective. We want pairwise
distances in a taxicab space to approximate the original
distances in a graph. LetD and enc denote the distance matrix
and learnable node encoder, respectively. Then, the objective
is given in the form of

L =
∑
u,v∈V
u ̸=v

(
∥ enc(u)− enc(v)∥1 − Du,v

)2
. (7)

We choose enc as a GNN to leverage the graph structure.
However, in practice, we can not afford the full-batch
learning on large graphs. Therefore, we propose the following
mini-batching scheme to reduce the memory consumption.
First, we compute the node embeddings using randomly
initialized enc and denote them ẑ. The embeddings ẑ are then
freezed, meaning that we detach them from the computational
graph. Next, we sample a mini-batch of target nodes B. Then,
the loss is computed as

L =
∑

u∈B,v∈V
u ̸=v

(
∥ enc(u)− ẑv∥1 − Du,v

)2
, (8)

VOLUME 11, 2023 54591

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

and one step of gradient descent is performed. Finally,
we update the frozen embeddings of the nodes from B:

ẑu← enc(u), ∀u ∈ B. (9)

The process is then repeated, starting with sampling a new
mini-batch. Note that we only need to update the embeddings
for a small subset of nodes, so we employ GraphSAGE as our
encoder to reduce the overall computational graph needed to
retrieve the mini-batch representation [19].

Alternatively, we propose to substitute the distances in
Equation 8 with their logarithmic values:

L =
∑

u∈B,v∈V
u̸=v

(
ln ∥ enc(u)− ẑv∥1 − lnDu,v

)2
. (10)

IV. EXPERIMENTS
In this section, we describe the experiments on which we
test our methods. First, we provide a full list of the datasets
and their statistics, as well as a description of preprocessing.
Next, we introduce the metrics that help us assess the quality
of the embeddings. Finally, we describe the pipeline of our
experiments and discuss the main findings.

A. DATASETS
In what follows, we describe the datasets on which we
conduct our experiments and their statistics. The following
networks are used: the Little Rock Lake food web [24],
coauthorships in network science [25], European road net-
work [26], connections between the US political blogs [27],
flights between the US airports [28] and the Western
US power grid [29]. The datasets are downloaded from
KONECT [28], the website of the project oriented on
collecting network data, and Mark Newman’s personal page,
which contains a compilation of networks [30]. The largest
graph we use is Arxiv ASTRO-PH [31], [32] (17903 nodes),
a scientific collaboration network from arXiv.

We transform each of the networks mentioned above into
a simple graph. In other words, we remove all multiple
edges, self-loops, and edge direction. Besides, if a graph
is unconnected, we consider only its largest connected
component. In Table 1, we present the following statistics for
the preprocessed graphs: the number of nodes |V |, number
of edges |E|, and convexity X , which is introduced in Eq. 1.
For measuring X , we use the original implementation of the
expansion algorithm from [5] and report the average values
over 100 repeats.

B. METRICS
We propose two ways of measuring embedding accuracy.
One compares two independently built convex sets, the other
assesses the similarity of the convex hull of the convex set
built on the graph after projecting it onto the vector space.
The formermeasures the ability of the embeddings to recreate
convexity, whereas the latter estimates howwell they preserve
convexity.

1) COMPARISON
For the following method, we build two convex sets: one
on the graph, and another in the embedding space. First,
we choose the base of our sets – a set of randomly picked
nodes. Following that, the convex hulls are built from the
base, both on the graph and in the embedding space. For the
first convex hull, we employ the aforementioned algorithm
except for the initialization part: we use the base as a starting
set instead of picking random nodes. As for the convex hull
construction in space, an in-depth look is provided below.

Having retrieved two sets s1 and s2, we use the Jaccard
coefficient to measure the similarity of the two sets:

J (s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

. (11)

2) PROJECTION
For this method, in contrast to the previous one, we first build
only one convex set on the graph. The vector representations
of the corresponding nodes are gathered from the embedding
matrix once the ground-truth convex set has been obtained.
Following that, we build the convex hull S of those points,
search for the additional points that lie inside this hull, and
call them the error set. Then we measure the accuracy of the
set’s recreation with the following formula:

precision(S, error) =
|S| − |error|
|S|

, (12)

which essentially evaluates the fraction of the correct nodes.
To assess the metric for the whole embedding, we ran-

domly grow several convex sets. Then, we evaluate the
accuracy of their recreation and average out the scores with
respect to the set sizes.

C. RESULTS
In Table 1, we present the training settings for the datasets:
batch size, final layer dimension, and number of epochs.
Before training, we normalize the distance matrix D such
that it has a unit standard deviation. In all cases, we train
the 3-layer GraphSAGE with a mean aggregator. Each
subsequent layer has its embedding dimension get reduced
by half. The non-linearity σ is chosen as Swish [33].
The initial embedding is set to the identity matrix of
size |V |. We use PyTorch [34] and DGL (Deep Graph
Library [35]) in our implementation. The optimization is
done usingAdamoptimizer [36]. Additionally, while learning
we employ the gradient clipping. We share our code at
https://github.com/realfolkcode/fast-network-convexity.

What follows is a description of the pipeline on which
our approach is tested. First, we sample 50 subsets of size
4. In order to evaluate the comparison score, we construct
the convex hulls from the sampled subsets in the embedding
space. After that, we locate the points that belong to the
hull and calculate the metric. As for the projection method,
we build the convex hull in the embedding space from
the convex hull obtained on the graph. Next, we find the
error set and calculate the metric. Then, for each method,

54592 VOLUME 11, 2023

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

FIGURE 3. Scores versus (y-axis) ϵ-threshold (x-axis). The orange and blue lines present the comparison and projection scores respectively, for the
models trained with the standard loss. The results for the logarithmic loss are depicted in red (comparison) and purple (projection).

TABLE 1. Graph statistics and training settings.

TABLE 2. Metrics and optimal threshold.

we evaluate the average score over all samples. Our method
is substantially faster than the standard algorithm described
in Section III-A: on the Arxiv Astro Physics graph, the
construction of 50 random convex hulls takes 10 seconds with
the former, whereas it takes more than 20 minutes with the
latter.

Figure 3 shows our main results, as it illustrates the evolu-
tion of the comparison and projection scores with the increase
of the ϵ-threshold introduced in Eq. 6. For each dataset, at ϵ =
0, the comparison is close to zero. This validates our choice

of the ϵ-thresholding, as conv(·) completely fails to recreate
convexity in networks.With the increase of ϵ, the comparison
score increases until it reaches its optimal value, after which
it starts decreasing. On the other hand, the projection score
starts from approximately 1, then it monotonously decays.
This indicates that our embeddings are able to preserve
convexity. The monotonous decay is explained by the overall
increase of ϵ−convex hulls that leads to inevitable inclusion
of additional nodes. Therefore, there is a tradeoff between
recreating and preserving convexity. In Table 2, we present

VOLUME 11, 2023 54593

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

the values of ϵ that maximize the comparison score and
the metrics. Additionally, we report the corresponding
loss values. Furthermore, we investigate the effect of the
logarithmic distances that we introduce in Equation 10.
As can be seen from Figure 3 and Table 2, in each network
except the Little Rock food web, substituting the distances
with their logarithmic values boosts the overall quality.

We empirically observe that the optimal value of ϵ

correlates with the loss values and convexity measure of a
network. Themodel fails to isometrically embed the networks
with low convexity (Little Rock food web and Election
weblogs), which results in a higher error in the reconstructed
distances. Compared to the networks with high convexity,
these networks benefit from a much higher ϵ. As a simple
heuristic, the corresponding orders of magnitude would hint
towards the choice of the threshold. Despite the high error
in the distances, convϵ(·) leverages the low convexity by
including more nodes. In particular, we notice that in the
Little Rock food web, the convex hulls of random subsets of
size 4 cover almost the entire graph (182 nodes).

V. CONCLUSION
To our knowledge, this paper is the first attempt at speeding
up the construction of convex hulls in graphs by employing a
deep learning approach. Compared to the standard algorithms
on graphs, our method leverages the properties of a taxicab
space and reduces the computational complexity of the
construction from O(|V |3) to O(|V | · d) after training and
obtaining the node embeddings. Moreover, we introduce the
thresholding technique that helps us alleviate the errors in
distances. To that end, our approach might be useful in
scenarios where the number of queries is large.

Future ways to develop the current research include
investigating the connection between the convexity measure
and threshold, deriving a theoretical estimate of the optimal
threshold, and incorporating other objective functions, such
as the Laplacian embedding loss [37]. Besides, a more
detailed investigation of vector spaces equipped with the ℓp
norm can be fruitful. A handy property of ℓ1 norm is the
non-uniqueness of geodesics. The only other norm with such
a property is the ℓ∞ norm [38]. Another possible direction of
research is to develop an algorithm for the fast construction of
convex skeletons, a lightweight abstraction of networks [6].

ACKNOWLEDGMENT
The authors are grateful to Dr. Lovro Šubelj for fruitful
discussions and original problem formulation. Author Con-
tributions: Dmitrii Gavrilev: paper preparation, conducting
experiments, implementation and design of methods; and Ilya
Makarov: paper revision, help with experiment and model
design, research supervision.

REFERENCES
[1] I. M. Pelayo,Geodesic Convexity in Graphs. Cham, Switzerland: Springer,

2013.
[2] H.-J. Bandelt and V. Chepoi, ‘‘Metric graph theory and geometry: A

survey,’’ Contemp. Math., vol. 453, pp. 49–86, Jan. 2008.

[3] F. Harary and J. Nieminen, ‘‘Convexity in graphs,’’ J. Differ. Geometry,
vol. 16, no. 2, pp. 185–190, Jan. 1981.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

[5] T. Marc and L. Šubelj, ‘‘Convexity in complex networks,’’ Netw. Sci.,
vol. 6, no. 2, pp. 176–203, Jun. 2018.

[6] L. Šubelj, ‘‘Convex skeletons of complex networks,’’ J. Roy. Soc. Interface,
vol. 15, no. 145, Aug. 2018, Art. no. 20180422.

[7] M. Thiessen and T. Gärtner, ‘‘Active learning of convex halfspaces on
graphs,’’ inProc. Adv. Neural Inf. Process. Syst., vol. 34, pp. 23413–23425,
2021.

[8] M. Thiessen and T. Gürtner, ‘‘Online learning of convex sets on graphs,’’
in Proc. Mach. Learn. Knowl. Discovery Databases, Eur. Conf. Grenoble,
France: Springer, Sep. 2023, pp. 349–364.

[9] I. Makarov, D. Kiselev, N. Nikitinsky, and L. Subelj, ‘‘Survey on graph
embeddings and their applications to machine learning problems on
graphs,’’ PeerJ Comput. Sci., vol. 7, p. e357, Feb. 2021.

[10] I. Makarov, O. Gerasimova, P. Sulimov, and L. E. Zhukov, ‘‘Recommend-
ing co-authorship via network embeddings and feature engineering: The
case of national research university higher school of economics,’’ in Proc.
18th ACM/IEEE Joint Conf. Digit. Libraries New York, NY, USA: ACM,
May 2018, pp. 365–366.

[11] I. Makarov, M. Makarov, and D. Kiselev, ‘‘Fusion of text and graph
information for machine learning problems on networks,’’ PeerJ Comput.
Sci., vol. 7, p. e526, May 2021.

[12] I. Makarov and O. Gerasimova, ‘‘Predicting collaborations in co-
authorship network,’’ in Proc. 14th Int. Workshop Semantic Social Media
Adaptation Personalization (SMAP), New York, NY, USA, Jun. 2019,
pp. 1–6.

[13] I. Makarov and O. Gerasimova, ‘‘Link prediction regression for weighted
co-authorship networks,’’ in Proc. 15th Int. Work-Conf. Artif. Neural
Netw. (IWANN). Berlin, Germany: Springer, Universitat Politecnica de
Catalunya, Jul. 2019, pp. 667–677.

[14] M. C. Dourado, J. G. Gimbel, J. Kratochvíl, F. Protti, and J. L. Szwarcfiter,
‘‘On the computation of the hull number of a graph,’’ Discrete Math.,
vol. 309, no. 18, pp. 5668–5674, Sep. 2009.

[15] F. Seiffarth, T. Horváth, and S. Wrobel, ‘‘A fast heuristic for computing
geodesic cores in large networks,’’ 2022, arXiv:2206.07350.

[16] G. Chartrand and F. Harary, ‘‘Planar permutation graphs,’’ Annales de
l’IHP Probabilités et Statistiques, vol. 3, no. 4, 1967, pp. 433–438.

[17] L. Rooney, ‘‘Random graph models and matchings,’’ 2019,
arXiv:1909.01723.

[18] W. L. Hamilton, ‘‘Graph representation learning,’’ Synth. Lectures Artif.
Intell. Mach. Learn., vol. 14, no. 3, pp. 1–159, 2020.

[19] W. Hamilton, Z. Ying, and J. Leskovec, ‘‘Inductive representation learning
on large graphs,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1025–1035.

[20] I. Makarov, O. Gerasimova, P. Sulimov, K. Korovina, and L. E. Zhukov,
‘‘Joint node-edge network embedding for link prediction,’’ in Proc. 7th Int.
Conf. Anal. Images, Social Netw. Texts (AIST). Berlin, Germany: Springer,
Polytechnic University, Jul. 2018, pp. 20–31.

[21] I. Makarov, O. Gerasimova, P. Sulimov, and L. E. Zhukov, ‘‘Co-
authorship network embedding and recommending collaborators via
network embedding,’’ in Proc. 7th Int. Conf. Anal. Images, Social Netw.
Texts (AIST). Berlin, Germany: Springer, Polytechnic University, Jul. 2018,
pp. 32–38.

[22] I. Makarov, K. Korovina, and D. Kiselev, ‘‘JONNEE: Joint network
nodes and edges embedding,’’ IEEE Access, vol. 9, pp. 144646–144659,
2021.

[23] D. Avis, D. Bremner, and R. Seidel, ‘‘How good are convex hull
algorithms?’’ Comput. Geometry, vol. 7, nos. 5–6, pp. 265–301,
Apr. 1997.

[24] R. J. Williams and N. D. Martinez, ‘‘Simple rules yield complex food
webs,’’ Nature, vol. 404, no. 6774, pp. 180–183, Mar. 2000.

[25] M. E. J. Newman, ‘‘Finding community structure in networks using
the eigenvectors of matrices,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 74, no. 3, Sep. 2006, Art. no. 036104, doi:
10.1103/PHYSREVE.74.036104.

[26] L. Šubelj and M. Bajec, ‘‘Robust network community detection using
balanced propagation,’’ Eur. Phys. J. B, vol. 81, no. 3, pp. 353–362,
Jun. 2011.

54594 VOLUME 11, 2023

http://dx.doi.org/10.1103/PHYSREVE.74.036104

D. Gavrilev, I. Makarov: Fast Approximate Convex Hull Construction in Networks via Node Embedding

[27] L. A. Adamic and N. Glance, ‘‘The political blogosphere and the 2004 US
election: Divided they blog,’’ in Proc. 3rd Int. Workshop Link Discovery,
Aug. 2005, pp. 36–43.

[28] J. Kunegis, ‘‘KONECT: The Koblenz network collection,’’ in Proc. 22nd
Int. Conf. World Wide Web, May 2013, pp. 1343–1350.

[29] D. J. Watts and S. H. Strogatz, ‘‘Collective dynamics of ‘small-world’
networks,’’ Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[30] M. Newman. (2022).Mark Newman’s Compilation of Networks. [Online].
Available: http://www-personal.umich.edu/~mejn/netdata/

[31] J. Leskovec, J. Kleinberg, and C. Faloutsos, ‘‘Graph evolution: Densifica-
tion and shrinking diameters,’’ ACM Trans. Knowl. Discovery Data, vol. 1,
no. 1, p. 2, Mar. 2007.

[32] J. Leskovec and R. Sosič, ‘‘SNAP: A general-purpose network analysis
and graph-mining library,’’ ACM Trans. Intell. Syst. Technol., vol. 8, no. 1,
pp. 1–20, Jan. 2017.

[33] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for activation
functions,’’ 2017, arXiv:1710.05941.

[34] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, ‘‘PyTorch: An imperative style,
high-performance deep learning library,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 32, 2019, pp. 8026–8037.

[35] M. Y. Wang, ‘‘Deep graph library: Towards efficient and scalable deep
learning on graphs,’’ in Proc. ICLR Workshop Represent. Learn. Graphs
Manifolds, 2019, pp. 1–7.

[36] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[37] Z. Wu, X. Lin, Z. Lin, Z. Chen, Y. Bai, and S. Wang, ‘‘Inter-
pretable graph convolutional network for multi-view semi-supervised
learning,’’ IEEE Trans. Multimedia, early access, Mar. 23, 2023, doi:
10.1109/TMM.2023.3260649.

[38] M. R. Bridson and A. Haefliger,Metric Spaces of Non-Positive Curvature,
vol. 319. Berlin, Germany: Springer, 2013.

DMITRII GAVRILEV received the bachelor’s
degree in applied mathematics from HSE Univer-
sity, Moscow, Russia. He is currently pursuing the
master’s degree with Skoltech, Moscow.

In 2022, he was an Intern with the Huawei
Moscow Research Center. He is also an Intern
Researcher with Skoltech. His research interests
include graph ML and generative modeling.

ILYA MAKAROV received the Specialist degree
in mathematics from Lomonosov Moscow State
University, Moscow, Russia, and the Ph.D. degree
in computer science from the University of Ljubl-
jana, Ljubljana, Slovenia.

Since 2011, he has been a Lecturer with the
School of Data Analysis and Artificial Intelli-
gence, HSE University, where he was the School
Deputy Head, from 2012 to 2016, and he is
currently an Associate Professor and a Senior

Research Fellow. He was also the Program Director of the Bigdata Academy
MADE, VK, and a Researcher with the Samsung-PDMI Joint AI Center,
St. Petersburg Department, V.A. Steklov Mathematical Institute, Russian
Academy of Sciences, Saint Petersburg, Russia. He is also a Senior Research
Fellow with the Artificial Intelligence Research Institute (AIRI), Moscow,
where he leads the research in industrial AI. He became the Head of the AI
Center and Data Science Tech Master Program in NLP, National University
of Science and Technology MISIS.

VOLUME 11, 2023 54595

http://dx.doi.org/10.1109/TMM.2023.3260649

