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ABSTRACT Epileptic seizures are unpredictable events due to sudden abnormal electrical activities in the
brain of epilepsy patients. A seizure can be predicted by analyzing the EEG signals to prevent unwanted
life risks. The goal of this paper is to implement a method that will apply to design a lightweight,
wearable, and efficient seizure prediction device. The proposed method will satisfy two objectives. The
first objective is relevant feature extraction for the classification of EEG signals with excellent accuracy.
The second objective is the use of fewer EEG channels. In this paper, one 1D-CNN is applied for feature
extraction and classification of raw EEG signals for early prediction of seizure events. The 1D-CNN is
faster compared to 2D-CNN, which uses fewer trainable parameters. Hence, it is suitable to implement a
low-power energy-efficient seizure prediction device. In this paper, the NSGA-II algorithm is applied to get
the optimum set of EEG channels for seizure prediction. The NSGA-II algorithm identifies a set of three EEG
channels from twenty-two channels as the optimum channel set. The proposed method optimizes the EEG
channels from 22 to 3, i.e., 86.36% channel reduction. It provides the classification accuracy, sensitivity, and
specificity of 0.9651,0.9655, and 0.9647, respectively. The proposed method is better than the state-of-the-art
works under the condition of using three channels. The proposed method provides excellent performance
using only three EEG channels, which will be applicable to design a lightweight, low-power, and wearable
seizure prediction device.

INDEX TERMS Channel selection, EEG signals, multi-objective optimization, NSGA-II algorithm, seizure
prediction, 1D-CNN.

I. INTRODUCTION are classified into four [5], [6]. The state during the seizure

Epileptic seizure in recurrent is a neurological disorder of
epilepsy patients [1], [2]. Seizures occur due to excessive
electrical impulses inside the brain. These electrical impulses
can be measured by placing metal electrodes on the scalp. The
recording of these impulses is called an electroencephalo-
gram (EEG). The seizure is usually detected by analysis of
EEG signals [1], [2], [3]. The occurrences of seizure events
are violent shaking, loss of control, and loss of consciousness.
Hence, seizures reduce the quality of life of epilepsy patients.
There are 65 million epilepsy patients worldwide [4]. It is
required to predict the seizure events in advance to avoid the
life risks of these patients. The states of epilepsy patients
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event is called the ictal state. The states before and after
the seizure event are called pre-ictal and post-ictal states,
respectively. The normal state of the epilepsy patient is called
the inter-ictal state. Identification of the pre-ictal state is the
main task of seizure prediction in advance [3]. Hence, the
seizure prediction method is a classification task of inter-ictal
and pre-ictal states. The EEG signal patterns of these four
states are different, as shown in Fig. 1. The inter-ictal and
pre-ictal states can be classified based on the unique features
of EEG signals. The unique features need to be extracted
from EEG signals very carefully due to unique patterns for
individual epilepsy patients.

In the beginning, researchers extracted various handcrafted
features from EEG signals for seizure prediction. The most
commonly used handcrafted features were spectral features
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FIGURE 1. Sample pattern of EEG signals from patient CHBO1 (22 channels).

[7], [8], wavelet transform features [9], [10], zero crossing
rate [11], [12], spatial features [3], [13], fuzzy entropy fea-
tures [14], and correlation features [15] of EEG signals. They
exhibited the performance of their seizure prediction model
based on the classification of handcrafted features using
some machine learning algorithms. The most commonly used
machine learning algorithms were Multilayer perceptron [7],
[15], Support vector machine [8], [10], k-nearest neighbor
[16], [17], and linear discriminant analysis [18]. Although,
it was very difficult to prove which features provided good
performance for all epilepsy patients. Hence, most of the
researchers used deep learning techniques, which were used
to extract the most relevant features from the EEG sig-
nals for the classification of pre-ictal and inter-ictal states
to predict seizures in advance. The most commonly used
deep learning techniques are Convolution neural networks
[19], [20], [21], LSTM [22], [23], [24], DenseNet [24],
[25], Self-Organizing Maps [26], and Long-term recurrent
convolutional networks [27]. It was found that the use of
deep learning techniques provided better accuracy for seizure
prediction. Few researchers used deep learning techniques
for feature extractions from some transformed EEG signals
though DL has the capability to extract relevant features from
raw EEG signals. The most commonly used transformations
are discrete wavelet transforms [26], [27], continuous wavelet
transforms [28], and short-term Fourier transforms [4], [29].
All channels of EEG are not relevant for seizure prediction
[20], [30], [31]. Hence, one channel selection technique can
be applied to identify the relevant channels. A few researchers
used channel selection algorithms to find the optimized chan-
nel set for efficient seizure prediction [32], [33], [34], [35].
The accuracy in seizure prediction is not only the most
important factor for the development of a wearable headband.
The other two factors are the required computational power
and the number of EEG channels. Hence, our aim is to
decrease the computational cost and optimize the number of
channels for the implementation of a lightweight, low-power,
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and wearable seizure prediction device. In this work, one
1D-CNN is used for automatic feature extraction from EEG
signals for seizure prediction. The non-dominated sorting
genetic algorithm (NSGA-II) is also used to optimize the
number of EEG channels, which will help to implement
wearable seizure prediction devices. The remaining part of
the paper is organized as follows. The proposed methodology
is described in section II. In this section, the pre-processing
of EEG data, the architecture of the deep learning model,
and the optimization algorithm for channel selection are dis-
cussed. The experimental results are shown in section III. The
detailed results are discussed in section IV. The comparison
study of the proposed work with the state-of-the-art works is
also shown in this section. Finally, the conclusion of the pro-
posed work and the direction of future works are mentioned
in section V.

Il. PROPOSED METHODOLOGY

In this paper, we have proposed a patient-dependent seizure
prediction method. Most of the state-of-the-art works on
seizure prediction have used the standard CHB-MIT database
[36]. This database is a collection of EEG recordings
from 23 patients. It consists of two types of EEG record-
ings: seizure and non-seizure. The seizure recordings have at
least one seizure event, whereas the non-seizure recordings
were recorded during the normal situation of the epilepsy
patients. The EEG signals were recorded at 256 Hz. The
position of electrodes on the scalp was based on the inter-
national 10-20 systems. All recordings were captured using
at least 23 channels, where each channel consists of two dif-
ferent electrodes. In this section, the pre-processing of EEG
signals has been mentioned in the first part. The proposed
deep learning approach is mentioned in the next part, which
is used for feature extraction and classification of pre-ictal
and inter-ictal states for seizure prediction. Finally, one
channel optimization technique is applied to use less number
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TABLE 1. Names of 22 unique channels.

1d Name Id  Name

1 FP1-F7 | 12 P4-O2

2 F7-T7 13 FP2-F8
3 T7-P7 14 F8-T8

4 P7-01 15 T8-P8

5 FPI-F3 | 16 P8-02

6 F3-C3 17  Fz-CZ

7 C3-P3 18 CZ-PZ

8 P3-01 19 P7-T7

9 FP2-F4 | 20 T7-FT9
10 F4-C4 21  FT9-FT10
11  C4-P4 22 FTI10-T8

channel 22 /[
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FIGURE 2. Representation of 8-s EEG data with 22 channels.

of channels to implement lightweight, low-power, and wear-
able seizure prediction devices.

A. DATA PRE-PROCESSING

In this work, we have used EEG recordings of 23 patients.
The classification of pre-ictal and inter-ictal states is the main
task of seizure prediction. The duration of pre-ictal states is
unique for each seizure event. It was found that the pre-ictal
state lasts at least 10 minutes before each seizure event [28].
Hence, we have considered 10 minutes of EEG signals before
the seizure as pre-ictal data. The EEG signals of 10 min-
utes duration from non-seizure recordings are considered for
inter-ictal data. It is found that the range of signal intensities
in seizure and non-seizure EEG recordings is 110™* volt.
Hence, we have multiplied by 10* for standardization to get
faster convergence during the training of the model. Indi-
vidual researchers have used different sample duration of
EEG signals for seizure prediction. It was found that the
sample duration of 8-s EEG signals is sufficient for efficient
prediction [20]. Hence, we have considered 8-s EEG signals
as one sample in our proposed method. One 8-s duration of
EEG signals consists of 2048(8 x 256) intensities values as
the signals were recorded using 256 Hz. In this work, a total
of 22 channels has been considered as mentioned in Table 1.
These channels are fixed in all EEG recordings of 23 patients.
Hence, a sample of 8-s EEG signals for 22 channels is repre-
sented by 2048 x 22, as shown in Fig. 2. These samples are
used for training the model.

B. FEATURES EXTRACTION AND CLASSIFICATION

Deep learning is capable to extract relevant features from
EEG signals for seizure prediction [37]. Recently, CNN is
the most commonly used deep learning technique for seizure
prediction [19], [38], [39]. Most of the researchers have used
2D-CNN and 3D-CNN for feature extraction. 2D-CNN and
3D-CNN can extract the most relevant features which provide
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excellent performance. Although, they use millions of param-
eters. The limitation of 2D-CNN and 3D-CNN is the high
computational complexity. Hence, 2D-CNN and 3D-CNN
will not be suitable to implement low-power/low-memory
devices. The 1D-CNN can achieve excellent performance in
several applications [21], [40]. Our main aim is to implement
a seizure prediction device which will be low-cost hardware.
Hence, it is better to use the 1D-CNN for feature extraction
from EEG signals.

We have used one 1D-CNN model for automatic feature
extraction from EEG signals and classification of features
for seizure prediction, as shown in Fig. 3. The proposed
1D-CNN model consists of six convolution layers. The con-
volution layers are the most important part of CNN, which
is required for feature extraction from input data using a
set of filters. The size of 1D filters is 3. The Rectified
Linear Unit (ReLU) is applied in all convolution layers for
non-linearity in the output. The proposed 1D-CNN model
consists of six pooling layers. The pooling layer is also
important in CNN which reduces the computational cost of
the model by reducing the number of parameters using down-
sampling. We have used the max-pool operation which is
one of the most commonly used pooling operations in CNN.
The size of the max-pool region is 3. Hence, the number
of parameters reduces by 3 times in every max-pool oper-
ation which reduces a huge computation cost. Finally, the
fully connected layers are used for feature classification. The
proposed 1D-CNN model consists of two fully connected
layers. A total of 128 nodes is used in the first layer with
the ReLU activation function for non-linearity. In this work,
pre-ictal and inter-ictal are the two output classes. Hence,
the final fully connected layer contains only two nodes. The
Softmax activation function is used in the final fully con-
nected layer, which generates the output class probabilities
of pre-ictal and inter-ictal classes. In this work, the Binary
Cross Entropy measurement is used to calculate the total loss
for this two-class classification problem.

C. CHANNEL OPTIMIZATION

The main aim is to implement a lightweight wearable seizure
prediction device using less number of EEG channels. The
EEG signals are recorded using many channels. It was found
that all the channels are not relevant for seizure prediction
[20], [30], [31]. Hence, it is required to select a set of relevant
channels for efficient seizure prediction. There will be a total
of 2" — 1 number of unique sets using n channels by selecting
thesetof 1,2, 3, ....,n— 1, and n channels, as shown in (1).
It is an NP-Hard problem. For 22 EEG channels, there is a
(222 — 1) combination of sets. It will require a huge amount
of time to find the optimized channel set.

n
Number of combinations = Z "C; )
i=1

The accuracy decreases if we remove further channels after
the reduction of non-relevant channels [20]. The problem is
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FIGURE 3. Architecture of proposed 1D-CNN.

a two objectives optimization problem. The first objective
is to increase the classification accuracy and the second
objective is to use less number of EEG channels for seizure
prediction. Hence, it is required to apply a multi-objective
optimization algorithm to find the optimized channel set. The
optimized channel set will provide high classification accu-
racy using less number of EEG channels. NSGA-II is a fast
and elitist multi-objective optimization algorithm [41]. A few
researchers applied the NSGA-II optimization algorithm for
channel reduction in seizure prediction [42], [43]. In this
paper, we have used the NSGA-II optimization algorithm to
find the optimal channel sets. The working procedure of the
NSGA-II algorithm is mentioned in Algorithm 1.

The problem is defined as the minimization of the number
of EEG channels and the maximization of the classification
accuracy. The problem is converted into the minimization of
two objective functions fi and f>, where f] is represented as
the number of EEG channels and f; is represented as the
classification error rate. The error rate is defined as shown
in (2).

Error Rate = 1 — ClassificationAccuracy 2
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Algorithm 1 NSGA-II Algorithm
1: Initialize all parameters and randomly generate the initial
population with size N.

2: Fitness functions evaluation for the initial population.

3: while generation < MaxGeneration do

4:  Parent selections for next-generation using tournament
selection with size 2.

5. Perform one-point crossover and random mutation
operations to generate new offspring with size N.

6:  Evaluate fitness function for offspring.

7:  Combine parent and offspring population that makes
the population size 2N.

8:  Select N Chromosomes from the combined population
using the crowding distance method to keep again N
chromosomes for the next generation.

9: end while

10: Identify all solutions of the Pareto optimal front.

Algorithm 2 Crowding Distance Measure

1: Input a non-dominate set of points / for a Pareto front.

2: Find the value of n, where n is the number of points that
belong to /.

3: Initialize the distance d; = 0 for all points, where i = 1
to n.

4: for j = 1 to m (where m = number of objectives) do

5:  Sort ] according to the objective f;

6: djandd, =00

! for[; ~ fl.to "t —pai-n

8 1 — Y1 + (l);max_fj-‘minl)

9

. end for
10: end for
11: Return d

In this work, each binary chromosome is represented
using 22 genes. The 22 genes are representing 22 EEG
channels. The initial population is chosen randomly and the
population size is 12, which is chosen experimentally. The
parents are selected for crossover operation using tournament
selection of size 2. Here, the single-point crossover operation
is used. The random mutation technique is used, where the
mutation probability is 0.1. The parents and offspring popu-
lations are combined after crossover and mutation operations.
After that, the selection operations are applied based on
crowding distance to keep the fixed population size for the
next generation. The crowding distance is used to measure
the distance with its neighbors as mentioned in Algorithm 2.
Finally, all solutions of the Pareto optimal front are reported
after a fixed number of generations.

Ill. RESULT

The proposed 1D-CNN is trained using two seizure and two
non-seizure recordings from each patient. The EEG signals
with a duration of 10 minutes are considered from each
seizure and non-seizure recording. The EEG signals with a
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FIGURE 4. Schematic representation of the proposed seizure prediction method.

duration of 10 minutes consist of 593 training samples of
8-s duration each by considering a gap of 1-s. Hence, a total
of 1186 pre-ictal and 1186 inter-ictal samples are taken from
two seizure and two non-seizure recordings for training and
validation checking as mentioned in Fig. 4. The training
and validation data samples are divided into an 80:20 ratio.
The performances are measured using classification accuracy
(Acc), precision (Prec), sensitivity (Sen), specificity (Spec),
and F1-score which are calculated using (3), (4), (5), (6), and
(7), respectively. Here, TP stands for true prediction and FP
stands for false prediction.

TP of pre-ictal and inter-ictal states
Acc = 3)
Total no. of samples

TP of pre-ictal state

Prec = - -
TP of pre-ictal state + FP of pre-ictal state
“
S TP of pre-ictal state
en =
TP of pre-ictal state + FP of inter-ictal state
)
TP of inter-ictal state
Spec =

TP of inter-ictal state 4+ FP of pre-ictal state
(6)
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2 x Prec x Sen
F1—Score = ———— @)
Prec + Sen

Initially, the classification accuracies of the 2D-CNN
model and 1D-CNN model using 22 EEG channels are men-
tioned in Table 2. It is observed that the average accuracy
for 23 patients is 0.9963 using 2D-CNN and 0.9950 using
1D-CNN. The average classification accuracy of 1D-CNN
is reduced by 0.13%, which is negligible. The 1D-CNN
is 10 times faster compared to the 2D-CNN for testing a
sample. Hence, 1D-CNN is proposed which consists of a
very less number of parameters as shown in Table 3 and will
be applicable to design lightweight, low-power, and wear-
able seizure prediction devices. The NSGA-II algorithm is
applied for 100 generations to get the optimal channel set.
It is found that after 80 generations our NSGA-II model is
converged, as shown in Fig. 5. We have considered only
five patients(Chb01 to Chb05) to calculate the classification
error rate during 100 generations of the NSGA-II algorithm
due to huge computational time. The hypervolume (HV)
indicator is a widely recognized measure for performance
evaluation in multi-objective optimization [44]. It is a unary
value that measures the quality of the solutions to the opti-
mal set. The HV indicator is calculated using (8). We have
considered only two objectives (channel minimization and
error rate minimization) for optimization. Hence, the HV
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TABLE 2. Classification accuracy using 22 channels.

Patient ID  2D-CNN  1D-CNN
Chb01 1.0000 1.0000
Chb02 0.9970 0.9970
Chb03 0.9996 0.9996
Chb04 0.9983 0.9949
Chb05 0.9970 0.9932
Chb06 0.9992 0.9949
Chb07 0.9996 0.9983
Chb08 1.0000 0.9996
Chb09 1.0000 0.9996
Chb10 0.9992 0.9966
Chbl11 0.9890 0.9970
Chb12 0.9996 0.9970
Chb13 0.9992 0.9954
Chb14 0.9869 0.9751
Chbl15 0.9979 0.9987
Chbl6 0.9920 0.9949
Chb17 0.9958 0.9924
Chb18 0.9903 0.9937
Chb19 0.9983 1.0000
Chb20 1.0000 1.0000
Chb21 0.9890 0.9857
Chb22 0.9941 0.9954
Chb23 0.9924 0.9861
Mean 0.9963 0.9950

TABLE 3. Comparison of 2D-CNN vs. 1D-CNN.

Learning Number of  Acc Training Testing
Model parameters time time
2D-CNN 245650 0.9963 3850-s 9.8600-ms
1D-CNN 105250 0.9950 200-s 0.9511-ms

indicator calculates the area of the objectives space covered
by members of the Pareto optimal solutions with respect to
a reference point (rl, r2). In our optimization problem, r1 is
the maximum number of channels which is 22 and 12 is the
maximum error rate which is 1. The HV indicator values are
calculated for Pareto optimal front in every generation. It is
observed that our optimization technique is acceptable and
provides an HV indicator value of 0.9522 after 100 genera-
tions, as shown in Fig. 6.

HS,n=Aa| |J 7l ®)

peS and p<r

where A (-) denotes the Lebesgue measure and [p, r] = {q €
R?|p < gand g < r} denotes the box delimited below p € §
and above by r [44].

The fitness value of a channel set is considered based on
the average classification accuracy of five patients (Chb01
to Chb05). Only seven sets are identified as optimal sets of
channels after 100 generations. The accuracies of these seven
sets of channels are shown in Table 4. These are validation
accuracies during the training of the CNN model. Here, 20%
of samples are considered as validation data. The overall
performance of seven sets of channels is also measured
using 23 patients, as shown in Table 5.

A. PERFORMANCES USING SAMPLE DURATION OF 8-S
The performance of our proposed method is measured by test-
ing our prediction model using unknown EEG signals. A total
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TABLE 4. Accuracy of 7 sets of channels by considering 5 patients.

Channel IDs Number of channels  Acc

13 1 0.9830
12,13 2 0.9947
11,12,13 3 0.9956
9,12,13,17 4 0.9969
4,9,12,13,17 5 0.9983
1,2,3,7,9,11,12,13,18,21 10 0.9987
2,4,7,8,14,16,17,18,19,21,22 11 0.9988

of 87 seizure recordings and 85 non-seizure recordings are
used for testing. The EEG signals of 2 minutes duration
are selected randomly from each non-seizure recording. The
main aim of this paper is to alert epilepsy patients before the
seizure event to take necessary precautions. Hence, the EEG
signals of 2 minutes duration before ten minutes of the seizure
event are selected from each seizure recording for testing.
A total of 1305 pre-ictal samples and 1275 inter-ictal samples
are used to calculate the testing accuracy of our proposed
model. The overall performances of the seven sets of channels
are shown in Table 6.

B. PERFORMANCES USING MAJORITY VOTING
TECHNIQUE

In our proposed method, EEG signals with an 8-s duration are
considered as one sample for training and testing the CNN
model. Medical experts suggest that EEG signals with long
duration should be considered for efficient seizure prediction.
Here, we have not increased the duration of the samples of
EEG signals due to the implementation of a simple 1D-CNN
model with less number of parameters and layers. A major-
ity voting technique is considered here which increases the
performance of the proposed 1D-CNN model. The majority
of 15 consecutive samples are considered for the correct
prediction of seizure events. The overall performance using
the majority voting technique is shown in Table 7.

IV. DISCUSSION

In this work, a seizure prediction method is proposed which
will be applicable to implement a lightweight, low-power,
and wearable seizure prediction device. Jana et al. [20] used
2D-CNN for seizure prediction, which has a large number
of parameters. Here, one 1D-CNN is used, which has a very
less number of parameters, as shown in Table 3. Hence,
the computational cost is reduced in our proposed method.
The 1D-CNN is 10 times faster compared to the 2D-CNN
for testing a sample. Although, the classification accuracy is
reduced by 0.13%, which is acceptable to implement a seizure
prediction device with low computational cost.

In this work, the NSGA-II algorithm is applied to find
several optimal channel sets for efficient seizure predic-
tion. A total number of 7 optimal channel sets are selected
after 100 generations as shown in Fig. 5. It is found that the
accuracy, precision, sensitivity, specificity, and F1-Score are
better using a set of ten channels as mentioned in Table 7.
Although, it will be a very challenging task to design a
less-power consumable and lightweight wearable seizure

54117



IEEE Access

R. Jana, I. Mukherjee: Efficient Seizure Prediction and EEG Channel Selection

0.030 A

0.025 4

0.020 4

Error rate
o
o
oy
(6]
1

0.010 1

0.005 4

Initial

20 generation
40 generation
60 generation
80 generation
100 generation

ARERE

0.000 -

10 12 14 16 18

Number of channels

FIGURE 5. Number of channels vs. error rate in different generations of NSGA-II.

0.95 ~ {
0.94 - Generation HYV Indicator
5 ’ Initial Polulation 0.9013
5 Generation 10 0.9048
= Generation 20 0.9510
£ 0.93 Generation 30 0.9513
?C-’ Generation 40 0.9516
3 Generation 50 0.9518
S Generation 60 0.9519
g 0.927 Generation 70 0.9520
z Generation 80 0.9522
Generation 90 0.9522
0.91 - Generation 100 0.9522
0.90 A
0 20 40 60 80 100

Number of Generations

FIGURE 6. Generation-wise hypervolume indicator values.

TABLE 5. Performance measures by considering 23 patients during training.

Channel IDs Number of  Acc Prec Sen Spec F1-Score
channels
13 1 0.9432 0.9457 0.9404 0.9462 0.9428
12,13 2 0.9640 0.9658 0.9621 0.9659 0.9638
11,12,13 3 0.9715 0.9738 0.9690 0.9740 0.9713
9,12,13,17 4 0.9748 0.9761 0.9737 0.9760 0.9748
4,9,12,13,17 5 0.9795 0.9807 0.9784 0.9804 0.9794
1,2,3,7,9,11,12,13,18,21 10 0.9906 0.9915 0.9898 0.9915 0.9906
2,4,7,8,14,16,17,18,19,21,22 11 0.9922 0.9936 0.9908 0.9937 0.9921

prediction device using ten channels. Hence, we have con-
sidered the optimized channel set with three channels, which
provides better results compared to optimized channel sets
with one channel, two channels, four channels, and five
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channels for accuracy, precision, sensitivity, specificity, and
F1-Score. The proposed method provides the average sensi-
tivity and specificity of 0.9655 and 0.9647, respectively, using
only 3 EEG channels, as shown in Table 7. A comparison
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TABLE 6. Performance measures by considering 23 patients during testing.

Channel IDs Number of  Acc Prec Sen Spec F1-Score
channels
13 1 0.8395 0.8607 0.8146 0.8651 0.8370
12,13 2 0.8717 0.9052 0.8337 0.9106 0.8680
11,12,13 3 0.8942 0.9135 0.8736 0.9153 0.8931
9,12,13,17 4 0.9089 0.9246 0.8927 0.9255 0.9084
4,9,12,13,17 5 0.9198 0.9223 0.9188 0.9208 0.9205
1,2,3,7,9,11,12,13,18,21 10 0.9120 0.9256 0.8981 0.9263 0.9117
2,4,7,8,14,16,17,18,19,21,22 11 0.9182 0.9221 0.9157 0.9208 0.9189
TABLE 7. Performance measures by considering 23 patients using majority voting technique.
Channel IDs Number of  Acc Prec Sen Spec F1-Score
channels
13 1 0.8895 0.8953 0.8851 0.8941 0.8902
12,13 2 0.9244 0.9625 0.8851 0.9647 0.9222
11,12,13 3 0.9651 0.9655 0.9655 0.9647 0.9655
9,12,13,17 4 0.9651 0.9655 0.9655 0.9647 0.9655
49,12,13,17 5 0.9709 0.9556 0.9885 0.9529 0.9718
1,2,3,7,9,11,12,13,18,21 10 0.9767 0.9770 0.9770 0.9765 0.9770
2,4,7,8,14,16,17,18,19,21,22 11 0.9651 0.9655 0.9655 0.9647 0.9655

TABLE 8. Performance of proposed work and state-of-the-art works on CHB-MIT database.

Research work Year Pre-processing / Fea-  Learning technique Number of Number of Sen Spec
ture extraction channels patients
Usman et al. [4] 2020 STFT SVM 23 24 0.9270 0.9080
Zhang et al. [38] 2020 WPD and CSP CNN 18 23 0.9220 0.8800
Yao et al. [22] 2021 Raw EEG data Bi-LSTM 17 24 0.8730 0.8830
Jana et al. [20] 2021 Raw EEG data 2D-CNN 06 23 0.9783 0.9236
Ryu et al. [24] 2021 DWT DenseNet and LSTM 22 24 0.9292 0.9365
Usman et al. [39] 2021 EMD + CNN SVM + CNN + LSTM 23 22 0.9628 0.9565
Guo et al. [27] 2022 DWT EasyEnsemble 18 24 0.9555 0.9257
Zhao et al. [45] 2022 Raw EEG data AddNet-SCL 23 19 0.9490 0.9230
Shen et al. [46] 2023 Tunable-Q wavelet CNN 8 16 0.9890 0.9790
transform
Kapoor et al. [47] 2023 Statistical features Ensemble classifier 22 23 0.9467 0.9136
Proposed method 2023 Raw EEG data 1D-CNN 03 23 0.9655 0.9647

table with our proposed method and the state-of-the-art works
is shown in Table 8. All the state-of-the-art works mentioned
in Table 8 used the same database i.e. CHB-MIT database.
Itis observed that our proposed method is more efficient com-
pared to others under the condition of using three channels.
The proposed method demonstrates that it is capable to learn
the patterns of EEG signals using only a few electrodes for
efficient seizure prediction. Hence, it will be applicable to
implement a wearable seizure prediction device that will be
low computational cost and energy efficiency.

V. CONCLUSION

This paper presents an optimal seizure prediction method
using raw EEG signals. The 1D-CNN is more applica-
ble for designing low-power/low-memory seizure prediction
devices. Hence, one 1D-CNN is applied here for automatic
feature extraction and classification of EEG signals. The
NSGA-II multi-objective optimization algorithm is applied to
find the optimal channel set for seizure prediction. The EEG
recordings of 23 patients from the CHB-MIT database are
used during training and testing to measure the performance
of our proposed method. It provides an average sensitiv-
ity and specificity of 0.9655 and 0.9647, respectively. The

VOLUME 11, 2023

proposed method optimizes the EEG channels from 22 to 3,
i.e., 86.36% channel reduction. The proposed method pro-
vides excellent performance using only three EEG chan-
nels, which is better than the state-of-the-art works. Hence,
it will be applicable to implement a lightweight, low-power,
and wearable seizure prediction device. However, this is
a patient-dependent seizure prediction method. Hence, the
future scope of this work is to develop a patient-independent
seizure prediction method with excellent performance for all
epilepsy patients.
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