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ABSTRACT Downtime caused by equipment failure is the biggest productivity problem in the 24-hour
a day operations of the semiconductor industry. Although some equipment failures are inevitable, increases
in productivity can be gained if the causes of failures can be detected quickly and repaired, thus reducing
downtime. Univariate control charts are commonly used to detect failures. However, because of the
complexity of the process and the structural characteristics of the equipment, detection and identification
of the causes of failures may be difficult. The purpose of this study is to use correlations of variables to
detect failures in semiconductor equipment, to predict the parts to be replaced and to identify the primary
causes of failures. The proposed method consists of four steps: (1) conversion of the multivariate time
series data of the equipment into signature matrixes, (2) detection of anomalies through a convolutional
autoencoder, (3) learning classification models with supervised learning methods that use the residual
matrixes of fault sections, and (4) application of an explainable algorithm to interpret the classificationmodel.
The effectiveness and applicability of the proposed method are demonstrated by the actual multivariate time
series data obtained from 8-inch ashing process equipment that produces semiconductors on 8-inch silicon
wafers.

INDEX TERMS Anomaly detection, explainable artificial intelligence, multivariate time series, semicon-
ductor process, signature matrix.

I. INTRODUCTION
Semiconductors are essential components of the Internet of
Things, smart TVs, smartphones, and autonomous vehicles.
Equipment and process downtime should be minimized to
improve productivity in the manufacturing of semiconduc-
tors. The major causes of downtime are preventive mainte-
nance (PM) and breakdown maintenance (BM) [1]. PM is the
replacement of parts before the expiration of their expected
lifespan. The necessary replacement parts are typically read-
ily at hand because of their predicted lifespans and replace-
ment dates. Therefore, PM completion time is predictable.
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In other words, the idle time of the equipment can be pre-
dicted, and semiconductor production plans can be estab-
lished accordingly. In contrast, BM is performed when
unexpected failures occur. BM requires engineers to deter-
mine why equipment failed and take appropriate actions.
However, these appropriate actions of identifying the equip-
ment involved, procuring it, and implementing the repairs as
quickly as possible hinge on promptly identifying the cause
of a failure.

In the semiconductor industry, fault detection and clas-
sification (FDC) systems detect equipment failures. These
systems rely on collecting sensor data (e.g., temperature,
pressure, and power) in real time and detecting and signal-
ing equipment abnormalities [2]. Various processes occur in
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a semiconductor factory, and each process has a different
equipment structure. Consequently, the processes are compli-
cated, and the engineers for each process set a sensor thresh-
old for the FDC systems. When a specific sensor trend falls
below the lower threshold or exceeds the upper threshold,
the corresponding sensor is interlocked, preventing the equip-
ment from operating under certain conditions. Engineers use
FDC systems to determine sensor data that exceed the thresh-
old and identify the parts that require inspection. However,
semiconductor equipment functions by combining various
process factors, such as pressure, temperature, and power.
Notably, physical or structural correlations exist between
the sensors in the equipment. Consequently, sensors alone
may fail to detect failures [3], [4]. For example, plasma is
used during etching. When a temperature of several thousand
degrees is applied to an object, the object passes through
solid-liquid-gas states, and the molecules collide, resulting
in ionization. The ionized state is termed plasma, which is
known as the fourth state. However, because it is challenging
to supply temperatures of several thousand degrees, plasma
in the semiconductor industry is generated by lowering the
pressure and applying electric power [5]. If the prescribed
pressure cannot be maintained consistently, normal plasma
cannot be generated. Therefore, the standing and reflected
waves of the power become unstable, and the data generated
by the sensor that detects power deviate from the threshold
value.

Currently, engineers monitor the FDC systems and sub-
jectively determine the cause of a failure and the remedial
action necessary. However, such a methodology based on
work experience results in differences in BM that affect semi-
conductor production and productivity. Therefore, to reduce
the time required for action and increase manufacturing pro-
ductivity, it is crucial to use artificial intelligence (AI) that
can use multivariate sensor data from the equipment to detect
failures and determine their exact cause.

Many studies have been conducted on how to detect equip-
ment anomalies in the semiconductor industry. Approaches
that have been investigated include univariate control
charts, including Shewhart, cumulative sum, and exponen-
tially weighted moving average charts. However, univariate
approaches can not take into account the correlations that can
occur between sensors [6].

Therefore, the semiconductor industry needs monitoring
and diagnostic methods that can handle multivariate pro-
cesses. Data collected in the semiconductor manufacturing
processes are unbalanced in that abnormal data are scarce [7],
[8]. In situations in which a few abnormal data are avail-
able, studies capable of predicting anomalies based solely
on normal data are essential [9]. Reference [3] trained a
k-nearest neighbor (k-NN) model using multivariate sensor
data from equipment in a semiconductor etching process. The
equipment abnormality was detected based on its similarity
to a sample of the training set that consisted of only normal
data. The data were considered normal if the distances
between the input data points in the sample and the

trajectories of the normal samples in the training data
were less than a threshold value. Reference [10] performed
anomaly detection by combining convolutional autoencoder
(CAE) with k-NN. The CAE was trained using the normal
dataset from the etching process to extract its features. The
distance between the normal data features was calculated
using k-NN. When the distance between the feature of new
data and the feature of normal data exceeds the k-NN dis-
tance, it was identified as abnormal. Reference [11] proposed
a stacked autoencoder (AE) that can use time-frequency anal-
ysis to detect anomalies in multivariate sensor data from
equipment used in chemical vapor deposition. Reference [12]
proposed a variational AE (VAE) neural network by com-
bining a convolutional neural network (CNN) and a VAE
network. They used the multivariate time series data of the
etching process equipment and used only normal data to
train the network. The data were considered abnormal if the
reconstruction errors between the input and output variables
exceeded a specific threshold. Previous studies showed sig-
nificant success in detecting anomalies based exclusively on
learning from normal data. However, k-NN and AE methods
cannot provide clear interpretations of the results. Therefore,
these proposed networks failed to explain the primary causes
of equipment anomalies and lacked the capability to interpret
the relationships between the multivariate data variables [13].

The present study proposes a method that can detect
equipment anomalies and identify the key process variables
responsible for anomalies inmultivariate processes. Themain
contributions of this study can be summarized as follows:

1) Signaturematrixes using inner products were applied to
detect equipment abnormalities to reflect the existence
of correlations between the sensor data of semiconduc-
tor equipment.

2) Parts needing replacement were predicted by using the
residual matrixes of the abnormal section.

3) The primary factors of the replacement parts were iden-
tified using Shapley additive explanations (SHAP).

The remainder of this paper is organized as follows.
Section II briefly reviews the multivariate time-series
anomaly detection. Section III explains the proposedmethod-
ology. Section IV presents a comparison of the experimental
results. Section V presents our concluding remarks and future
research directions.

II. RELATED WORKS
Multivariate time-series anomaly detection is a crucial prob-
lem in many industries. Detecting anomalies in the man-
ufacturing process is important to minimize the produc-
tion of defective products and prevent system failures. Ref-
erence [14] used only the normal data from the etch-
ing process of semiconductor manufacturing and performed
anomaly detection through machine learning techniques such
as over-sampling principal component analysis (OsPCA)
[15], angle-based outlier detection (ABOD) [16], and local
outlier factor (LOF) [17]. Reference [18] used an isolation
forest (iForest) [19] to detect defective wafers using data from
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particle level measurement sensors inside a semiconductor
clean room. Reference [20] detected defect intrusions or
anomalies in network traffic using the k-means clustering
algorithm, which groups objects into k number of clusters
based on their similarity to the centroid of each cluster.
In addition, [21] used the one-class support vector machine
(OCSVM) [22] to detect network intrusions. OCSVM iso-
lates a set of data points representing normal behavior from
the rest of the data and identifies all data points outside its
boundaries as anomalous behavior. Reference [23] detected
false data injection threats using a deep auto-encoding Gaus-
sian mixture model (DAGMM) [24], which combines a com-
pression network through an autoencoder and an estimation
network through a Gaussian mixture model. While these
anomaly detection methods have been proven effective in
many applications, they may not work well with multivariate
time series because of their limitations in capturing temporal
dependencies. To address this issue, researchers have studied
anomaly detection models that take temporal dependencies
into account. Reference [25] applied long short term memory
AE (LSTM-AE) [26] to multivariate time-series data from
a semiconductor plasma etch machine to detect defective
wafers. Reference [27] analyzed network event sequences
with LSTM and classified the output features of LSTM with
linear discriminant analysis (LDA) to detect anomalies in
industrial control networks. Reference [28] used discrete-
wavelet-transformation (DWT) and LSTM-AE to accurately
detect short-term and long-term anomalies inmultiple pumps.
Reference [29] extracted the features of each sensor with a
CNN head to create a feature map, and then used a recurrent
neural network (RNN) to identify temporal patterns to detect
abnormalities in real industrial service elevators. However,
RNN and LSTM are sensitive to noises and thus can be less
accurate if the input data is noisy. For noisy data, anomaly
detection methods using denoising autoencoder (DAE) exist.
Reference [30] proposed a fault detection method using DAE
on etching and chemical vapor deposition process data. The
DAE, trained only on normal data, could not remove the
noise of abnormal data, leaving residual noise, which was
used for fault detection. Similarly, [31] used DAE to detect
wafer defects in the thin film process at a semiconductor
fabrication plant. In addition, [32] used stacked denoising
autoencoder (SDAE) with data from a photolithography tool
to detect defects in wafers. Furthermore, [33] proposed unsu-
pervised anomaly detection (USAD), which combines the
stable learning advantages of autoencoder and the precise
anomaly detection advantages of adversarial learning. This
methodwas used to conduct anomaly detection on four public
multivariate time-series datasets. USAD is also very efficient
and robust to noise in the data. These studies have demon-
strated excellent performance in anomaly detection. How-
ever, they could not provide interpretations for the results,
leading to the need for research that can detect the causes
of anomalies. Reference [34] attempted to detect anomalies
with AE and applied SHAP to explore influencing factor of
anomalies detected in the chiller data. Reference [35] adopted

LSTM model to detect anomalies in hot rolling process
and combined SHAP to find causal variables for anomalies.
Reference [36] used an isolation forest (iForest) to detect
anomalies in multivariate time series data from magnetic res-
onance imaging (MRI) devices and applied SHAP to identify
critical sensors associatedwith scan failures or abnormalMRI
device behavior. These studies provided an interpretation of
the causal variables after anomaly detection. However, they
did not provide interpretations associated with the correlation
between variables, which is crucial in multivariate data when
detecting anomalies.

In this study, we performed anomaly detection consider-
ing the correlation between multivariate time series data of
semiconductor process equipment. In addition, we used the
residual matrix to predict equipment failure parts in abnor-
mal regions and applied SHAP to identify pair sensors that
contribute significantly to the prediction of failure parts. This
allows us to provide contribution points for the action deci-
sions of engineers.

III. PROPOSED METHOD
Figure 1 shows the overall structure of the proposed method,
which consists of four main steps: First, the multivariate time
series data of the semiconductor equipment are transformed
into signaturematrixes. Next, anomaly detection is performed
using the signature matrixes as the input to a convolutional
AE (CAE). Classification, based on the residualmatrixes gen-
erated in the abnormal sections, is then performed to predict
the correct replacement part. Finally, the primary causes of
failure are identified using SHAP.

A. SIGNATURE MATRIX OF TIME SERIES DATA
Because the semiconductor manufacturing processes typ-
ically involve multivariate sensor data, the correlations
between the variables should be considered. In addition, these
multivariate sensor data contain noises. Reference [37] pro-
posed a signature matrix calculated by the inner product of
time series data to address multivariate data with noises.

Figure 2 shows an example of a multivariate time series
data where Xi represents the ith time series observation and
Xwi represents the time window (between time t−w and time
t) in the ith time series. Considering the two time series Xwi =

(x t−wi , x t−w−1
i , · · · , x ti ) and X

w
j = (x t−wj , x t−w−1

j , · · · , x tj ),
the inner product of the two time series data can be calculated
as follows:

mtij =

∑w
δ=0 x

t−δ
i x t−δ

j

k
, (1)

where k is a rescale factor (k = w).
An n×n signature matrixM t at time t is generated through

the inner product of (1). Figure 3 shows an example of the
signature matrix.

Signature matrixes are generated for each time window.
In addition, three-channel matrixes are generated based on
long, medium, and short sizes of a time window to extract
various features from a signature matrix. Figure 4 shows an
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FIGURE 1. Framework of proposed methodology. The proposed method consists of four steps: (1) transformation of time-series data into
signature matrix, (2) anomaly detection using signature matrix as input, (3) classification using residual matrix, and (4) interpretation of the
classification model using SHAP.

example of three-channel matrixes and the process of how
they are generated.

Subsequently, an n × n signature matrix is generated for
each section, and a three-channel signature matrix is gener-
ated in a time window. In this study, the short, medium, and
long sections are 25, 50, and 100, respectively.

B. ANOMALY DETECTION BASED ON SIGNATURE MATRIX
As the time window moves, the multivariate time series data
are converted into a signature matrix. At this point, there
are instances in which both the normal and abnormal data
are included within the same time window. If any abnormal
data are included within the time window, they are labeled as
abnormal; however, this is not a definitively abnormal label.

For instance, if 99% of normal data and 1% of abnormal data
are included within the same time window, the correspond-
ing signature matrix is labeled as abnormal; however, its
abnormal status remains uncertain. Therefore, it is necessary
to definitively detect abnormal labels. To this end, anomaly
detection is performed to detect certain abnormalities.

AE has been primarily used in the field of unsupervised
anomaly detection and has performed excellently [38]. The
CAE is an AE structure that is converted into a convolu-
tional structure. A CAE consists of an encoder and a decoder
that contain convolution and transposed convolution layers,
respectively. The encoder creates a feature representation by
compressing and summarizing the characteristics of the input
data. The decoder aids in the reconstruction of the feature
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FIGURE 2. Example of multivariate time series data.

FIGURE 3. Example of an n × n signature matrix Mt at time t .

representation compressed by the encoder [39]. Figure 5
shows the structure of a CAE.

As shown in Figure 5, the input is a three-channel signa-
ture matrix. ‘‘Conv’’ represents a convolution layer in which
3 × 3 means that the kernel size is 3. C and P denote the
number of output channels and the padding size, respectively.
The stride was set to 1. Both the encoder and decoder of the
CAE are composed of four hidden layers, and each hidden
layer consists of a batch norm and an activation function
structure after convolution. Scaled exponential linear units
(SELU) [40] are used as the activation function. In this study,
we used SELU because it can activate a self-regulating neural
network to increase the accuracy of the autoencoder and
reduce the need for complex regularization techniques. SELU
is also known to be superior to other activation functions in
terms of convergence speed [41], [42]. Table 1 presents the
CAE network structure.

The CAE is trained by three-channel signature matrixes
consisting of only normal data as inputs. The following loss
function is defined by minimizing the difference between the
input and output data:

lossfunction =

∑
t

3∑
c=1

∥∥x t:,:,c − x̂ t:,:,c
∥∥2
F , (2)

where x is the input matrix component, x̂ is the output matrix
component. c is the channel, and F is the Frobenius norm that
represents the Euclidean distance for each component of the
matrix. If the signature matrixes, including abnormal data, are
used as the input, the anomaly score between the input and
output data is high because it cannot be reconstructed nor-
mally. The CAE can detect anomalies based on an anomaly
score.

FIGURE 4. Example of a three-channel signature matrix of n × n × 3 in a
time window. S, M, and L represent short, medium, and long sizes.

FIGURE 5. Structure of a convolutional autoencoder.

In this study, the anomaly score is the number of matrix
components that exceed a specific threshold δ among the
components of the residual matrixes developed using the
difference between the input and output data. δ is determined
empirically [37]. Because each residual matrix component
represents a reconstruction error, a large residual matrix
component indicates that the time series data constituting
the component is abnormal. Moreover, if the anomaly score
exceeds a threshold τ , it is considered an anomaly. The
mean value of the anomaly score of the validation data of
only normal observations can be set as τ , which is defined
as

τ = α · mean{score(t)valid }, (3)

where score(t)valid are the anomaly scores of the validation
data. Specifically, we set the threshold by multiplying the
mean of anomaly scores in the validation data by the hyper-
parameter α. We have determined the appropriate value of
α such that F1 score was maximized. Table 2 shows the
performance of outcomes in terms of precision, recall, and
F1 score by changing α. In our study, we set α = 1.7.
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TABLE 1. CAE network structure: The k, s, p, n, BN denote kernel size,
stride, padding, the number of channels, and batch normalization,
respectively. Output represents the output dimension.

TABLE 2. Performance of anomaly detection in terms of average values
of precision, recall, and F1 scores as the α varies. Standard deviations are
shown in parentheses.

C. CLASSIFICATION USING RESIDUAL MATRIX
A replacement part is predicted using the three-channel resid-
ual matrixes of the section that has been definitely identified
as abnormal in the abnormal section. Three-channel residual
matrixes have various characteristics because the three chan-
nels consist of short, medium, and long sections. The residual
matrix of the three sections is added to create an n×n residual
matrix that combines these characteristics. Subsequently, this
matrix is transformed into a row of residual vectors. The
residual vector is set as the input variable of classification

model, and the part label replaced in the abnormal section is
set as the target variable. The multilayer perceptron network
(MLP) is trained by using a supervised learning method to
predict the part to be replaced in the abnormal section.

D. INTERPRETATION OF CLASSIFICATION RESULTS
Classification and predictive performance have signifi-
cantly improved because of advances in deep learning
algorithms [43]. However, understanding how deep learning
algorithms make decisions is challenging because of their
complexity. Therefore, methods to explain the output of the
deep learning model is necessary [44]. In this study we use
the SHAP, one of the explainable methods that can identify
the importance of variables; it does so by representing the
absolute influence of each variable through calculating the
absolute value of the variable importance score and aver-
aging it [45]. In this study, we used the KernelSHAP algo-
rithm, which is more efficient than the original SHAP [46].
Although DeepSHAP exists, which is specialized for deep
neural networks, we decided to use the KernelSHAP because
KernelSHAP tends to be more accurate because it computes
Shapley values for all possible combinations in the input fea-
ture space and takes into account the importance of the input
features [46]. In our experiment, we found that KernelSHAP
and DeepSHAP produced similar results. Specifically, the
KernelSHAP is applied to investigate the primary factors of
replacement parts and the relationships among variables.

IV. EXPERIMENTS
A. DATA COLLECTION AND PREPROCESSING
The data used in this study were the multivariate time series
data from the equipment of an 8-inch ashing process that
produces semiconductors on 8-inch silicon wafers. A total of
242,780 time steps were collected, with 227,913(94%) and
14,867(6%), respectively, of normal data and abnormal data.
Seven input variables were used; these include temperature,
pressure in the equipment, flow rate by gas type, and power.
As for the target variables, two labels were used. The first
label indicates the status of the normal and abnormal sec-
tions of the equipment, and the second label indicates parts
replaced for each abnormal section. Six abnormal sections
and six classes of part labels were used. Six sections consist
of two short-term abnormal sections (0.004%, 0.16%), three
medium-term abnormal sections (0.84%, 1.29%, 1.39%), and
one long-term abnormal section (2.4%). In addition, each
abnormal section has a part label that indicates the primary
cause of the failed equipment.

One-hot encoding to the label was applied in which the
normal was 0 and the abnormal was 1. Because the part label
had six classes, Part A was transformed into 100000, Part B
was transformed into 010000, and in the same way, Parts C
to F were transformed into 001000 to 000001. Subsequently,
the time window was set to 100. Furthermore, while the
time window was moving (i.e., stride = 5), the dataset in the
time window was relabeled as abnormal (1) if an abnormal
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label (1) was included in the time window. Moreover, when
the dataset in the time window was relabeled as abnormal (1),
the part label that was transformed into one-hot encoding was
set by the second label. The preprocessed data were divided
into three parts based on abnormal data in the test set. The
test set consisted of both abnormal (30%) and normal data
(70%), and the training and validation data consisted of only
normal data. Namely, the data were divided into training
(64%), validation (16%), and test set (20%). For further pre-
processing, the training data were normalized by using the
z-score normalization method with a mean and a standard
deviation of 0 and 1, respectively, except for the label data.
Note that normalization was performed on the validation and
test set by using the mean and variance of the training data.

B. PERFORMANCE EVALUATION
In this study, precision, recall, and an F1 score were used to
evaluate the performance of the anomaly detection algorithm.
Furthermore, accuracy was used to evaluate the performance
of the classification algorithm. Precision is the ratio of data
that are correctly predicted as normal by the model to the
actual normal data, and recall is the ratio of data that are
correctly predicted as abnormal by the model to the actual
abnormal data. The F1 score is the harmonic mean of the
precision and recall. Accuracy is the proportion of a correct
prediction made by a model. Precision, recall, F1 score, and
accuracy are calculated by the following equations:

precision =
TP

TP+ FP
, (4)

recall =
TP

TP+ FN
, (5)

F1 score = 2 ·
precision · recall
precision+ recall

, (6)

accuracy =
TP+ TN

TP+ TN + FP+ FN
, (7)

where TP (true positive) refers to the true cases that the model
predicts as true. FP (false positive) is the false cases that the
model predicts as true. FN (false negative) refers to the true
cases that the model predicts as false. TN (true negative) is
the false case that the model predicts as false.

C. ANOMALY DETECTION PERFORMANCE
The LOF [17], OCSVM [22], iForest [47], AE [48],
VAE [49], DAGMM [24], LSTM-AE [26] and USAD [33]
were used in comparative experiments. Comparisons of per-
formance in anomaly detection were made before and after
transforming the time series data into a signature matrix. The
LOF, iForest, OCSVM, AE, VAE, DAGMM and USADwere
tested before and after the signature matrix transformation.
It is noted that because LSTM-AE performs anomaly detec-
tion on sequential data, we only tested LSTM-AE before
reflecting the signaturematrix. The CAEwas only tested after
the signature matrix transformation. Adam optimizer [50]
was used to train the CAE for 30 epochs by using a minibatch
gradient descent method. The experiments were repeated five

TABLE 3. Comparison of anomaly detection methods in terms of average
values of precision, recall, and F1 scores. Standard deviations are shown
in parentheses.

times, and the average and standard deviation values were
reported for comparison in Table 3.

The results revealed that the AE, VAE, LSTM-AE and
USAD outperformed the LOF, OCSVM, and iForest in
terms of F1 scores. In general, real-world multivariate time
series data contains noise, which affects the performance of
LSTM [37]. As a result, LSTM-AE performed worse than
AE and VAE. Furthermore, when the correlations between
variables were taken into account using the signature matrix,
the performances of the LOF, OCSVM, iForest, AE, VAE and
USAD models were improved. DAGMM performed some-
what worse than the other models. However, we could see
that DAGMM also improved its precision, recall, and F1
score performance when using the signature matrix as input.
Additionally, the CAE model with the signature matrix as the
matrix input yielded the best results in terms of the F1 scores.

D. CLASSIFICATION PERFORMANCE
This study compared cases in which residual matrixes and
residual vectors were used as inputs. A CNNmodel was used
when residual matrixes were used as input. A MLP model
was used when residual vectors were used as input. Table 4
presents the network structures of the classification models.
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FIGURE 6. Importance of sensor pairsćorrelation of each parts, as ranked by the KernelSHAP method.

TABLE 4. Two classification model network structures: CNN feeding a
signature matrix as input and MLP feeding a signature vector as input.

The CNN consisted of three convolution layers, two fully
connected layers, and one output layer. Dropout [51] was
applied to the fully connected layers. A rectified linear
unit [52] was used as the activation function, and softmax
was applied to the output layer. The MLP consisted of three
hidden layers and one output layer, and the number of nodes
in each hidden layer was 70, 30, and 10. Dropout was applied
to the hidden layers. Tanh was used as the activation function,
and softmax was applied to the output layer. For hyperparam-
eter optimization, the minibatch gradient descent method was

used in conjunction with Adam optimizer for 50 epochs for
the CNN andMLP. The residual matrixes for the CNN, or the
residual vectors for the MLP, were divided into three parts,
namely, training (64%), validation (16%), and test set (20%).
The experiment was repeated 10 times by changing the seeds
each time. Table 5 and Table 6, respectively, summarize the
classification accuracy for each iteration and part.

TABLE 5. Classification performance reported using the averaged
accuracy score and standard deviation (in parentheses).

Table 5 shows that the MLP with residual vectors as
input outperformed the CNN with residual matrixes as input.
Table 6 shows that, in the CNN, the classification accuracy
of Part A and Part E was 0 and 0.6525, respectively. In the
MLP, the classification accuracy of Part A and Part E was
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TABLE 6. Classification performance reported using the averaged
accuracy score and standard deviation (in parentheses).

0.675 and 0.9744, respectively. In other words, because the
MLP performs better than the CNN in terms of the classifica-
tion accuracy of Parts A and E, theMLP is more accurate than
CNN. It was believed that the failure of the CNN to classify
Part A was caused by an insufficient number of training data.
Table 7 presents the number of residual matrixes for each part.

TABLE 7. Number of residual matrices by part.

The number of residual matrixes for Part A was the small-
est because the failure period of this part was shorter than
those of the other parts. Therefore, it was determined that the
CNN was not properly trained because of too few training
data.

E. IMPORTANCE OF SENSOR PAIRS’ CORRELATION BY
USING KernelSHAP
Figure 6 shows the importance of sensor pairs’ correlation
that contributed to classifying Parts A, B, C, D, E, and F,
as ranked by the SHAP method. The greater the absolute
influence of pair in the graph, the more it can be interpreted
as having a significant impact on prediction of the relevant
part.

For example, it can be observed that 7_6 exists at the top
in Part C. This implies the correlation between Sensors 7
and 6 had a significant impact on predicting replacement of
Part C. For Part E, 6_7, 4_7, and 7_7 exist at the top. If Part
E, which controls signal processing, encounters a challenge,
the abnormality can be interpreted as occurring in the trends
of Sensors 6, 4, and 7 that are related to Part E. Moreover,
for both Part A and D, 6_6 is identified as the most important
contributing factor. This suggests that the correlation of 6 and
itself (i.e., Sensor 6 only) is an influential feature for both Part
A and Part D classes. Application of SHAP to theMLPmodel
permits explanation of the relationship between pair sensors
(i.e., correlation between the sensors) in identifying the part
at fault in an equipment failure.

V. CONCLUSION
This study presents a framework for the use of multivariate
sensor data to detect abnormalities and identify their causes in
semiconductor manufacturing processes. Signature matrixes
are generated to reflect the correlation between the variables

and are used as the input to the CAE for anomaly detec-
tion. Furthermore, residual matrixes are used to predict the
parts to be replaced for each abnormal section detected by
CAE. In this study, residual matrixes are transformed into
residual vectors to be used as an input for the MLP model.
Additionally, SHAP is applied to the MLP to identify the
major factors related to the equipment failure. Several future
research directions could enlarge upon this study. Because
the data in this study had a small number of variables, MLP
and SHAP could be applied as classification and explainable
algorithms.When the number of variables is large, it is appro-
priate to apply CNN as a classification model. In addition,
when CNN is used in the future as a classification model,
a method to determine the relationship between the variables
will be investigated and implemented. Nevertheless, even
without this further research, the proposed method can con-
tribute to timely and accurate decision making by engineers
in trouble-shooting equipment failures and thus increase the
productivity of the semiconductor industry.

REFERENCES
[1] S. Munirathinam and B. Ramadoss, ‘‘Big data predictive analtyics for

proactive semiconductor equipment maintenance,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Oct. 2014, pp. 893–902.

[2] E. L. Park, J. Park, J. Yang, S. Cho, Y.-H. Lee, and H.-S. Park, ‘‘Data based
segmentation and summarization for sensor data in semiconductor manu-
facturing,’’ Expert Syst. Appl., vol. 41, no. 6, pp. 2619–2629, May 2014.

[3] Q. Peter He and J. Wang, ‘‘Fault detection using the k-nearest neighbor
rule for semiconductor manufacturing processes,’’ IEEE Trans. Semicond.
Manuf., vol. 20, no. 4, pp. 345–354, Nov. 2007.

[4] T. Kourti and J. F. MacGregor, ‘‘Process analysis, monitoring and diagno-
sis, usingmultivariate projectionmethods,’’Chemometric Intell. Lab. Syst.,
vol. 28, no. 1, pp. 3–21, Apr. 1995.

[5] H. Conrads and M. Schmidt, ‘‘Plasma generation and plasma sources,’’
Plasma Sources Sci. Technol., vol. 9, no. 4, pp. 441–454, Nov. 2000.

[6] A. Thieullen, M. Ouladsine, and J. Pinaton, ‘‘Application of principal
components analysis to improve fault detection and diagnosis on semi-
conductor manufacturing equipment,’’ in Proc. Eur. Control Conf. (ECC),
Jul. 2013, pp. 1445–1500.

[7] G. Michau, Y. Hu, T. Palmé, and O. Fink, ‘‘Feature learning for fault
detection in high-dimensional condition monitoring signals,’’ Proc. Inst.
Mech. Eng., O, J. Risk Rel., vol. 234, no. 1, pp. 104–115, Feb. 2020.

[8] W. Jiang, Y. Hong, B. Zhou, X. He, and C. Cheng, ‘‘AGAN-based anomaly
detection approach for imbalanced industrial time series,’’ IEEE Access,
vol. 7, pp. 143608–143619, 2019.

[9] G. Pang, C. Shen, L. Cao, andA. V. D. Hengel, ‘‘Deep learning for anomaly
detection: A review,’’ ACM Comput. Surv., vol. 54, no. 2, pp. 1–38,
Mar. 2021.

[10] H. Zhang, P. Wang, X. Gao, H. Gao, and Y. Qi, ‘‘Automated fault detection
using convolutional auto encoder and k nearest neighbor rule for semicon-
ductor manufacturing processes,’’ in Proc. 3rd Int. Conf. Intell. Auto. Syst.
(ICoIAS), Feb. 2020, pp. 83–87.

[11] D. Liao, C. Chen, W. Tsai, H. Chen, Y. Wu, and S. Chang, ‘‘Anomaly
detection for semiconductor tools using stacked autoencoder learning,’’ in
Proc. Int. Symp. Semicond. Manuf. (ISSM), Dec. 2018, pp. 1–4.

[12] W. Yong, C. Xu, and W. Zhengying, ‘‘Fault detection of sensor data in
semiconductor processing with variational autoencoder neural network,’’
in Proc. China Semiconductor Technol. Int. Conf. (CSTIC), Jun. 2020,
pp. 1–3.

[13] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K. Müller, ‘‘A unifying review of deep and
shallow anomaly detection,’’ Proc. IEEE, vol. 109, no. 5, pp. 756–795,
May 2021.

[14] G. A. Susto, M. Terzi, and A. Beghi, ‘‘Anomaly detection approaches
for semiconductor manufacturing,’’ Proc+Manuf., vol. 11, pp. 2018–2024,
Jan. 2017.

VOLUME 11, 2023 54371



M. Baek, S. B. Kim: Failure Detection and Primary Cause Identification of Multivariate Time Series Data

[15] Y.-R. Yeh, Z.-Y. Lee, and Y.-J. Lee, ‘‘Anomaly detection via over-sampling
principal component analysis,’’ in New Advances in Intelligent Decision
Technologies. Cham, Switzerland: Springer, 2009, pp. 449–458.

[16] H.-P. Kriegel, M. Schubert, and A. Zimek, ‘‘Angle-based outlier detection
in high-dimensional data,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2008, pp. 444–452.

[17] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, ‘‘LOF: Identifying
density-based local outliers,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2000, pp. 93–104.

[18] I. Jahan, Md. M. Alam, Md. F. Ahmed, and Y. M. Jang, ‘‘Anomaly
detection in semiconductor cleanroom using isolation forest,’’ in Proc. Int.
Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2021, pp. 795–797.

[19] F. T. Liu, K. M. Ting, and Z. Zhou, ‘‘Isolation-based anomaly detection,’’
ACM Trans. Knowl. Discovery Data, vol. 6, no. 1, pp. 1–39, Mar. 2012.

[20] G. Münz, S. Li, and G. Carle, ‘‘Traffic anomaly detection using k-means
clustering,’’ in Proc. GI/ITG Workshop MMBNET, 2007, vol. 7, no. 9,
pp. 1–10.

[21] M. Zhang, B. Xu, and J. Gong, ‘‘An anomaly detectionmodel based on one-
class SVM to detect network intrusions,’’ in Proc. 11th Int. Conf. Mobile
Ad-hoc Sensor Netw. (MSN), Dec. 2015, pp. 102–107.

[22] L. M. Manevitz and M. Yousef, ‘‘One-class SVMs for document classifi-
cation,’’ J. Mach. Learn. Res., vol. 2, pp. 139–154, Dec. 2001.

[23] C. Chen, Y. Wang, M. Cui, J. Zhao, W. Bi, Y. Chen, and X. Zhang,
‘‘Data-driven detection of stealthy false data injection attack against power
system state estimation,’’ IEEE Trans. Ind. Informat., vol. 18, no. 12,
pp. 8467–8476, Dec. 2022.

[24] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, ‘‘Deep autoencoding Gaussian mixture model for unsupervised
anomaly detection,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–15.

[25] F. Hosseinpour, I. Ahmed, P. Baraldi, M. Behzad, E. Zio, and
H. Lewitschnig, ‘‘An unsupervised method for anomaly detection in mul-
tiystage production systems based on LSTM autoencoders,’’ in Proc. 32nd
Eur. Saf. Rel. Conf. (ESREL), M. C. Leva, E. Patelli, L. Podofillini, and
S. Wilson, Ed. Singapore: ESREL, 2022.

[26] B. Lindemann, F. Fesenmayr, N. Jazdi, and M. Weyrich, ‘‘Anomaly
detection in discrete manufacturing using self-learning approaches,’’ Proc.
CIRP, vol. 79, pp. 313–318, Jan. 2019.

[27] Z. Wang and Z. Jin, ‘‘Mining safety event in industrial control network
based on the long-short term memory networks,’’ in Proc. 3rd IEEE Int.
Conf. Comput. Commun. (ICCC), Dec. 2017, pp. 1255–1258.

[28] B. Lindemann, N. Jazdi, and M. Weyrich, ‘‘Anomaly detection and pre-
diction in discrete manufacturing based on cooperative LSTM networks,’’
in Proc. IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2020,
pp. 1003–1010.

[29] M. Canizo, I. Triguero, A. Conde, and E. Onieva, ‘‘Multi-head CNN–RNN
for multi-time series anomaly detection: An industrial case study,’’ Neuro-
computing, vol. 363, pp. 246–260, Oct. 2019.

[30] J. Jang, B. W. Min, and C. O. Kim, ‘‘Denoised residual trace analysis for
monitoring semiconductor process faults,’’ IEEE Trans. Semicond. Manuf.,
vol. 32, no. 3, pp. 293–301, Aug. 2019.

[31] S.-K.-S. Fan, C.-Y. Hsu, C.-H. Jen, K.-L. Chen, and L.-T. Juan, ‘‘Defective
wafer detection using a denoising autoencoder for semiconductormanufac-
turing processes,’’Adv. Eng. Informat., vol. 46, Oct. 2020, Art. no. 101166.

[32] H. Lee, Y. Kim, and C. O. Kim, ‘‘A deep learning model for robust wafer
fault monitoring with sensor measurement noise,’’ IEEE Trans. Semicond.
Manuf., vol. 30, no. 1, pp. 23–31, Feb. 2017.

[33] J. Audibert, P. Michiardi, F. Guyard, S.Marti, andM. A. Zuluaga, ‘‘USAD:
UnSupervised anomaly detection on multivariate time series,’’ in Proc.
26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2020,
pp. 3395–3404.

[34] S. Gupta, A. Venugopal, and M. J. Mohan, ‘‘Fault detection and diagnosis
using AutoEncoders and interpretable AI–case study on an industrial
chiller,’’ in Proc. IEEE Int. Symp. Adv. Control Ind. Processes (AdCONIP),
Aug. 2022, pp. 198–203.

[35] J. Jakubowski, P. Stanisz, S. Bobek, and G. J. Nalepa, ‘‘Explainable
anomaly detection for hot-rolling industrial process,’’ in Proc. IEEE 8th
Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2021, pp. 1–10.

[36] E. Christoforou, K. Blom, Q. Gao, M. Börü, and T. Cataltepe, ‘‘MRI
condition monitoring with explainable AI and feature selection,’’ in
Proc. 30th Signal Process. Commun. Appl. Conf. (SIU), May 2022,
pp. 1–4.

[37] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, ‘‘A deep neural network for unsuper-
vised anomaly detection and diagnosis in multivariate time series data,’’ in
Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 1409–1416.

[38] K. Choi, J. Yi, C. Park, and S. Yoon, ‘‘Deep learning for anomaly detection
in time-series data: Review, analysis, and guidelines,’’ IEEE Access, vol. 9,
pp. 120043–120065, 2021.

[39] A. Azarang, H. E. Manoochehri, and N. Kehtarnavaz, ‘‘Convolutional
autoencoder-based multispectral image fusion,’’ IEEE Access, vol. 7,
pp. 35673–35683, 2019.

[40] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, ‘‘Self-
normalizing neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 30, 2017, pp. 1–12.

[41] O. Kuchaiev and B. Ginsburg, ‘‘Training deep AutoEncoders for collabo-
rative filtering,’’ 2017, arXiv:1708.01715.

[42] V. S. Tomar, ‘‘A critical evaluation of activation functions for autoencoder
neural networks,’’ Ph.D. dissertation, College Comput., Nat. College Ire-
land, Dublin, Ireland, 2022.

[43] J. Liu, X. Kong, F. Xia, X. Bai, L. Wang, Q. Qing, and I. Lee, ‘‘Artificial
intelligence in the 21st century,’’ IEEE Access, vol. 6, pp. 34403–34421,
2018.

[44] A. B. Arrieta, N. Díaz-Rodríguez, J. D. Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila,
and F. Herrera, ‘‘Explainable artificial intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI,’’ Inf. Fusion,
vol. 58, pp. 82–115, Jun. 2020.

[45] J. Mi, A. Li, and L. Zhou, ‘‘Review study of interpretation meth-
ods for future interpretable machine learning,’’ IEEE Access, vol. 8,
pp. 191969–191985, 2020.

[46] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–22.

[47] F. T. Liu, K.M. Ting, and Z.-H. Zhou, ‘‘Isolation forest,’’ in Proc. 8th IEEE
Int. Conf. Data Mining, Dec. 2008, pp. 413–422.

[48] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of
data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[49] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[50] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[51] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[52] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. 27th Int. Conf. Mach. Learn., 2010,
pp. 807–814.

MINJAE BAEK received the B.S. degree, in 2016.
He is currently pursuing the M.S. degree with the
School of Industrial and Management Engineer-
ing, Korea University, Seoul, South Korea. His
research interest includes anomaly detection and
their industrial applications.

SEOUNG BUM KIM received the M.S. and Ph.D.
degrees in industrial and systems engineering from
the Georgia Institute of Technology, in 2001 and
2005, respectively. From 2005 to 2009, he was
an Assistant Professor with the Department of
Industrial and Manufacturing Systems Engineer-
ing, The University of Texas at Arlington. He is
currently a Professor with the School of Industrial
and Management Engineering, Korea University.
He has published more than 150 internationally

recognized journals and refereed conference proceedings. His research inter-
ests include utilize machine learning algorithms to create new methods for
various problems appearing in engineering and science.

54372 VOLUME 11, 2023


