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ABSTRACT In electrical impedance tomography (EIT), the uncertainty of conductivity distribution may
cause the uncertainty in the forward calculation and further affect the inverse problem. In this paper,
an improved univariate dimension reduction method based on deep neural network (DNN-UDR) is proposed
for the high-dimensional uncertainty quantification in EIT forward problem. Firstly, DNN is studied to build a
substitute model for EIT forward problem in order to solve the high-dimensional problem. Three normalized
circular finite element models are established with random uniform conductivity distribution. Then UDR
is used to analyze and quantify the uncertainty in the simulation with the form of probability. Compared
with Monte Carlo simulation (MCS), the probability distribution of voltage is fitted, and the quantification
indicators such as mean, variance, variation coefficient and covariance, are also consistent. On the other
hand, with the increase of parameter dimensions, DNN-UDR accelerates the computations obviously. This
indicates that DNN-UDR is effective and has high structural stability, accurate prediction results and high
computational efficiency.

INDEX TERMS Electrical impedance tomography, high-dimensional uncertainty quantification, Monte
Carlo simulation, substitute model.

I. INTRODUCTION but in fact it is affected by temperature, frequency, physi-

Electrical impedance tomography (EIT) aims at estimating
the impedance distribution in the object from the poten-
tials measured on the surface with appropriate configura-
tions of the injected current patterns. It is a non-invasive
monitoring technology, which is widely used in medical
imaging, fluid mechanics, environmental science, nuclear
power and other fields [1], [2], [3], [4], [5]. In biomed-
ical EIT imaging problems, the impedance distribution in
human tissue is usually assumed as deterministic values,
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ological state and so on [6], [7], [8], [9]. The uncertainty
of the impedance distribution may cause the uncertainty of
forward problem calculation and further affect the accu-
racy of the inverse problem. Tang et al. studied the cor-
relation between skull structure and conductivity changes,
and believed that the uncertainty of skull conductivity and
thickness should be incorporated into the head model during
the modeling process [10]. Suksawang et al. investigated the
effect of uncertainty in excitation frequency and activation
area volume on scalp voltage response [11]. The uncer-
tainty influence on EIT results has attracted the attention of
researchers in the world. Therefore, the uncertainty analysis
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of impedance is an important task to optimize the design of
EIT [12].

For along time, mathematical modeling, numerical simula-
tions and experiments are key to understanding and advancing
the development of science and technology and form the
backbone of predictive science. Mathematical modeling is an
effective tool for numerical simulation of complex phenom-
ena in the real world. The prediction results of model are not
always reliable. Only the real-time and accurate simulation
process of EIT is of practical value. Therefore, in order to
judge the credibility of the prediction results, and give a high
uncertainty to the error prediction results of the model so we
need to model the uncertainty.

Uncertainty quantification (UQ) is to study the inherent
and inevitable random uncertainty of the system in the mod-
eling process, and then reduce the influence of the variability
of the model parameters on the simulation results by the
probability analysis methods [13], [14], [15]. UQ is a combi-
nation of probability theory and statistics with the real world,
which implements the science of quantifying, characterizing,
tracking and managing uncertainty in computational and real
world systems. In the process of research, firstly, the uncer-
tainty are modeled, secondly, the output results are analyzed
by statistical methods to grasp the influence of uncertainty
factors on the results, and finally the uncertainty method
is evaluated [16], [17], [18], [19]. The popular probabilis-
tic uncertainty quantification methods include Monte Carlo
simulation (MCS) [20], [21], polynomial chaos expansion
(PCE) [22], [23], random collocation method and other ran-
dom polynomial expansions method [24], [25], [26]. As a
sample-based repeated computation, MCS has high precision
and low requirements on the type and scale of the research
objects, but it is time consuming. It is generally applied as an
experimental benchmark to judge the effectiveness of other
methods [27]. PCE is an efficient method based on the poly-
nomial expansion, which describes uncertain input variables
with analytic formula. The analytic formula is composed of
a weighted linear combination of a set of orthogonal polyno-
mial basis functions with proper coefficients obtained using
the least squares regression or stochastic Galerkin approach.
With the increase of the variables, the analytic formula
becomes complicated and the coefficient is difficult to solve.
The stochastic model solution of the system becomes a limita-
tion of polynomial expansion method, and the dimensionality
reduction method significantly alleviates this limitation [28],
[29]. The univariate dimension reduction (UDR) method
can reduce the computational complexity of the model by
transforming the high-dimensional function integration prob-
lem into multiple one-dimensional function integrals and
has shown great advantages in solving the high-dimensional
problems and no strong interaction between variables [30],
[31], [32], [33]. So, it is expected to be applied in the study
of EIT with high dimensional parameters.

UQ in EIT describes the degree to which the scalp voltage
affected by the conductivity of each element. In EIT, the
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internal medium parameters of the target are complicate, the
uncertainty of the model increases with the increase of the
discrete element segmentation. In order to reduce the com-
putational effort, substitute models are usually constructed to
analyze the uncertainty [34]. Deep neural network (DNN) is
a deep artificial neural network, which performs high-level
abstract processing of data through multi-layer nonlinear
mapping. The quantification of uncertain parameters by neu-
ral networks has been widely used in model prediction. Using
its high-dimensional data processing ability, an improved
algorithm combining DNN and UDR is established to study
the uncertainty quantification of high-dimensional parame-
ters of EIT forward problem. [35].

Three normalized circular finite element models are estab-
lished with random uniform conductivity distribution.

In this paper, we studied the high-dimensional uncertainty
of the conductivity in the EIT forward problem. Firstly, three
normalized circular finite element models with different com-
plexity are established. Then DNN was constructed as an
alternative model of EIT. Taking MCS as the benchmark,
the output of DNN network model was analyzed by UDR.
Finally, evaluate the model from multiple perspectives such as
generalization ability, stability, accuracy, and computational
efficiency. The results show that DNN-UDR is an efficient
and high-precision method, which effectively alleviates the
“curse of dimensionality” difficulty of existing methods
when facing high-dimensional uncertainty problems.

Il. THEORY AND METHODS

A. UNCERTAINTY IN EIT FORWARD PROBLEM MODELING
The mathematical model of EIT is given by Maxwell’s equa-
tions. Since the sufficiently low frequency of the electri-
cal current being applied, the displacement current can be
ignored, and only the conductivity should be considered.
Given the conductivity o inside the object, the boundary
voltage ¢ satisfies the Laplace equation

V.-oVp=0 inQ
¥ =0

9
o —_j, inm,
on

in Iy (1)

where, ¢p is the measured boundary voltage vector, J,
denotes the current intensities on the boundary, and # is the
outward normal.

EIT forward problem is to calculate the voltage distribution
of the object including the boundary by the given boundary
excitation conditions and known object conductivity distri-
bution. It is the basis of inverse problem.The partial differ-
ential equation is actually an elliptic equation. For irregular
shape domain, there is no analytical solution, so the voltage
distribution caused by the inject currents must be calculated
by numerical method. Finite element method (FEM) is com-
monly used because it can fit arbitrary boundary and deal with
complex mediums well [36].
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B. UNIVARIATE DIMENSION REDUCTION METHOD

UDR is a numerical integration method that can deal with
high-dimensional parameter problems, accurately predict sta-
tistical moments and reliability. Consider a performance
function Y with multi-variables input Xexpressed as follows

Y = g(X) (2
where, X = [X1, Xp, -+, Xy4] € RY is the d-dimensional ran-

dom input variable whose probability density function (PDF)
is fy (x), x is the samples of input variables.

1) DECOMPOSITION OF SINGLE ARGUMENT

The mean value of a univariate is usually taken as the refer-
ence point, and g(X) can be decomposed at u;. Equation (2)
can be expressed as

8X) ~ g(X) = g(X1, -+, Xa)

d
= zg(ul,-“ s i1, Xis ige15 -+ 5 )
i=1

—(d—Dg(p1, -+, 1a) 3)
where, g(ut, -+, ti—1, Xis fit1, -+, 4q)is @ random vari-
able with X = (M]a"' aMi—]in’l’Li+17"' 7/’Ld)7
g(uy, -+, nq)is a deterministic response when X; = ;. The

right-hand side functions with only one variable is equal to
the left-hand side.

2) CALCULATION OF THE r-ORDER STATISTICAL MOMENT
After the decomposition of single argument of g(X), the
second step of UDR is to solve the r-order statistical moment
of g(X). That is, directly integrate (3), the r-order statistical
moment m, is

my ~ E[g (X)) @)
where, FE (o) represents the mathematical expectation
operator.

The r-order statistical moment of g(X) is expanded based

on the binomial theorem
i

r d
r
mrQZ(i)E E g1, -+ i1, Xy fj1s -+ M)
i=0 j=1

[~ = DgGur. -+ wa) 7} )

Equation (5) can be expanded based on the binomial theorem
and defined as follows. Define

d

S s,

j=1

Sé:E s Wj—1, Xy Wjtk1s - 5 Hd)
(6)
where,g=1,---,d,i=1,---,r.
Equation (6) can be recursively expanded to

Si=>_ (;() Sk_\E [gi_k(ltl, e ,Md—l,Xd)] @)

k=0
where,q=1,--- ,d,i=1,---,r.
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Substitute (7) into (5), the general expression of 7-th order
statistical moment of g(X) can be obtained.

nh*ﬁ}Z(:)Sék%d—-DﬂMu-~,Mwy_i ®)
i=0

In (7) and (8), only one unknown term need to be
computed.

, Md)]

=/gh(M1,-~- s =1, Xy, Wit1, - mafx; ()dx; - (9)

E [gh(,ul,-“ =15 Xy M1 - - -

where, h = i-k, fx;(x;) is the marginal probability density of
X;, which can be calculated from the known type of random
variables. Therefore, the solution of the r-th order statistical
moment of g(X) is converted to multi univariate calculations.

3) SOLVING OF MULTI UNIVARIATE INTEGRALS
UDR reduces the calculation of a d-dimensional integral to
the calculation of several one-dimensional integrals essen-
tially. From a mathematical point of view, an interpolation
integral such as Gaussian interpolation quadrature formula
should be applied to solve the higher order integral solution.
(9) can be described as

E [gh(m, e i1, Xy a1 e ,Md)]

= /gh(l/‘l, cy Mj—1, }(jv Mjt1s 00 /-’Ld)fX](xj)dxj

m
~ > wiilgur, -

i=1

h
al’l'j—lsljiv Mj—‘rl»"' 9/~’Ld)] (10)

where, g(u1, -+, pj—1, i, -+, Wjg1,hg) 1S a onme-
dimensional random variable function corresponding to the
Jj-th dimension variable.

As mentioned above, it is simpler to change the calcu-
lation of one function with d-dimensional variables to the
calculation of d functions with one-dimensional variable.
The commonly used distribution types of random variables
are uniform distribution, normal distribution and exponential
distribution. After obtaining the nodes and weights of one-
dimensional variables, the r-order statistical moment of g(X)
in (7) and (5) are solved.

C. THEORY OF DEEP NEURAL NETWORK MODELING
Considering the high nonlinearity, high dimension and suf-
ficient sample size of EIT forward problem, DNN is chosen
as the substitute model. The process of modeling a network
usually involves the following steps.

1) THE DESIGN OF NETWORK STRUCTURE

In the network structure of EIT forward problem, the input
layer x refers to the conductivity distribution with multiple
uncertain parameters, and the output layer y is the boundary
voltage distribution. The loss function is a measure of the dif-
ference between the predicted voltage distribution and actual
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value. The smaller the loss function, the better the robustness
of the network.

We choose mean square error (MSE) as the loss function,
and the network training problem becomes a function mini-
mization problem, that is, minimizing MSE calculated by the
predicted voltage value & and actual value u.

. N
Loss = ~ min (ui — i)* (1)

(w,b) i=1
where, N is the number of samples and #; is the predicted
value on the i-th electrode of the models, w and b refer to the
weights and biases value of the network, respectively.

2) THE SELECTION OF OPTIMAL MODEL

DNN is a kind of network containing a large number of
hidden layers. Nonlinearity of the neural network is achieved
by using an affine transformation followed by an activa-
tion function.In deep learning, Leaky_Rectified linear unit
(Leaky_ReL.U) is generally used as the activation function of
intermediate hidden neurons [37]. Leaky_ReLU is defined as

_[x,sz

ax,x <0 (12)

where « is a small number selected according to experience,
and we set o« = 0.2 in this paper.

3) THE OPTIMIZATION OF NETWORK

The affine transformation is controlled by learned param-
eters including the weights w and biases b. We use adap-
tive moments (Adam) method to optimize the parameters,
because it can calculate the adaptive learning rate of each
parameter and has a fast convergence speed, which avoids
the problem of difficult selection of learning rate in gradient
descent method [38].

In addition, during the process of network training, with the
deepening of the network, the expression ability is enhanced,
but the training accuracy is reduced. It’s necessary to add
the residual structure to the network structure to avoid the
network degradation.

Ill. SIMULATION EXPERIMENT AND RESULTS

A. THE ESTABLISHMENT OF TWO-DIMENSIONAL CIRCLE
SIMULATION MODELING

The uncertainty quantification of the conductivity oriented
to the EIT requires geometric models. We can build various
models with different levels of complexity according to dif-
ferent requirements. For 2D simulation, the circular models
are used. For the same object, the finer subdivision, the more
elements, the more complex the model, and the higher the
resolution of the imaging.

In Fig. 1, three normalized two-dimensional circular mod-
els with different elements are established. In EIT model-
ing, different element has different conductivity parameter.
In order to ensure sufficient accuracy, the element number in
FEM will be relatively large, which increases the uncertainty
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FIGURE 1. Two-dimensional circular domain subdivision model.

of the model [39]. So the dimensions of variable parameters
are 64, 256 and 576 in three models respectively. In addi-
tion, the 16 electrodes are evenly placed on the edge of
the unit circle. The excitation current of relative injection is
1 mA, 50 Hz.
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B. THE SOLUTION OF EIT FORWARD PROBLEM BASED
ON DEEP NEURAL NETWORK SUBSTITUTE MODEL

1) THE GENERATION OF DATASET FOR SUBSTITUTE
MODELS OF EIT

DNN is chosen as the substitute model to compute EIT
forward problem. In Fig. 1, the radius of the outermost scalp
of the two-dimensional circular model of EIT is 10 em, and
16 electrodes are placed on the scalp surface to excite the
current and measure the boundary voltage. In the way of
relative current excitation, the 1-9 electrode pair is used to
inject current, that is, the inflow of electrode 1 and the outflow
of electrode 9. The excitation current is 1 mA, and electrode 9
is the reference zero potential. The input random variable
of the model is the conductivity value of each element,
the output random variable is the boundary voltage value
of the two-dimensional circular model, and the uncertainty
dimension describing this system is the number of triangular
elements in Fig. 1. The conductivity change of each element
is assumed to follow a uniform distribution with a mean
of 1 and a rate of change of £20%. The input set of the
model is the generated 10000 groups of random variables.
Then added to the EIT finite element program to obtain the
boundary voltage value as output and analyzed by statistical
methods.

2) THE STRUCTURE OF DNN NETWORK MODEL

The model consists of 9 layers of fully connected network
and residual structure. On the basis of sequential direct con-
nection, the connecting bridge is added every two layers as
residual structure. The solver is implemented in the Python
library TensorFlow. We generated the dataset of N x d pairs of
voltage and conductivity. The dataset is randomly generated
and split into three parts - a set of 8 x 103 training examples,
aset of 2 x 10° validation examples and a set of 1 x 10° test
examples. We set the Adam optimization learning rate to be
1 x 1075, The batch size is set to be 50. After each training,
the learning rate decays to the original 0.80.

3) THE TEST RESULTS OF DNN NETWORK MODEL
In this paper, model 2 is used to show the evaluation results
of the generalization ability of DNN networks.

In Fig. 2, 100 sample points are randomly selected from
the newly generated sample set, where the blue dot line is the
predicted value and the red dot line is the actual value. The
results show that the DNN predicted data output is consistent
with the output of the test data set.

For the constructed DNN substitute model, the average
absolute percentage error ¢ is defined to test the accuracy for
samples:

A

_ 1 N |ui—u,-
D M

i=1 L

13)

where, N is the number of test samples, u; is the calculated
value of the EIT, and #; is the predicted value of DNN model.
TABLE 2 shows the average absolute percentage error value
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TABLE 1. The structure of DNNs.

model 1 model 2 model 3
Inputs Inputs Inputs
FC-64 FC-256 FC-512
FC-128 FC-512 FC-1024
RS-0.7 RS-0.7 RS-0.7
FC-256 FC-1024 FC-2048
FC-128 FC-1024 FC-4096
RS-0.7 RS-0.7 RS-0.7
FC-64 FC-512 FC-2048

FC-256 FC-1024
RS-0.7
FC-512

of each electrode. The value of (1-¢) x 100% represents the
accuracy of the model.

TABLE 2. Average absolute percentage error of the voltage at the
boundary electrode with 256 uncertainties.

Electrode Electrode
index ¢ index ¢
1 0.007 6 9 0.0129
2 0.0059 10 0.005 3
3 0.002 3 11 0.002 6
4 0.004 7 12 0.001 0
5 0.009 7 13 0.005 8
6 0.001 2 14 0.003 2
7 0.004 1 15 0.0135
8 0.000 2 16 0.020 2

It can be seen from TABLE 2 Furthermore, the other
two FEM models obtain the similar results with model 2.
Therefore, DNN can be used as an effective substitute model
to calculate EIT forward problems.

In addition, considering the similarity of the model exper-
iment process and the length of the paper, we leave the test
results and codes of other models to the interested reader to
look up. These data are publicly available and the websites
are listed in the Appendix

C. THE UNCERTAINTY SOLUTION OF EIT FORWARD
PROBLEM BASED ON DNN-UDR
Taking model 2 as the example, we assume that the conduc-
tivity parameters follow a random uniform distribution in the
range of 0.8-1.2 S/m. The DNN is used as substitute model,
and the UDR is applied to quantify the uncertainty of voltage
in the EIT forward problem.

Combining (3) and (10), the mean conductivity points are
selected as a set of reference points, the sample number is
1 x 105. The PDF distribution, mean value of output voltage,
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FIGURE 2. DNN generalization ability test diagram of some electrodes.

and other voltage statistics are estimated from DNN-UDR
predictions.
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Some quantification parameters such as mean value, stan-
dard deviation, the average absolute percentage error, vari-
ation coefficient and covariance are used to compare the
performance of UDR and MCS, as shown in Fig. 4 - Fig. 7.

1) PROBABILITY DENSITY FUNCTION DISTRIBUTION
Fig. 3 shows a PDF diagram of partial electrode voltages,
where the x-coordinates represent the voltage values.

It can be seen from Fig. 3 that DNN-UDR and MCS fit
well. Their PDF distribution trend is basically the same. The
PDF calculated by DNN-UDR fits MCS and consistent with
the prediction results of DNN.

2) MEAN VALUE

The mean value is used to quantify UQ accuracy as illustra-
tion in Fig. 4, where the x-coordinates represent the boundary
electrode indexes, and the y-coordinates are the correspond-
ing mean voltage values.

In Fig. 4, the mean value of the voltage distribution gets
maximum at the injection electrode. It decreases with the
increase of the distance from the injection to output elec-
trode, and reaches the minimum at the output electrode. The
curve trend is accordance with the objective situation, and the
DNN-UDR results fit well with the MCS.

3) STANDARD DEVIATION

The standard deviation is used to describe the deviation
degree of random variable distribution X relative to its
mean value. The results are illustrated in Fig. 5, where the
x-coordinates represent the boundary electrode indexes, and
the y-coordinates are the corresponding standard deviation
values.

It can be seen from Fig. 5 that the DNN-UDR results are
consistent with the MCS results. Furthermore, comparing
with the standard deviation values in different models, the
standard deviation gradually decreases with the increase of
subdivision size. For each subsection size, the standard devi-
ation of the excitation points is the largest, indicating that
the change of conductivity has the greatest influence on the
excitation points.

4) VARIATION COEFFICIENT

The variation coefficient 1 is used to measure the dispersion
degree of the predicted value, which represents the stability
of the model. The calculation formula is

ar
=|— 14
g ‘Var (14)

where, 1 is the mean value of sample, Var is the sample vari-
ance. The quantization standard of the variation coefficient
is shown in TABLE 3. The results are illustrated in Fig. 6,
where the x-coordinates represent the boundary electrode
indexes, and the y-coordinates are the corresponding variation
coefficient values.

Fig. 6 shows that the results obtained by the two methods
in the three models are consistent, and with the increase
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FIGURE 3. Probability density distribution of voltages in a two-dimensional circle model with 256.

TABLE 3. Model stability quantization table.

n The stability of the model structure
<0.2 The fluctuations are very small, very stable
<0.4 Small fluctuation, basically stable
<0.6 General fluctuation, not very stable
<0.8 Large fluctuations, not very stable
>0.8 High variation, great randomness

dimensions of variable parameters, the variation coefficient
value becomes smaller and smaller, and the model tends to
be stable.

5) AVERAGE ABSOLUTE PERCENTAGE ERROR
We use the average absolute percentage error defined in (13)
to determine the accuracy of model prediction. The compari-
son results between DNN-UDR and MCS are shown in Fig. 7.
In Fig. 7, the results consistent well with the variation
coefficient. The influence of the conductivity on the model
prediction decreases gradually, and the accuracy of the model
predicted value increases.
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TABLE 4. Mean and covariance of the voltage at the boundary electrode.

Elg ctrode Methods Mean Cov
index
2 MCS 0.584 2 0.000 06
DNN-UDR 0.584 9 0.000 06
3 MCS 04330 0.000 06
DNN-UDR 0.433 3 0.000 06
9 MCS 1.378 0 0.001 82
DNN-UDR 1.380 0 0.001 78
10 MCS 04330 0.000 05
DNN-UDR 0.4327 0.000 05

6) COVARIANCE

To describe the relationship between variables, covari-
ance (COV) can be calculated as

N ) )
Z(Xi—X)(Yi—Y)
cov = =!

N -1 (15

where, X is the mean values of variables X and ¥ is the mean
values of variables Y, and N is the number of samples. The
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FIGURE 4. Mean values of boundary electrode voltage for different
number of uncertain parameters.

mean value and covariance on different boundary electrodes
are shown in TABLE 4.

It can be seen from TABLE 4, the interaction between the
variables is small, and the boundary electrode voltage values
calculated by the two UQ methods fit well.
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FIGURE 5. Standard deviation of boundary electrode voltage for different
number of uncertain parameters.

7) COMPUTING EFFICIENCY

Computational efficiency is also an important factor to mea-
sure the simulation methods. The simulations have been
run on a Windows machine equipped with X64 processor
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FIGURE 6. Variation coefficients of boundary electrode voltage for
different number of uncertain parameters.

(Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz). The results
are executed in MATLAB 2019 and Python 3.6. The calcula-
tion time results are shown in TABLE 5.

It can be seen from TABLE 5 that with the increase of
uncertain parameter d, the calculation time of MCS increases
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FIGURE 7. Average absolute error of boundary electrode voltage for
different number of uncertain parameters.

significantly, while DNN-UDR changes little. In addition,
DNN-UDR saves two orders of magnitude in calculation time
with MCS.
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TABLE 5. Calculation time for different number of uncertain parameters.

calculation time /(s)

Method
erods =64 =256 4=576
DNN-UDR 832 9.74 9.87
MCS 72139 925688 10 942.84

IV. CONCLUSION

In this paper, DNN-UDR has been proposed for the uncer-
tainty solution of EIT forward problem. Taking the traditional
MCS method as benchmark, three normalized FEM circle
models with uncertainty number of 64, 256, 576 are estab-
lished with uniform conductivity distribution.

Firstly, DNN is used as a substitute model for finite element
calculation of EIT forward problem and the results show
its strong generalization ability and good robustness. Then,
based on the DNN substitute model, UDR is used to quan-
tify the uncertainty. The probability density function and the
quantification parameters of DNN-UDR are consistent with
MCS, indicating that the results are reliable. The comparison
with three simulation models show that with the increase of
the parameter dimension, the stability of the model becomes
more and more better, and the advantages of DNN-UDR in
computational efficiency become more obvious. In a word,
the results show that DNN-UDR can effectively solve the dif-
ficulty of “curse of dimensionality”. Itis of great significance
to improve the quality of reconstructed images.

Furthermore, our study provides a reference for high-
dimensional uncertainty quantification problem, and also
hopeful for the quantitative study of other structural
uncertainties.

APPENDIX

REPLICATION OF RESULTS

Considering the similarity of the model experiment process
and the length of the paper, we put the test results and codes
of other models on a public website. All the experiments and
codes related to this paper that can be found in the web site
https://github.com/eit-ug/code
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