
Received 21 April 2023, accepted 15 May 2023, date of publication 29 May 2023, date of current version 6 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3281259

Lung-RetinaNet: Lung Cancer Detection Using
a RetinaNet With Multi-Scale Feature Fusion
and Context Module
RABBIA MAHUM 1 AND ABDULMALIK S. AL-SALMAN 2
1Department of Computer Science, University of Engineering and Technology (UET) at Taxila, Taxila 47050, Pakistan
2Department of Computer Science, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding authors: Rabbia Mahum (rabbia.mahum@uettaxila.edu.pk) and Abdulmalik S. Al-Salman (salman@ksu.edu.sa)

This work was supported by the Research Center of College of Computer and Information Sciences, Deanship of Scientific Research,
King Saud University.

ABSTRACT Lung cancer is one of the terrible diseases in various countries around the globe, and timely
detection of the illness is still a challenging process. The oncologists consider the blood test results and CT
scans to assess the tumor, which is time-consuming and involves extra human effort. Therefore, an automated
system should be developed to efficiently recognize lung tumors and assess their severity to reduce mortality.
Although various researchers have proposed lung disease detection systems, the existing techniques still lack
significant detection accuracy for early-stage tumors. Thus, this study proposes a novel and efficient lung
tumor detector based on a RetinaNet, namely Lung-RetinaNet. A multi-scale feature fusion-based module is
introduced to aggregate various network layers, simultaneously increasing the semantic information from the
shallow prediction layer. Moreover, a dilated and lightweight algorithm is employed for the context module
to combine contextual information with each network stage layer to improve features and effectively localize
the tiny tumors. The proposed methodology attained 99.8% accuracy, 99.3% recall, 99.4% precision, 99.5%
F1-score, and 0.989 Auc. We evaluated our suggested model and matched the performance with state-of-
the-art DL-based methods. The outcomes show that our technique provides more substantial results than
existing methods.

INDEX TERMS Early detection, lungs cancer, artificial intelligence, RetinaNet.

I. INTRODUCTION
Lung cancer is considered one of the most terrible illnesses
in various countries, and its death rate is 19.35% [1]. The
multiple ways used by radiologists to detect cancer include
sputum cytology, CT scans, X-rays, and other magnetic res-
onance imaging techniques. During the detection process,
tumors are categorized into two categories: malignant and
benign. Malignant tumors are cancerous and proliferate, hav-
ing irregular shapes and sizes. It is also analyzed that the
endurance rate for patients of the advanced stage is much less
than for cancer diagnosed early. It has also been assessed that
the timely analysis of the scans and imaging can be improved
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by employing various image processing methods [2]. Various
research works have been proposed for detecting early-stage
cancers using image processing methods. Two main chal-
lenges may reduce the hit ratio of lung cancer detection man-
ually. First is the technical and human accessibility, as radi-
ology resources may be inadequate to meet the demand [3].
Second, a significant number of false positive cases are due to
the first shortcoming. Therefore, high-quality training should
be provided to the radiologists interpreting the images. Thus,
the precision of detection and categorization for existing
techniques still requires improvements.

Recent progress in machine learning (ML) and deep learn-
ing (DL) techniques has resulted in a significant shift towards
computer-aided detection (CAD) systems for lung cancer
detection. There exist some of the traditional ML-based
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techniques in the literature aiding lung cancer detection and
classification, for example, Support Vector Machine (SVM),
Random Forest (RF), and K-Nearest Neighbors (KNN) [4].
These techniques performmanual feature extraction, and then
the classifier is trained using extracted features. Moreover,
dealing with the various features is tiring and requires extra
time. Besides this, the ML-based model gets training over a
small number of samples which causes a generalization prob-
lem. Some techniques use segmentation methods for lung
cancer diagnosis [5]. The region of interest (ROI) is selected
based on texture, color, or grayscale from the original image
as a segmented region. The standard techniques for segmen-
tation include Region growing, Atlas, and Thresholding. The
segmentation-based techniques’ performance highly depends
upon the segmented area and its extracted features. Many
results have been attained using segmentation-based methods
for lung cancer detection. However, these techniques still
failover unseen samples and require modification to reduce
the false ratio.

With the development in the domain of deep learning, DL-
based techniques have shown superior results for the recog-
nition of numerous diseases such as knee [6], eyes [6], potato
leaves [7], brain [8], and computer vision techniques [9]. The
primary benefit of DL-based models is the automatic features
extraction phase, whether the model is segmentation-based or
classification-based. Furthermore, DL-based models extract
the most representative features due to the continuously
increasing depth of the layers. The DL models comprise
pooling, batch normalization (BN), convolutional, and fully
connected layers. The pooling layers also minimize the
feature maps’ size while reducing the model’s complex-
ity. Various DL-based models have been proposed for lung
tumor detection. However, most methods are based on simple
classification [10]. These classification techniques consider
the whole image for feature extraction, which may increase
the misdiagnosis of early-stage tumors. Therefore, to
solve the issues mentioned above and enhance early
lung tumor detection performance, we propose a novel
and improved deep learning-based model based on Reti-
naNet [11]. We offer a feature fusion block instead of a
feature pyramid network (FPN) in RetinaNet tomine themost
representative feature maps minimizing the loss of exhaustive
information from input. Moreover, a dilated convolution uti-
lizes the most powerful features of tiny tumors at shallow lay-
ers. The features from upper layers posing high classification
accuracy are integrated with the bottom ones exhibiting high
localization results. Utilizing contextual information during
feature fusion adds more features from lower layers using a
contextual block. Furthermore, the default anchors were not
performing well for tiny lung tumors due to their irregular
shapes and sizes. Therefore, a k-means clustering method
is adopted, as used in YOLO-v3 [12], to generate precise
anchors along with contextual feature fusion blocks. The
outcomes show that our suggested model efficiently detects
tiny lung tumors and classifies them. The main offerings of
the suggested work are as follows:

• This research aims to detect and segment lung tumor
automatically at an early stage. Therefore, we propose
a robust multi-scale feature fusion-based module to
aggregate various layers of the network, simultaneously
increasing the semantic information from the shallow
prediction layer.

• We propose a dilated and lightweight algorithm for the
context module to combine contextual information with
each network stage layer to improve features and effec-
tively localize the tiny tumors.

• RetinaNet relies on local features for detection and lacks
contextual information. Therefore, an improved Lung-
RetinaNet combines the dilated context module having
lateral connections at each network level and features
fusion block, enriching the features at each stage. Addi-
tionally, the usage of adaptive anchors was able to detect
lung tumors better.

• The proposed Lung-RetinaNet is evaluated using well-
known benchmarks, and experimental outcomes indi-
cate that our proposed model significantly outperforms
existing lung tumor detectors.

The remaining paper is prepared as follows: Section II shows
the related work, Section III refers to the projected model,
Section IV evaluates the proposedmodel using various exper-
iments, and Section V concludes the work.

II. LITERATURE REVIEW
The deep learning models have been used vastly for the
cancer detection in last few decades [13], [14], [15], [16].The
key attribute for lung cancer detection is the pulmonary nod-
ules and solid clumps made up of tissues surrounding the
lungs [17]. The nodules present in the lungs can be malig-
nant or benign depending upon the nature of the cells and
viewable on CT scans [18]. In 2015, Hua et al. [19] employed
methods of CNN and DBN to classify lung nodules using
CT scan imaging. They exhibited that deep learning tech-
niques help extract lung swellings features and categorize
them into malignant or benign without considering texture
feature. Kurniawan et al. [20] and Rao et al. () [21] utilized
CNN employing simple and straightforward classification
to distinguish lung tumors using CT scans. Song et al. [18]
performed a comparative analysis of the deep learning model,
CNN and auto-encoder for lung tumor detection. They men-
tioned that the CNN based on classification performs better
than DL and stacked auto-encoder models. Ciompi et al. [22]
employed CNNs based on a multi-scale to classify lung
cancer into six types: calcified, solid, part solid, non-solid,
speculated, and perifissural nodules. They specifically devel-
oped a multi-stream artificial neural network that can handle
multiple triplets of 2-dimensional views of lung nodules at
different scales and then computes the likelihood of the pres-
ence of any tumor among six classes. Yu et al. [23] developed
a system performing bone exclusion and lung segmenta-
tion before CNN’s training. Shakeel et al. [24] proposed a
system based on segmentation using pre-processed images.
In pre-processing, the authors utilized denoising methods and
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enhanced the image’s appearance. In the end, the artificial
neural network has been trained to categorize lung cancer.

Ardila et al. [25] proposed a system based on four
modules: segmentation, cancer detection model, cancer risk
estimation model, and full-volume model. After the lung seg-
mentation, the ROI identification model estimates the maxi-
mum nodules region, whereas the full-volume module was
trained to estimate cancer likelihood. The combined output
is formed from these two modules as the final output for the
prediction. Chen et al. [26] established a system for nodule
recognition based on nodule segmentation and enhancement.
Hosny et al. [27] and Xu et al. [28] employed CNN for lung
cancer detection after data augmentation. They utilized var-
ious methods for data augmentation, such as flipping, rota-
tion, and translation. A DL-based technique using temporal
attention, namely visual simple temporal attention (ViSTA)
in CT images [29]. 351 nodes were utilized in the work. The
proposed model attained 86.4% area under the curve (AUC).
The authors in [30] utilized the LUNA16 dataset for training
the cancer detectionmodel and thenmodified themodel using
the KDSB17 dataset for global feature extraction. After that,
they combined local features attained from another separate
classifier and achieved higher accuracy for lung nodule detec-
tion. In [31], authors employed transfer learning to train the
model multiple times. The classifier was previously trained
on the ImageNet dataset and then trained using the ChestX-
ray14 dataset.

In the end, the JSRT dataset was used to test lung
cancer detection. In [32], only a survey was performed
for lung cancer detection using histopathology imaging.
Squamous cell carcinoma (LUSC) and Adenocarcinoma are
common types of cancers, and for their detection, the pathol-
ogist should be a very experienced person. In the proposed
study, a CNN was trained on the images of slides during
histopathology to accurately classify LUSC, LUAD, and nor-
mal tissues. Xu et al. [33] utilized a CNN based on LSTM
for lesion detection in X-ray imaging. LSTM is a modified
network of RNN and improves the architecture to reduce the
issues of vanishing gradient. The proposed network exhibited
a significant relationship among lesions to predict cancer
precisely.

Abd El-Wahab et al. [34] developed a system using several
versions of EfficientNet (B0, B1, B2) to identify the various
lungs disease. The authors fused the features of pre-trained
models and then they passed the features from stacked ensem-
ble learning. The final classifier consisted of SVM and Ran-
dom Forest (RF) at first phase and logistic regression at
second stage. The maximum accuracy attained by the system
was 99% for detection of TB in lungs. Aswathy et al [35]
employed a system for the lung malignancy detection using
nano-image as input and processed through a Gabor filter and
color-based histogram equalization for enhancement. The
segmented image of lung cancer was then obtained using
the Guaranteed Convergence Particle Swarm Optimization
(GCPSO) algorithm. To classify the tumor region, a graphical
user interface nano-measuring tool was developed. Addition-
ally, the Bag of Visual Words (BoVW) method and a Con-
volutional Recurrent Neural Network (CRNN) were utilized
for feature extraction and image classification. The authors
attained 99.35% accuracy for cancer detection. In [36],two
benchmark datasets are downloaded, containing attribute
information from multiple patients’ health records. Princi-
pal Component Analysis (PCA) and t-Distributed Stochastic
Neighbor Embedding (t-SNE) are employed as standard tech-
niques for feature extraction. In addition, deep features are
obtained from the pooling layer of a Convolutional Neural
Network (CNN). To select the most relevant features, the
Best Fitness-based Squirrel Search Algorithm (BF-SSA) is
utilized, which is considered an optimal feature selection
method. They attained an accuracy of 93.15%.

III. METHODOLOGY
In this section, we demonstrate the proposed methodology.
There exist two types of network-based detectors: single
and two-stage. The two-stage detectors, including RCNN,
CNN, Mask RCNN etc., are based on a region proposals
network that finds ROI. Further, these regions are utilized
for classification and regression. These models maintain high
precision and accuracy; however, they become very slow due
to their architecture. Moreover, some single-stage detectors
are fast, including a single-shot multi-box detector. However,
they may face the issue of class imbalance during the training

FIGURE 1. Fused Lung-RetinaNet’s architecture.
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FIGURE 2. Fused Lung-RetinaNet’s architecture.

phase. Therefore, our work employs a single-stage detector
for lung tumor detection. The focal loss also helps the net-
work to overcome the problem of class imbalance. The basic
flow diagram of the proposed system is shown in Figure 1.

An improvedRetinaNet’s architecture is shown in Figure 2.
We have introduced a context aggregation module instead of
FPN in the original RetinaNet. Our proposed model com-
prises a ResNe101 as a backbone network for extracting
features from input, along with dilated contextual block-
based fusion, categorization and regression sub-networks.
The main aim of these sub-nets is to localize and classify
lesions of various sizes at varying scales. In Figure 2, the
FPN is exchanged with our proposed context module. First,
the final three layers are based on 1 × 1 convolution to
reduce dimensions. Further, L4 and L5 are un-sampled using
the bilinear approach for converting them to the same size
as L3. A ReLU activation is employed, followed by BN in
the fusion module. Then, our dilated context block is applied
to L3_minimized, L4_minimized, and L5_minimized. In the
end, our proposed feature fusion and dilated context block
are merged for each backbone instant using a bottom-up way.
The layers p6 and p7 are used for the large-size tumors.

RetinaNet is a model used for object detection that specif-
ically addresses the challenge of class imbalance in object
detection tasks. This issue arises because the majority of
regions in an image do not contain objects, resulting in a sub-
stantial disparity between the positive and negative classes.
To counter this imbalance, RetinaNet utilizes a focal loss
function that diminishes the contribution of simple examples
and concentrates more on challenging ones. By assigning a
higher weight to the loss incurred by hard examples that are

incorrectly classified, RetinaNet better learns from the diffi-
cult examples and is less influenced by the easy examples.

The Huber loss is used to compute the localization loss of
the model, which is the loss incurred when the model pre-
dicts the bounding boxes of the objects in the image. Hence,
the Huber loss is more resistant to outliers and reduces the
model’s sensitivity to small differences between the predicted
and ground-truth bounding boxes.

A. FEATURE FUSION BLOCK
The feature fusion block enhances the semantic knowledge
of bottom-layer feature vectors [37]. Hence, it improves the
results of the localization of tiny tumors. Moreover, the ReLU
activation function works for non-linear functions among var-
ious layers. Then, batch normalization (BN) is employed to
avoid a gradient vanishing problem. Additionally, it improves
performance. As in the RetinaNet detector, the implication of
ResNet-101 as a base network further helps the model extract
the most powerful features [38]. In Figure 2, layer modules
L1, L2, L3, L4, and L5 represent numerous backbone network
scales. FPN layers ranged from L3 to L5; L3 refers to the
shallowest layer. The shallow layer plays a vital role for small
lesions detection. Nonetheless, it cannot extract semantic
features presented at the deepest layer, L5. Following Feature
Fusion Single Shot Multibox Detector (FSSD) based aggre-
gation block, a conv. layer of 1 × 1 is utilized on each layer
from L3 to L5 to generate L3_minimized, L4_minimized,
and L5_minimized. The aim of 1 × 1 conv. layer is to mini-
mize the dimensions of these layers. Then, minimized layers
L4_minimized and L5_minimized are engorged through a
bilinear up-sampling to convert them to the same dimension
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as the L3_minimized layer. Then, these minimized layers are
combined at once, employing a concatenation method [39].
The concatenated layer is transformed using a dilated
context block that is enlightened later. In the end, the
context-concatenated layer is employed to BN and ReLU
function to form a p3 bottom estimation layer.

B. DILATED CONTEXT BLOCK
In this section, dilated blocks, developed by DetNet, and an
aggregation CN [40] are employed to improve the informa-
tion of surrounding tissues necessary for tiny lesion pixels.
A block is proposed to extract more features, enrichmore data
from surrounding pixels, and improve detection, as shown
in Figure 3. The block is fixed before lateral connections.
It comprised a 1 × 1 convolutional layer for dimension
minimization of a 3× 3 convolutional layer to simultaneously
have a dilation rate of 2. These two branches are combined
using a feature’s map concatenation operator [41]. Then
3 × 3 convolutional layer is employed with the concatenated
feature map.

C. LATERAL CONNECTION
These connections ensure improvements of features and
compensate the loss of information due to down-sampling.
Additionally, the dense architecture enhances stability during
network training. Furthermore, it also improves the lesion
detection precision. Figure 3 shows these connections form 2
estimation layers, p4 and p5. Decreased feature map L4 is
applied to dilated context block. Then, it was connected
laterally with the down samples conc. layer through a fusion
technique to show estimation layer p4. A similar process is
employed on reduced layer L5 that generates estimation layer
p5. Thus, estimation layers p6 and p7 are kept without any
modification, and their estimations are utilized to improve
large lesions detection. Each estimation layer in the con-
textual lower to upper lateral connections fusion block has
256 channels of features.

FIGURE 3. Architecture of context module.

D. ANCHORS AND SUB-NETWORKS
In RetinaNet, anchors are bounding boxes of different scales
and aspect ratios that are placed at various positions on the

image. These pre-defined anchors serve as reference points
during training to predict the sizes and locations of objects in
the image. The use of anchors allows the network to handle
objects of different sizes, shapes, and partial occlusions.

In Lung-RetinaNet, anchors are employed without any
changes. Numerous anchors may have different sizes, such as
32× 32 to 512× 512, which are fed to multi-scale estimation
layers from p3 to p7, respectively. In total, nine anchors are
included in each layer, with box ratios: 1:1, 1:2, and 2:1, and
varying dimensions for every box include 2 1/3, 22/3, and 20.
The anchors with a Jaccard overlap number < 0.5 are not
considered as tumors; they are considered as normal lung
tissue. RetinaNet has shown that increasing the number of
anchors above 9 does not improve the performance. There-
fore, we utilized 6-9 k-clusters in the K-means clustering
technique for anchors generation on the Lung tumor dataset.

Lung-RetinaNet is based on an improved RetinaNet’s
structure that is an object-detecting technique using context
aggregation module, Huber loss and focal loss for data train-
ing. Two sub-networks exist along with a backbone for net-
works help the model in feature extraction. The sub-networks
in RetinaNet are responsible for extracting features from
different levels of the feature pyramid, which is a hierarchi-
cal representation of the image capturing features at various
scales.

One of them is the classification sub-network that rec-
ognizes the class of image, whereas the other sub-network
is known as regression which generates the bounding box
(bbox). These sub-networks are comprised of four 3× 3 con-
volutional layers having 256 channels at each layer. Then,
the RELU activation function is employed to activate each
layer’s output. Further, classification is performed using an
additional 3 × 3 conv. layer, which is activated using the
sigmoid activation function for categorizing various objects
k having specific anchors A per spatial locality. In the end,
regression is performed by a conv. layer of 3 × 3 having
four elements exhibiting offset among an estimated bbox
and target bbox per spatial locality. We performed various
experiments using different neural networks models with
RetinaNet, such as VGG16, DenseNet201, EfficientNet82,
and MobileNetv2. The results are reported in experimental
section.

1) FOCAL LOSS
For the purpose of classification, RetinaNet utilized focal loss
and computed, as shown in Equation 1. The focal loss is a
cross-entropy having weights to overcome the issue of class
imbalance. It drops out easy training examples during the
training phase and considers the difficult ones.

CE (i, j) =

{
− log (i) , if j = 1
− log (1 − p) , otherwise,

(1)

Here, CE refers to the cross entropy, and jϵ±1 represents
the target, whereas iϵ[0, 1] exhibits the likelihood of the

53854 VOLUME 11, 2023



R. Mahum, A. S. Al-Salman: Lung-RetinaNet: Lung Cancer Detection Using a RetinaNet

estimated class having label j = 1.

FL (iT ) = −e (1 − iT )γ log (iT ) , (2)

where, iT is the predicted probability of the correct class
label that is equal to i for j = 1 and for j = −1 equal
to 1- i.−e (1 − iT )Y is the modulation element to the CE
having jϵ[0, 5], which can be adjusted to minimize the CE,
and e is a hyper-parameter. e and γ represent 0.25 and 2,
correspondingly for the significant performance [42].

2) HUBER LOSS
RetinaNet utilized the Huber loss function, computed as
shown in Equation 3. Where e is a hyper-parameter that is
adjustable and set as 1. d presents the distance between two
vectors.

H (d) =

{
0.5d2, if d < e
|d | − 0.5, else if d ≥ e,

(3)

IV. EXPERIMENTAL EVALUATION
In this section, the suggestedmethod is evaluated through var-
ious experiments, with a focus on metrics and environmental
setup for performance evaluation.

A. TRAINING PARAMETERS
For training our proposed Lung-RetinaNet, we used both
RetinaNet and Fused models, which employ similar param-
eters. The training parameters are almost same for origi-
nal RetinaNet and Lung-RetinaNet as 41M parameters for
ResNet50 and 64M parameters for ResNet101. The com-
parative graph for both models is shown in Figure 4. For
each estimation level, the top 1000 estimations are considered
for inference. Further, all the estimations are combined, and
NMS is utilized, having a threshold of 0.5. Initially, the exist-
ing pre-trained models, such as ResNet-101 and ResNet-50
biases for ImageNet, are utilized.Weights of additional layers
are assigned as = 0.01, µ = 0, and bias b = 0. Additionally,
the features are not shared among additional layers. For opti-
mization, we utilized the Adam optimizer technique with a
learning rate of 0.00001 and a clip-normalization of 0.01. The
total epochs are 20, and iterations no. per epoch is 10k having
batch size = 8. Total loss of regression and classification is
computed as combined Huber and Focal losses. The training
time required for both models was 19 to 70 hours. The
time is high due to a single GPU-based system. The various
configurations that are necessary for our proposed model are
shown in Table 1. The model achieves 98.3% mAP on the
dataset.

B. DATASET
In the proposed study, we used two datasets: Lung Image
Database Consortium (LIDC-IDRI) [43] and 50 recorded CT
scans of lungs from the Simba lung database [44]. We trained
and tested our model using the LIDC-IDRI dataset. For cross-
validation, we employed CT scan samples from the Simba
database.

FIGURE 4. Comparative analysis of training among RetinaNet and
Lung-RetinaNet.

TABLE 1. Parameters for lung-retinanet.

In the LIDC-IDRI challenge, all CT scans were attained
from the archive of The University of Chicago. All the
images were from unique patients and taken from the Philips
Brilliance Scanners having 1.15-mm thickness of the slice
and ‘‘D’’ extra enhancing conv. kernel. The dataset included
1024 patients’ CT images of lung nodules along with an
XML file presenting results. The nodules identified by the
radiologists were categorized as benign and malignant in the
dataset. The total scans were 1018, among from we used
750 samples to train our proposed lung cancer detection sys-
tem. The 450 samples belonged to the malignant class having
various sizes of tumors, and the remaining 300 belonged to
the benign class.

Second lung database comprises 50 CT images for the
recognition of lung tumor. The CT scans were taken with
a thickness of 1.25mm slice during a single breadth. The
radiologist gave the location of nodules in the dataset. Various
test sample images are shown in Figure 5.
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FIGURE 5. Some test samples from the simba dataset.

C. METRICS
For assessing the suggested system, we employed various
parameters such as Precision, Accuracy, F1 Score, Recall,
and Area under the curve (Auc). The equations are presented
below.

Precision =
TP

TP+ FP,
(4)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

Recall =
TP

TP+ FN
(6)

F1score = 2 ∗
Precision ∗ Recall
Precision+ Recall

, (7)

The area under the curve (Auc) is computed as below:

Auc =

∫ j

i
f (x) dx, (8)

D. ENVIRONMENTAL SETUP
Table 2 displays the details of the system used in conducting
the experiments, which involved a geforce GTX GPU card
with 4GB memory.

E. LOCALIZATION OF LUNG TUMOR
In this unit, the performance of our fusion-based RetinaNet
is assessed utilizing four metrics: DOI, TC, no. of pixels, and
area.

TABLE 2. Hardware specifications of the suggested method.

Two metrics frequently utilized in image segmentation
are Texture Complexity (TC) and Degree of Interest (DOI).
Texture Complexity measures the variety and intricacy of
patterns within an image, while Degree of Interest evaluates
the significance of different areas in the image with regards to
the intended purpose. The equations of the used metrics are
presented below:

DOI =
ω

/
1 + ω

2
(9)

TC =

∑∑m
y=1(I

′
∩l)

x=1

/ ∑m

x=1

∑n

y=1

(
l ′ ∪ l

)′ (10)

area =

∑m

i=1

∑n

j=1
I (i, j), (11)

Our lung cancer detector’s performance was evaluated by
comparing the results of 50 images from each dataset, with
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the TC varying between 0 and 1. The metrics were com-
puted using the respective ground truth images, which were
assessed by an expert pathologist for the LIDC-IDRI dataset.
Table 3 reports the results of 10 images from the LIDC-IDRI
dataset, showing that our proposed model achieved excellent
results in terms of tumor localization.

TABLE 3. The localization results over LIDC_IDRI dataset.

We have also performed a second experiment to assess
the performance of our proposed Lung-RetinaNet using the
Simba dataset. We compared our proposed model with vari-
ous convolutional neural networks as the backbone network
of RetinaNet using DOI and TC. We used DenseNet201,
VGG16, EfficientNet82, ResNet101, and MobileNetV3. The
results are shown in Table 4. We noticed that Efficient-
Net82 and MobileNetv2 did not perform significantly. The
lousy performance could be due to the varying feature maps
among blocks. The VGG16 and DenseNet201 performed
better than the MobileNetv2 and EfficientNet82. Although
VGG16 performed better, the inference time was relatively
high. The DenseNet201 performed better due to the direct
connections among layers for feature extraction. Moreover,
the best results were attained from our fused model, and the
second highest results were achieved employing ResNet101.
The reason could be that ResNet101 utilized residual blocks
and feature maps transferred among layers, solving the van-
ishing gradient issue. Therefore, we have selected our feature
fusion-based RetinaNet for lung tumor detection.

TABLE 4. The DOI and TC of various pre-trained backbone networks for
the comparison with lung-retinanet using simba dataset.

F. DETECTION AND CLASSIFICATION OF LUNG TUMOR
This section presents the results of our proposed model’s
classification performance using two datasets: LIDC-IDRI
and Simba. The proposed model was trained on a total of
750 images and tested on 300 samples, with 150 images from
each class: malignant and benign. Table 5 shows that the
proposed model achieved significant results in classification.
Additionally, we trained three object detectors: Faster RCNN,
Mask RCNN, and Lung-RetinaNet, with the latter achieving
the best results, including 99.8% accuracy, 99.3% recall,
99.4% precision, 99.5% F1 score, and 0.989 AUC. The next
best classification results were obtained using Faster RCNN
with 98.3% accuracy, followed by Mask RCNN with 97.3%
accuracy. Moreover, we also compared the inference time
for the techniques mentioned above, and it is clear from the
outcomes that our suggested system is faster than others.
The reason could be its one-stage detection mechanism and
simple architecture of layers. Therefore, we believe that our
proposed Lung-RetinaNet is an efficient tumor detector.

TABLE 5. The classification results of LIDC-IDRI dataset.

For the second experiment, we used the Simba dataset to
cross-validate our proposed model. We used 50 images from
the malignant class and achieved the best results with our
proposed Lung-RetinaNet, including 99.3% accuracy, 99.1%
recall, 99.2% precision, 99.3% F1 score, and 0.977 AUC.
The next best classification results were obtained using
Mask-RCNN with 99.0% accuracy. The lowest accuracy for
cross-validation was achieved using the Faster RCNN classi-
fier, with 98.1%. Table 6 provides more details on the cross-
validation results. The better performance of Mask RCNN
over Faster RCNN could be because it is easy to generalize
and train. Moreover, it only adds up a little overhead to Faster
RCNN, making it more efficient. Furthermore, our proposed
Lung-RetinaNet is way better than Mask RCNN and Faster
RCNN in efficiency as it takes minimum time for inference
for both datasets.

G. ABLATION EXPERIMENTS
In this section, various methods for detecting small tumors in
lung images will be presented. The Simba dataset was used
for ablation study experiments. Initially, the effects of incor-
porating a feature fusion module, dilated context module, and
lateral connections are examined. Afterwards, the impact of
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TABLE 6. The classification results on simba.

adjusting hyper-parameters of the focal loss on accuracy is
discussed.

In the first ablation study, we performed experiment to
analyze the performance due to fusion module. In original
RetinaNet, fusion module and dilated context module is not
present. We added the lateral connections and performed the
Focal loss adjustments similar in RetinaNet, however, the
mAP attained as 85.23% as shown In Table 7. It is clearly
visible that when fusion module is used alone without dilated
context module and lateral connections, the detection perfor-
mance degrades due to information loss and down-sampling
and model is unable to identify tiny tumors accurately. How-
ever, when lateral connections are added along with fusion
module, the detection performance improves. Moreover, for
our proposed Lung-RetinaNet, when we added the lateral
connections, fusion module, dilated context block, and focal
loss adjustments, we achieved remarkable results for tiny
tumor detection.

TABLE 7. The performance evaluation of several modules on
lung-retinanet’s accuracy.

The RetinaNet detector utilizes focal loss as its primary
approach to address the class imbalance issue, with the

TABLE 8. The performance evaluation for several architectures.

hyper-parameters α and γ weighting factors set to 0.25 and 2,
respectively, resulting in optimal RetinaNet performance.
However, for Lung-RetinaNet, this setting is not the most
effective, and modifying the focal loss hyper-parameters
could enhance Lung-RetinaNet accuracy. Table 9 demon-
strates that adjusting α and γ to 0.25 and 2.5, respectively,
yields the highest Lung-RetinaNet performance, resulting in
a 1.5 point increase in accuracy.

TABLE 9. The performance evaluation for adjusting hyper-parameters of
focal loss on lung-retinanet.

H. COMPARISON WITH EXISTING TECHNIQUES
We compare our proposed detector for lung tumors with
existing techniques. The outcomes are reported in Table 10.
It is clearly seen that our suggested detector achieved 99.8%
detection accuracy, and the results have been validated by
two radiologists. Xie et al. [45] utilized 888 samples from
the LUNA16 dataset and developed a system based on two
modules. Firstly, they detected the locations in images using
an improved Faster RCNN. Secondly, they trained three
models for false positive reduction. The system became
somehow complex and achieved 88.17% detection accuracy,
which is lower than others. Chao et al. [46] developed a
CNN-based technique for detecting lung tumor nodules after
pre-processing images from LUNA16 and Kaggle datasets,
attaining 92% accuracy. Moreover, Eali et al. [47] provided
a multi-view network approach along with weighted gradi-
ent activation for the binary classification of lung tumors.
The proposed model was lightweight; however, a tremen-
dous amount of information was lost due to a class invariant
problem in the max-pooling layers of the proposed CNN.
Nevertheless, they attained a considerable detection accuracy
of 97.17%. Comparatively, our proposed Lung-RetinaNet
attained 99.8% detection accuracy while retaining the key
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TABLE 10. The comparative analysis for detection with existing
techniques using lidc-idri dataset.

information of lung CT images. Moreover, our proposed
detector is based on one stage that is easy to use and modify.
Therefore, our proposed Lung tumors detector and classifier
achieved better results than existing techniques in terms of
complexity and accuracy.

TABLE 11. The comparative analysis of detection with existing
techniques on the basis of accuracy, sensitivity, and specificity.

We selected RetinaNet for the lung cancer detection as it
offers several benefits over other models. Firstly, it achieves
superior accuracy on several object detection benchmarks,
even when dealing with severe class imbalance. This is due
to its design, which enables it to identify objects with high
accuracy. Secondly, RetinaNet boasts faster inference speeds
compared to traditional two-stage detection models. It uses a
single-stage detection process, which means that it requires
only one forward pass through the network to produce object
detections. Thirdly, RetinaNet is easy to train due to its simple
architecture and the use of focal loss, which simplifies the
learning process by focusing on hard examples. Fourthly,
RetinaNet is highly effective at detecting small objects due
to the use of sub networks and usage of the context block
that provides multi-scale representations of the input image.

Lastly, RetinaNet has a high recall rate, meaning that it can
identify most of the objects in the image, even when they are
small or partially occluded. Overall, RetinaNet is a powerful
model for object detection that provides high accuracy, speed,
and recall, making it a popular choice for a wide range of
applications.

I. COMPUTATIONAL COST
In the lung tumor segmentation task, our one-stage Reti-
naNet detector has proven to outperform previous methods,
which included one- and two-stage detectors such as faster
R-CNN, R-CNN, and SSD321. Faster R-CNN had an average
precision of 36.4% at the first five scale (400-800) pixels,
with an inference time of 192ms, while R-CNN and SSD321
had an average precision of 35% and 39%, respectively, with
inference times of 95ms and 82ms. By comparison, our pro-
posed methods, which included RetinaNet with ResNet-50
and ResNet-101, achieved average precisions of 25% and
31%, respectively, at the first five scale (400-800) pixels.
Additionally, we achieved an inference time of 57ms and
51ms, respectively, as illustrated in Figure 6.

FIGURE 6. Inference time for several models on simba dataset.

V. CONCLUSION
This work suggests a novel and robust lung tumor detec-
tion method based on fused RetinaNet. Our proposed model
utilizes CT scans for the training and testing of the model.
We have introduced a context aggregation module instead of
FPN in the original RetinaNet. Our proposed model com-
prises a ResNet as a backbone network for extracting fea-
tures from input along with dilated contextual block-based
fusion, categorization and regression sub-networks. Due to an
improved structure of RetinaNet, it precisely detects tiny lung
tumors. More specifically, a fusion block is down-sampled
and combined with a context-dilated module at all net-
works level. This connection enhances the capability of the
proposed network to extract valuable features. Moreover,
it also improves the localization performance of the pro-
posed network. Our proposed methodology achieved 99.8%
accuracy, 99.3% recall, 99.4% precision, 99.5% F1 score,
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and 0.989 AUC. We evaluated our proposed method and
compared its results with state-of-the-art DL-based meth-
ods, which revealed that our technique outperforms existing
systems.Thus, we believe that our proposed system can be
utilized by medical experts to identify the tumor at early
stages.

Our proposed method performed significantly for lung
tumor detection, however, it faced some challenges which
are required to be addressed in the future. First, the ability to
identify tiny tumors is reduced due to the limited resolution of
the input images. Second, if the images had a lot of clutter or
noise, the system was not able to differentiate the background
tissues from tiny tumors.

In the future, our objective is to employ our suggested
method for the multi-classification of various cancers, such
as skin, bone, etc. Moreover, the training time of the proposed
model was considerably high; however, it could be improved
using a multi-GPU-based training system. This will also
improve the inference time of the proposed system to deploy
it clinically. Furthermore, we will add multi-modal informa-
tion as input to our system such as combining imaging data
with other forms of clinical data, (genomic or proteomic data)
to improve the accuracy of tumor detection.
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