
Received 4 May 2023, accepted 25 May 2023, date of publication 29 May 2023, date of current version 6 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3280985

An Empirical Study on Multimodal Activity
Clustering of Android Applications
SUNGMIN CHOI 1,2, HYEON-TAE SEO3, AND YO-SUB HAN 1
1Department of Computer Science, Yonsei University, Seoul 03722, Republic of Korea
2Software Center, CTO, LG Electronics, Seoul 050061, Republic of Korea
3KT Research and Development Center, Seoul 06763, Republic of Korea

Corresponding author: Yo-Sub Han (emmous@yonsei.ac.kr)

This research was supported by the IITP grant (No. 2021-0-00354) and the AI Graduate School Program (No. 2020-0-01361) funded by
the Korea government (MSIT).

ABSTRACT Recently, researchers have started looking at Android activities to improve user interface
(UI) design. Since similar activities in Android have similar functional behaviors, activity clustering is a
fundamental step toward efficient Android app development. Well-grouped activities are useful not only
for UI design, but also for app design, development, and testing. However, there are no studies on activity
clustering yet, and no activity dataset with labels and categories. The purpose of this study is to use the
Rico dataset to know (i) whether the Rico dataset can be used for activity clustering, (ii) how useful activity
attributes expressed in XML are for activity clustering, and (iii) how useful fusion with activity image and
attributes is for activity clustering. We generate various activity latent vectors using a CNN autoencoder
for the Rico dataset. Then, we produce a sequence-to-sequence latent vector from the semantic properties
of the Rico dataset. Finally, by fusing the two models, we propose an activity clustering approach using
multimodal learning. Since there are no labels in the dataset, we make 2000 labeled data for evaluation. The
experimental results show that the activity clustering works well by fusing the semantic activity latent vector
and the seq2seq latent vector. Especially, activity attributes such as component and position information are
effective for activity clustering and help to boost the performance better than real activity images or Rico.
Research findings on clustering and newly created labeled data can be a starting point for various studies on
Android activity.

INDEX TERMS Activity clustering, autoencoder, CNN, deep learning, sequence-to-sequence, Rico.

I. INTRODUCTION
Over the past decades, the smartphone market has grown
tremendously. Notably, Android has grew to the largest mar-
ket share with many applications developed on the mobile
operating system. Then, several research areas have arisen as
a result of innovation in the market. For instance, there are
several research findings on graphical user interface (GUI)
searches with respect to specific forms [1], [2], [3], fast
GUI skeleton implementation [4], automatic analysis for
apps [5], [6], bug and crash detection [7], [8], and automated
testing [9], [10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

It is useful to know the function of each app screen. In the
case of Android, an app screen is called an activity.1 An activ-
ity is themainAndroid component that interacts with the user.
Thus, one can analyze app activities better by examining user
interface (UI) components. More importantly, similar activi-
ties often exhibit similar behaviors because similar activities
are made up of similar UI components, which give rise to
similar behaviors. This implies that if one finds a bug or
malware during an automated test of a particular activity, then
it is likely that the same bug or malware exists in other apps
with similar activities [11], [12]. For instance, if a bug occurs
in the EditText component, the activity using the EditText
component in other apps can also fall victim to the bug.

1https://developer.android.com/guide/components/activities/
intro-activities

53598
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0007-3374-3926
https://orcid.org/0000-0002-7211-6657
https://orcid.org/0000-0001-9027-298X


S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

Identifying similar activities makes debugging or designing
specific activities easier. It is therefore beneficial to study the
problem of grouping similar activities of Android apps.

The problem of identifying similar activities can be classi-
fied as a clustering problem. Clustering is the task of grouping
a set of data, such that data in the same group share similar
characteristics, in contrast to the data in other groups. Clus-
tering is a class of unsupervised learning method that has
been extensively applied and studied in computer vision [13],
[14] as well as audiovisual [15] and multimodal [16], [17],
[18] deep learning. Until now, clustering has been applied to
well-known image and text datasets such as MNIST, STL-10,
and CIFAR-10. However, almost no progress has been made
on activity datasets.

There are a few recent studies for activity classification
instead of clustering. Rosenfeld et al. [19] proposed activity
classification using the KStar algorithm [20]. They prede-
fined seven activity types and used 15 features to classify
the activities. Amalfitano et al. [21] automatically detected
specific GUIs labeled as Gate GUIs, such as the Login Gate
GUI or the Network Settings Gate GUI. They used textual
information of XML as feature vectors and classified gate
GUIs using a Naïve Bayesian (NB) classifier.

Meanwhile, researchers realized that data-driven models
are useful for creating adaptive UIs and predicting perfor-
mance [22], [23]. Deka et al. [1] presented the Rico dataset
consisting ofmobile app designs formaking better apps. They
trained an autoencoder [24] for UI layout similarity, and exe-
cuted a query-by-example search over UIs using the nearest
neighbor. Liu et al. [2] expanded the Rico dataset, and gen-
erated semantic annotations for mobile app UIs by detecting
UI components and training a convolutional neural network
(CNN) [25] to distinguish between icon classes. They also
trained an autoencoder for semantic screenshot images and
executed a query-by-example search over UIs using a ball
tree. The Rico dataset is the de facto standard for UI design
and layout generation [26], [27], [28], [29] in Android apps.
We notice that if the Rico data is clustered properly, then we
can use this clustered data for malware detection [30], [31],
[32], UI generation [4], [26], and automated testing [21], [33],
[34], [35]. However, there are no prior studies on activity
clustering for the Rico dataset. This leads us to study an
effective clustering method for the Rico dataset, and we study
the following research questions:

• RQ1: Is it feasible to use the Rico dataset for activity
clustering as image data?

• RQ2: How useful is the semantic annotation of the Rico
dataset for activity clustering as text data?

• RQ3: How useful is the hybrid approach that uses
both images and text of the Rico dataset for activity
clustering?

Based on the Rico dataset, we build an unsupervised activ-
ity clusteringmodel. This is because often there are no labeled
data available for app-related clustering. For fair evaluation,
we manually make two types of labeled test datasets from

the unlabeled Rico dataset. To the best of our knowledge,
this is the first attempt to use multimodal learning and a
sequence-to-sequence (seq2seq) autoencoder based on the
attention mechanism for Android activity clustering. We also
publish two new datasets [36]. Note that activity clustering
is not simply the end goal but the entry point for new,
innovative Android research from a software engineering
perspective [37].

The remainder of this paper is organized as follows.
Sections II and III provide the necessary backgrounds and
related work, respectively. Section IV presents the experi-
mental design, and Section V describes training, test, and
validation datasets from the Rico dataset. Section VI explains
our experiments and results. Then, Section VII discuss the
threats to the validity of our study. Finally, in Section VIII,
we conclude the paper with possible future studies based on
our findings.

II. BACKGROUND
We construct an unsupervised activity clustering model
which generates various latent vectors using a CNN autoen-
coder and seq2seq autoencoder. This section provides the
necessary background and concepts related to activity clus-
tering model.

A. ANDROID ACTIVITY
An Android activity is a single screen with a UI in an app.
An activity interacts with users and has a lot of information
including UI components, UI hierarchy and interactions with
other activities. Android provides a variety of UI components
and UI controls. These UI components can be used in analyz-
ing activities because activities are typically made up of UI
components, and UI information can be extracted from activ-
ity in XML using UIAutomator2 or AndroidViewClient.3

Android activity can be expressed in two formats: activity
images and activity properties including UI information.

B. MULTIMODAL CLUSTERING
Clustering is a representative type of unsupervised learning.
Even in the absence of a clear criterion for classifying objects,
similar objects can be grouped together by considering the
attributes or features of the given data. Multimodal clustering
synchronously performs several clusterings with multimodal
vectors in different shared spaces such as audiovisual cluster-
ing, image clustering, and video-caption clustering [15], [16],
[17]. Multimodal fusion integrates information frommultiple
modalities, with the goal of predicting an outcome measure
such as a class (through classification) or a continuous value
(through regression) [16], [18]. Recently, there has been
active research on fusion methods and clustering algorithms
for multimodal clustering [38]. Multimodal clustering algo-
rithms aim to find away to integrate clustering results for each
modality. To achieve this, multimodal clustering algorithms

2https://developer.android.com/training/testing/ui-automator
3https://github.com/dtmilano/AndroidViewClient

VOLUME 11, 2023 53599



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

typically combine features extracted from each modality and
cluster the entire data based on them.

C. AUTOENCODER
An autoencoder [24] is a type of neural network in which the
output layer has the same dimensionality as the input layer.
An autoencoder converts the input into a reduced represen-
tation, which is stored in the middle layer, and trains the
representation to reconstruct the input. Here, the encoding
part of the autoencoder seeks to encode important hidden
features present in the input data, and the features of the input
can be extracted during the process of reducing reconstruction
errors.

1) Seq2seq AUTOENCODER
The seq2seq model is an effective model for generating
sequential outputs from sequential inputs based on the
encoder–decoder architecture, and it has gained popularity in
neural machine translation [39], [40]. Both the encoder and
decoder use recurrent neural networks (RNNs) such as long
short-term memory networks (LSTM) [41] and gated recur-
rent units (GRU) [42], to handle sequential inputs of variable
length. The encoder of a seq2seq model can transform the
inputs of variable length to a fixed-size context vector by
encoding the sequence information.

2) CNN AUTOENCODER
CNNs are effective in extracting features from images by
maintaining the spatial information of the images [25].
A CNN contains a convolution layer that reflects the acti-
vation function after applying a filter to the input data, and
a pooling layer to reduce the size of the output. This allows
the image to be extracted as a feature with a reduced dimen-
sionality. A convolutional autoencoder is an autoencoder that
employs a CNN for the unsupervised learning of images [43].
Like most autoencoders, the convolutional autoencoder is
composed of an encoder and decoder. The encoder has a
convolution layer and a pooling layer to train the features of
an image. The decoder contains a deconvolutional layer [44]
to increase the size of the feature map in order to restore the
image.

III. RELATED WORK
A. RICO DATASET
Deka et al. [1] constructed the Rico dataset, which is the
largest repository of mobile app designs. The dataset con-
sists of 10,811 user interaction traces and 72,219 UIs from
9,772 Android apps across 27 Google Play categories. For
each app, Rico offers its own collection of UIs and indi-
vidual user interaction traces. Each UI is annotated with a
low-dimensional vector representation that encodes a layout
based on the distribution of text and images. Liu et al. [2]
generated semantic annotations for 72k unique UIs in the
Rico dataset. They used code-based heuristics and structure-
based patterns to identify different types of UI components

and text button concepts. From the resulting data, they derived
25 types of UI components and 197 text button concepts.
To classify icons, they trained a vision-based, deep-learning
adapted CNN architecture. This trained architecture identi-
fied 99 icon classes.

Lee et al. [26] built a tool, GUIComp, to assist GUI pro-
totyping based on the Rico dataset. The tool helps to resolve
issues that can happen for users with little design experience
by recommending example designs. Pandian et al. [28] used
the Rico dataset to generate the UI layout hierarchy from
the UI screen. They utilized Deep Neural Networks (DNNs)
to identify UI elements, locations, and dimensions using the
Rico dataset, and generated UI layout trees.

B. ACTIVITY CLASSIFICATION
Rosenfeld et al. [19] classified activities using machine learn-
ing. They identified seven activity types from 100 Android
apps—Splash, Advertisement, Login, Portal, Mail, Browser,
and To Do List—and constructed 15 feature vectors from
clickable, horizontal, vertical, and text field elements. Their
approach used pre-defined categories to label activities rather
than grouping similar items. They checked the accuracy of
activity-type prediction using several different classification
models such as decision trees, k-nearest neighbors, logis-
tic regression, random forests, multi-layer perceptron, and
KStar. Their study showed that KStar yields the best result.

Amalfitano et al. [21] utilized a machine learning approach
to determine the class to which a given GUI belongs. They
defined a special class of GUI called the Gate GUI. Examples
of Gate GUI include the Login GUI and the Network Settings
GUI. Feature vectors are extracted from the XMLGUI repre-
sentation, provided by the UIAutomator. They hypothesized
that the descriptions of GUIs of the same Gate GUI class are
likely to share common textual information. Then they chose
the most frequent terms among the GUIs belonging to the
same Gate GUI class. They built a labeled dataset consisting
of GUI descriptions belonging to 5000 real Android apps.
Finally, they classified gate GUIs using a Naïve Bayesian
classifier.

Ardito et al. [35] developed a testing framework based on
app and activity classifiers. In their framework, the classifiers
played a role in determining the type of application under test
and the purpose of each screen. For the latter, they defined
eight classes from 70 apps—Advertisement, Login, Portal,
List, To Do, Browser, Map, and Messages—and obtained
100 labeled activities.

The previous studies [19], [21], [35] classified activity via
supervised learning instead of clustering via unsupervised
learning. They focused on specific goals such as app testing,
and used datasets smaller than the Rico dataset.

IV. EXPERIMENTAL DESIGN
A. RESEARCH QUESTIONS
Our study aims to address the following research questions:

RQ1: Is it feasible to use the Rico dataset for activity
clustering as image data? There are few studies on activity

53600 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 1. Illustration of the proposed clustering model. In the first stage, the proposed model trains the features of the
layout information using the attention-based seq2seq autoencoder and the features of the activity image using the CNN
autoencoder. In the second stage, we perform clustering by fusing the latent vectors of each autoencoder and the Rico
latent vector, which is obtained from the Rico dataset itself.

clustering, so we apply image clustering techniques on activi-
ties. Since an activity can be represented as an image, wewant
to see how much performance is achieved by applying image
clustering on the images. Then, by comparing the clustering
results of well-known datasets and the Rico dataset, we check
whether activity clustering using the Rico dataset is feasible.

RQ2: How useful is the semantic annotation of the Rico
dataset for activity clustering as text data? This research
question is based on the fact that an activity contains UI com-
ponents. TheUI properties of Android activities are expressed
using XML in the layout format. We use the XML informa-
tion of semantic annotations [2] for clustering. Unlike RQ1,
which focuses on using images, RQ2 probes the effectiveness
of using text in clustering.

RQ3: How useful is the hybrid approach that uses both
images and text of the Rico dataset for activity clustering?
The purpose of this research question is to find out the effec-
tiveness of fusing the results of RQ1 and RQ2. This means
that activities are represented by images and text, and RQ3
uses both to check the clustering result. With this research
question, we want to explore how activity attributes such as
UI information expressed in XML affect clustering.

B. CLUSTERING APPROACH
This section explains an overview of our model consisting of
two stages as shown in Algorithm 1 and Figure 1. Figure 1
shows the proposed clustering model consisting of two
stages. In the first stage, the proposed model is training the
features of the layout information using an attention-based
seq2seq autoencoder. At the same time, the model is also

Algorithm 1 Activity Clustering Process
Input: Real activity images: R, Semantic activity images: S,

UI component information: T , The number of clusters:
K ; Maximum iterations:MaxIter

Output: Clustering results
1: Extract training and test data from Rico dataset
2: encodedText ← encode(T )
3: iter ← 0
4: while iter ̸= MaxIter do
5: zR, zS ← CNN autoencoder for R and S
6: zT ← seq2seq autoencoder for encodedText
7: iter ← iter + 1
8: end while
9: Select zR, zS , and zT with the lowest loss

10: Fusion with zR, zS , and zT
11: K-Means and GMM with K

training the features of the activity image using a CNN
autoencoder. The outputs of the encoder are latent vectors that
capture the most important features of the layout information
and the activity images, respectively. In the second stage, the
proposed model performs clustering by fusing the latent vec-
tors of each autoencoder and the Rico latent vector. By fusing
the latent vectors of the layout information, activity images,
and Rico, the proposed model can be clustered based on their
features.

The Rico dataset provides unlabeled activity data and
contains semantic annotations consisting of images and
JavaScript object notation (JSON) files [1], [2]. The Rico

VOLUME 11, 2023 53601



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 2. Illustration of a CNN autoencoder. The model is designed to
extract features of reduced dimension by reconstructing real and
semantic activity images.

dataset also provides 64-dimensional pre-trained vectors
obtained via a deep autoencoder for each activity. We denote
the pre-trained vectors as Rico.

Algorithm 1 describes the process of the proposed cluster-
ing model. The inputs to the model include Android activity
images, layout information, the number of clusters, and the
maximum number of iterations. After processing the pro-
posed clusteringmodel, the clustering results can be obtained.
ACNNautoencoder is used to extract features for real activity
images and semantic activity images, provided by the Rico
dataset (line 5). A seq2seq autoencoder is also used to extract
the latent vector from the JSON files (line 6), which includes
layout information with components and the corresponding
position information (line 2). Once the maximum number
of iterations is completed, we select the real activity latent
vector, semantic activity latent vector, and seq2seq latent
vector with the lowest loss (line 9). Then, each latent vector
is fused (line 10), and the resulting fused vector is used for
clustering (line 11).

In general, the CNN autoencoder shows a higher per-
formance in image training compared to seq2seq, but the
training speed is very slow. On the other hand, the seq2seq
autoencoder can be trained faster than the CNN autoencoder.
However, if the sequences are of variable length, the distances
in vector space increase. This implies that if the number
of components in similar activities is different, then similar
activities would be classified as different—a potential flaw
using the seq2seq autoenconder in the clustering of the activ-
ities. Thus, the latent vectors, which are output from each
autoencoder, are fused together to overcome the shortcom-
ings of the CNN autoenconder and the seq2seq autoencoder.
Then, these fused latent vectors are used as input data for
clustering.

C. IMAGE CNN AUTOENCODER
A CNN autoencoder shown in Figure 2 is used to extract
features for real activity images and semantic activity images
provided by the Rico dataset. Using the image as input,
we reconstituted the original image via deconvolution, having
reduced the image to a fixed sized, lower dimension via
convolution and pooling. Therefore, the input and output are
the same dimension. For better training, we follow the process
of Ciregan et al. [45]; we resize input images to 256× 128 to
reduce the memory consumption and increase the batch size
in training.

FIGURE 3. Illustration of the partitioning of the activity component.
To express position information, the total boundary of the activity is
divided into 128 cells. If a component is included in the corresponding
cell, it is represented in hexadecimal form.

D. ACTIVITY COMPONENT PARTITIONING
The JSON files that include layout information are reused
for activity component partitioning. Android activities have
XML layout information, which is converted to JSON to be
annotated semantically in the Rico dataset. As a result, the
Rico JSON files contain activity information, such as class,
ancestors, resource-id, text, bounds, and components. Each
activity is expressed using components and bounds, which are
organized in a hierarchical structure. We used 25 UI compo-
nents defined by Liu et al. [2] to express activity: Advertise-
ment, Background Image, Bottom Navigation, Button Bar,
Card, Checkbox, Date Picker, Drawer, Icon, Image, Input,
List Item, Map View, Modal, Multi-Tab, Number Stepper,
On/Off Switch, Pager Indicator, Radio Button, Slider, Text,
Text Button, Toolbar, Video, and Web View. Components are
represented in a hierarchical order, as depicted in Figure 3, to
generate input sequence data for an activity.

As each activity component varies according to the
bounds given to each component, the partition embedding
which encodes the position information of each boundary
in the sequence can be utilized for component partitioning.
To express the position of the component on the screen, the
total boundary of the activity was divided into 128 cells, as
shown in Figure 3. If the number of cells is less than 128,
the size of one cell will be large enough to contain many
components, such that the cell cannot properly represent
the relationship between the position and the components.
In addition, if the number of cells is greater than 128, the size
of one cell will be too small, such that the one cell does not
contain a component and the length of the vector increases
unnecessarily.

When a component is included in its corresponding cell,
the cell displays 1, otherwise the cell displays 0. However,

53602 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 4. Seq2seq autoencoder based on attention mechanism. The
component and position information are simultaneously reconstructed.
The attention mechanism of the proposed seq2seq autoencoder only
utilizes the hidden states of the top RNN layers in both the encoder and
decoder.

when the subsequent length of the position (128 digits) is too
long, the autoencoder performance becomes worse because
the input is too long. Therefore, the length of the position
input is reduced to 32 digits by converting from binary to
hexadecimal.

Suppose that X = (x1, x2, . . . , xm) is a component input
sequence of length m. The sequence is first embedded into
eX = (ex1 , ex2 , . . . , exm ). The position of the input sym-
bols P = (p1, p2, . . . , pm) is also embedded into eP =
(ep1 , ep2 , . . . , epm ). The final representation of the input
sequence is generated by combining the two representations
as follows:

eX ++ eP = (ex1 ++ ep1 , ex2 ++ ep2 , . . . , exm ++ epm ), (1)

where [++ ] denotes the concatenation operator. For instance,
as shown in Figure 3, the boundary of the Modal, which
is the component in the top layer of the activity, encom-
passes most of the partitions. x1 is Modal and p1 is
00007e7e7e7e7e7e7e7e7e7e7e7e0000 in Figure 3. There-
fore, ex1 ++ ep1 contains the information of Modal and
00007e7e7e7e7e7e7e7e7e7e7e7e0000.

E. Seq2seq AUTOENCODER BASED ON ATTENTION
MECHANISM
The input data for the seq2seq autoencoder is the sequence
data. To extract features from activities using an autoencoder,
an autoencoder that takes an input sequence and produces
the reconstructed input sequence (the purpose of the seq2seq
autoencoder) needs to be constructed.

Given an input sequence, the encoder generates a fixed-size
latent vector that represents the sequence. The decoder of
the seq2seq autoencoder utilizes another LSTM to recon-
struct the input sequence from the encoder output. As a
result, the inputs and outputs have the same dimension.
However, as the length of the input sequence increases, it
becomes very difficult for the decoder to generate an accurate
input sequence using a fixed-size latent representation vector.
To deal with this problem, when generating sequences in
the decoder, an attention mechanism is applied to train the

weights that determine which components are important in
the input sequence [46], [47]. In particular, it only uses the
hidden states of the top RNN layers in both the encoder
and decoder [46]. After computing the hidden state of the
decoder at each timestep, the attention matrix is computed.
Therefore, when the sequence is generated through the atten-
tion mechanism, the information of the input sequence can
be continuously used, thereby improving the output string
generation accuracy for a long input sequence.

As shown in Figure 4, the model is trained to recon-
struct component and position information simultaneously by
using the seq2seq autoencoder based on the attention mech-
anism. By using the attention mechanism to generate input
sequences with both component and position information,
the model is able to train the weights that determine the
importance of each component in the input sequence. This
leads to improved output sequences generated by the decoder.

F. CLUSTERING
Various input modalities are combined for clustering of
Android activities. Examples include latent vectors for Rico
and seq2seq, Rico and real activity, Rico and semantic activ-
ity, seq2seq and real activity, seq2seq and semantic activity,
and real and semantic activity as shown in Figure 1.

1) WEIGHTED FUSION FUNCTION
In order to fuse various latent vectors, we use the sum and
concatenation functions widely utilized in multimodal clus-
tering [16]. And two latent vectors are fused by applying
weights to each latent vector. The weights are w and (1−w),
with 0 < w < 1, to a precision of one decimal place.
Suppose eI = (eI1 , eI2 , . . . , eIm ) is a latent vector, and

eS = (eS1 , eS2 , . . . , eSm ) is another latent vector with the same
dimension as eI :
• The weighted sum function computes the elementwise
sum of the feature maps as follows:

sum(eI , eS ) = (w · eI1 + (1− w) · eS1 ,

w · eI2 + (1− w) · eS2 ,

. . . ,w · eIm + (1− w) · eSm ). (2)

• The weighted concatenation function constructs the out-
put by concatenating the input feature maps as follows:

cat(eI , eS ) = (w · eI1 ++ (1− w) · eS1 ,

w · eI2 ++ (1− w) · eS2 ,

. . . ,w · eIm ++ (1− w) · eSm ), (3)

where [++ ] denotes the concatenation operator.

2) CLUSTERING ALGORITHM
The experiments are conducted with two classic clustering
approaches to determine which approach is the more effec-
tive clustering algorithm for clustering activities. K-Means
clustering is a distance-based algorithm that identifies K cen-
troids, before allocating each data point to the nearest cluster,

VOLUME 11, 2023 53603



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

whileminimizing the sum of distances between the points and
the centroid [48]. Gaussian mixture models (GMMs) assume
that there are a fixed number of Gaussian distributions, and
that each of these distributions represents a cluster [49].
Hence, a GMM tends to group the data points belonging to
a single distribution. This approach differs from K-Means
clustering since the GMMs explain the variance and return
the probability of a data point to fall into each of the clusters.

G. METRICS
We evaluate the performance of our proposed model using
three metrics: purity, normalized mutual information (NMI),
and adjusted rand index (ARI), which are widely used as
clustering evaluation metrics [16], [48].

Purity is the rate of the number of objects that were cor-
rectly classified in the range [0, 1]. To compute purity, each
cluster is paired up with the class that overlaps the most. NMI
is a clustering validation metric which estimates the quality
of clustering. NMI measures the mutual information between
the correct and predicted labels and is normalized to scale
the results between 0 (no mutual information) and 1 (perfect
correlation). The rand index (RI) calculates the degree of
similarity between two clusters. This measure counts the
number of pairs assigned to the same or different clusters for
the predicted and actual clusters, respectively. ARI negatively
adjusts the result when two objects with the same label are
placed in different clusters. ARI has a value close to 0 for
random labeling, regardless of the number of clusters and
samples. On the other hands, ARI is guaranteed to have a
value of exactly 1 when the clusters are equal.

V. RICO DATASET
The Rico dataset is the largest public repository of mobile
app designs to date. It contains 72k UI screenshots with
annotations about the UI elements in both textual and visual
form. Training and evaluation datasets were generated based
on the Rico dataset, which provides unlabeled activity data
and contains semantic annotations consisting of images and
JSON files.

A. TRAINING DATASET
In the 66,261-item dataset, a total of 65,538 data points were
used, excluding data without component labels in the JSON
file. In the Rico dataset, the layout information in the Android
XML format was converted to JSON by adding semantic
annotations and including components and bounds. In the
case of images, we use the real activity images and semantic
activity images created through the converted JSON. For text,
if components consist of one or more words, we generate
an input sequence for the activity by combining the words
of the component. For instance, the List Item component
is converted to ListItem. Position information are generated
including the boundary of a component paired with each
component of the generated input sequence. The vocabulary
size of the input sequence is 25 (which is the same as the
number of UI components defined by Liu et al. [2]) and the

FIGURE 5. Test dataset, showing the categories and sample images.
c1–c19 are the same as r1–r19.

FIGURE 6. The distribution of the number of test images over the C23
and R34.

vocabulary size of the position information is 3,311. The
2000 data elements created for the test and validation datasets
were removed and the rest of the data was used as training
data. In total, there were 63,538 elements in the training
dataset.

B. TEST AND VALIDATION DATASET
Two types of labeled datasets were constructed from the Rico
dataset and manually categorized for evaluation. Because an
activity contains too much information for untrained humans
to accurately distinguish an activity, two experts examined:
a senior engineer with more than 13 years of Android
development experience and a junior engineer with 5 years
of Android development experience, both of whom devel-
oped Android products in the company. We have classified
2000 images from 10,000 randomly-selected images, based
on common patterns, structures, and behaviors [2], [19].

53604 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

TABLE 1. Each category description for C23 and R34. C and R stand for category and revision, respectively. The category order has no special meaning.

TABLE 2. Number of datasets by category out of 2000 labeled data. C23
is included in R34.

Figure 5 shows the categories and the sample images.
Table 1 shows the description and characteristics of each
category classified by the criteria. The criteria are as follows.
i) Activities were classified according to the characteristics
of the UI components occupying the screen (c1–c12, c19,

c21, c22), and ii) classified according to the ratio of the
UI components to the screen (c13–c18). iii) We classified
activities by inferring the user’s purpose or intention for the
screen through the UI components of the screen (c20, c23).
The test and validation datasets were categorized into 23 cat-
egories. Then, another five researchers with at least 2 years
of Android development experience and a computer science
background reviewed the results, some categories were fur-
ther broken down by location and size of UI components;
for example, c20 is divided into r20–r23; c21 is divided into
r24–r27; c22 is divided into r28, r29; and c23 is divided into

VOLUME 11, 2023 53605



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

r30–r34. Finally, the test and validation datasets were cate-
gorized as C23 and R34, where C and R stand for category
and revision, and 23 and 34 denote the number of category,
respectively.

As shown in Table 2, C23 consists of 700 validation and
test datasets each, and R34 consists of 1000 validation and
test datasets each. Figure 6(a) and Figure 6(b) show the
distribution of the number of images for C23 and R34 test
datasets. Each category consists of 5 to 52 images. Both C23
and R34 test datasets have an average of about 30 images in
each category. c11 and c14 in C23, and r29 in R34 have the
greatest number of images and c10 (r10) has the least, i.e.
5 per category.

VI. EXPERIMENT RESULTS
The machine we used to train and test the model is a work-
station with Intel Xeon W-2145 CPU, 32GB RAM, and an
NVIDIA TITAN Xp 12GB GPU. The operating system of
the machine was Ubuntu 18.04. The model was implemented
with PyTorch [50] using the Adam [51] optimizer, with a
learning rate of 10−3 without decay. The software used by
the model is listed in [36].

a: Seq2seq AUTOENCODER
The size of the hidden unit was set to 64 by considering
the 64-dimensional pre-trained vectors of the semantically
annotated images provided by Rico. The number of layers
of the encoder and decoder was set to 1. The unidirec-
tional LSTM is used, where the size of the component input
sequence embedding is 14. On the other hand, the position
information has a fixed length and a larger vocabulary size,
so the position embedding size was set to 50. The model was
trained over 60 epochs with a batch size of 32, with each
epoch lasting approximately 1 min. The loss converged at
50 epochs.

b: CNN AUTOENCODER
The encoder consists of five convolutional layers with dimen-
sions of 8×3, 16×3, 16×3, 32×3, and 64×3 (channel× ker-
nel size) and one size of padding. A max pooling layer of size
and stride 2 is applied after every convolution layer. Finally,
to express the data as a latent vector of 64 dimensions, a fully
connected (FC) layer is added and encoded in 64 dimensions.
The decoder consists of the same layers as the encoder, but in
reverse order, with deconvolution layers converting the latent
vector back to the original input data. The model was trained
over 100 epochs with a batch size of 32.

We first trained the seq2seq model and the convolution
model. The latent vector provided by the Rico dataset and the
latent vectors of each trained model are fused by the sum and
concatenation methods, as described in Section IV-F. Addi-
tionally, a weight between 0.1 and 0.9 to one decimal place
(inclusive) is given to fuse the two latent vectors. We have
repeated the whole experiment 30 times and computed the
average score.

FIGURE 7. Performance of the CNN autoencoder for different types of
images: (a) a real activity image and (b) a semantic activity image, used to
evaluate the performance of unsupervised feature learning. The CNN
autoencoder model without an FC layer shows similar performance when
processing a real or semantic activity image. However, when applying an
FC layer, the real activity image displays the worst result.

A. RQ1: IS IT FEASIBLE TO USE THE RICO DATASET FOR
ACTIVITY CLUSTERING AS IMAGE DATA?
To answer RQ1, we conduct experiments for image cluster-
ing. We compare the clustering results of the well-known
datasets (MNIST,4 STL-10,5 and CIFAR-106) and the Rico
dataset. This allows us to indirectly check if activity cluster-
ing is possible using the Rico dataset. The summary of the
well-known datasets is in Table 4.

Table 3 shows K-Means and GMM of purity, NMI, and
ARI for each dataset. A CNN autoencoder as mentioned
in Section IV-C is used to extract features from datasets.
The MNIST dataset shows the best results. The Rico dataset
outperforms STL-10 and CIFAR-10. Since STL-10 and
CIFAR-10 are already used as representative datasets for
clustering, it is reasonable to use Rico dataset as a dataset
for clustering as well.

The real activity image shows worse results than the
semantic activity image in Table 3. Figure 7 shows the per-
formance of the proposed CNN autoencoder for each type
of image. In both the real and semantic activity images,
better learning results are achieved without the FC layer in
the model, which is added to flatten the output of the last
convolutional layer to 64 dimensions. By the way, applying
the FC layer to the model yields slightly different results.
In particular, the real activity images show worse results than
the semantic activity images. These results show that it is
difficult to train the neural network using real activity images.
Therefore, it is very hard to train a very low-size feature map
for clustering using only activity images.

Summary for RQ1.By comparing the clustering results of
the well-known datasets and the Rico dataset, it was checked
that activity clustering is possible using the Rico dataset.
It makes sense to use Rico, which shows better results than

4http://yann.lecun.com/exdb/mnist/
5https://cs.stanford.edu/ acoates/stl10/
6https://www.cs.toronto.edu/ kriz/cifar.html

53606 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

TABLE 3. Clustering results (%). Rico is a latent vector provided by the Rico dataset itself, generated from a dense layer. Real activity and semantic activity
images are provided by the Rico dataset, and each latent vector is generated by a CNN autoencoder. C23 and R34 are the labeled datasets for the tests
described in Section V-B.

TABLE 4. Dataset used in the experiments.

FIGURE 8. Clustering results based on four different types: real activity
image, semantic activity image, Rico, and seq2seq. These clustering
results are recorded for different clustering methods, for the different
dataset categories (C23 and R34), and according to different evaluation
metrics. From best to worst performance, the images can be ranked as
follows: semantic activity image, seq2seq, Rico, and real activity image.

STL-10 and CIFAR-10, which are already used as a repre-
sentative dataset for clustering [13], [52], [53]. As a result,
it was found that activity clustering using the Rico dataset is
feasible.

B. RQ2: HOW USEFUL IS THE SEMANTIC ANNOTATION OF
THE RICO DATASET FOR ACTIVITY CLUSTERING AS
TEXT DATA?
We leverage XML information in semantic annotations [2] to
determine how activity attributes affect clustering. As men-
tioned in Section IV-D and IV-E, the XML information is
transformed into component and position information, which
is then used as an input to the seq2seq autoencoder.

FIGURE 9. Example of a limitation of the seq2seq autoencoder. It looks
like (a), (b), and (c) are all contained in the c1 cluster. However, because
the components that make up each activity are different, the length of
the entire encoded sequence is different for (a)–(c). As a result of these
varying sequence lengths, the seq2seq autoencoder may incorrectly
classify the activities into different clusters.

As shown in Figure 8(a) and Figure 8(b), the clustering per-
formance using the seq2seq latent vector is second only to the
semantic activity latent vector. The clustering performance
of the seq2seq latent vector was expected to be equal to or
better than the Rico latent vector because inputs for seq2seq
contain both the components and their spatial information.
In general, seq2seq performed better than Rico. For instance,
the ARI score of seq2seq using K-Means clustering for C23
is 7.4% points higher than Rico, and 3.7% points higher for
GMM clustering on R34. The data in the Rico do not include
the actual component; the image is simply divided into text
and nontext. Therefore, it is possible for activities that are not
actually similar to be classified into the same class. Because
seq2seq autoencoder considers component and hierarchical
structure order as well as the positional information of a
component, it clusters similar activities more accurately.

However, in specific cases (c1 issue), Rico displayed better
results than seq2seq. This is because the distance tends to

VOLUME 11, 2023 53607



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

TABLE 5. Top five ARI, NMI, and Purity scores for the C23 and R34. * is the result of single modals. The Fusion column is expressed in the form
‘‘fusion_method (clustering_algorithm weight)’’. G and K stand for GMM and K-Means. R, S, re, and se represent Rico, seq2seq, real activity and semantic
activity, respectively. ++ and + mean concatenation and sum functions.

increase in the vector space if the sequences are of different
lengths. For example, as shown in Figure 9(a), most activity
components in the c1 category consist of:Modal, ButtonBar,
TextButton, TextButton, DatePicker, TextButton, TextButton,
Icon, and Icon. In the case of some activities, one TextButton
is missing, as shown in Figure 9(b), or one TextButton has
been added, as shown in Figure 9(c). Because the seq2seq
autoencoder encodes the entire input sequence, even if two
input components are similar but the lengths of the two
sequences are different, they may not produce similar feature
vectors. To demonstrate this limitation, Figure 9 shows three
similar activities that are not grouped into the same class.

Summary for RQ2. Activity attributes such as UI compo-
nents and positional information improve the performance of
activity clustering. In particular, using textual data shows bet-
ter performance than real activity images or Rico. However,
due to the limitations of the seq2seq autoencoder, a c1 issue
may occur.

C. RQ3: HOW USEFUL IS THE HYBRID APPROACH THAT
USES BOTH IMAGES AND TEXT OF THE RICO DATASET FOR
ACTIVITY CLUSTERING?
Table 5 and Figure 10 show the clustering results of the fused
vectors. Table 5 displays the top five ARI, NMI, and Purity
scores of multimodals and single modals for the C23 and
R34. Figure 10 demonstrates all clustering results including
weighted fusion functions and clustering methods for C23
andR34. In both Table 5 and Figure 10,multimodal clustering
generally performs better than single modal clustering.

From Table 5, the best performance is fusion with the
seq2seq latent vector or the semantic activity latent vector

using both C23 and R34. The fusion model outperforms the
single models because the fusion model complements the
weaknesses of the single models by fusing the Rico, seq2seq,
and semantic activity latent vectors.

However, not all multimodal clustering methods perform
better than single-modal clustering methods. In some cases,
a model that fuses a real activity latent vector to another latent
vector performs worse than single-modal models as shown in
Figure 10. This discrepancy occurs because the neural net-
work struggles to learn to cluster activities using real activity
images, as shown in Figure 7. Using the real activity latent
vector in the model degrades the performance of the model
when fused with vectors having different properties, such
as Rico and seq2seq latent vectors. As a result, multimodal
clustering is beneficial for activity clustering based on the
semantic activity latent vector or seq2seq latent vector.

Summary for RQ3. In general, fusing themethods of RQ1
and RQ2 results in better performance compared to using
RQ1 and RQ2 methods separately. In particular, we confirm
that activity clustering with the fusion based on the semantic
activity latent vector or seq2seq latent vector perform well.
Note that the semantic activity latent vector and seq2seq
latent vector play important roles in RQ3, which also had
significant influence in RQ1 and RQ2, respectively.

D. DISCUSSION
1) WEIGHTED FUSIONS
Figure 10 illustrates the performance according to all eval-
uation metrics when latent vectors are fused. All graphs
show similar trends across all metrics. The performance of

53608 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 10. Performance of the models tested by C23 and R34 according to multiple evaluation metrics: (a) ARI, (b) NMI,
and (c) Purity. Fusing semantic activity vectors with other latent vectors improves performance.

FIGURE 11. The mean values of ARI for each fusion model.

the fusion with the real activity and semantic activity latent
vectors decreases as the weight of the real activity latent

vector increases. This means that the weight of the semantic
activity latent vector is an important factor and it is crucial
not to fuse with real activity. The fusion with real activity
and Rico latent vectors and the fusion with seq2seq and real
activity latent vectors show relatively low performance. This
is because the performance is affected by the low achievement
of the real activity latent vector as shown in Figure 7. The
fusion with the semantic activity latent vector or seq2seq
latent vector resulted in improved performance relative to
other fusion types.

Figure 11 shows the mean values of ARI for each fusion
model. The mean values of NMI and purity also show similar
tendencies. The fusion with Rico and semantic latent vectors
and the fusion with seq2seq and semantic latent vectors show
the best performance in C23. For R34, fusions with Rico and
seq2seq latent vectors show the best performance along with
the previous two fusions.

VOLUME 11, 2023 53609



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 12. NMI and Purity of fusion with Rico and semantic activity
latent vectors and fusion with seq2seq and semantic latent vectors
according to weight in R34.

Figure 11 also shows that the fusion functions and clus-
tering algorithms do not significantly affect the performance.
Figure 12 illustrates the metrics of the fusion with Rico and
semantic activity latent vectors and the fusion with seq2seq
and semantic activity latent vectors according to weight in
R34. As the weights change, there seems to be a difference
in performance depending on the fusion function and the
clustering method, but the difference is only about 1–2%.
However, the GMM shows better performance in general.

We created two categories for the test dataset, C23 and
R34. Figure 10 shows that the R34 category is better classified
than the C23 category, and that using the R34 category in
future studies may yield better results.

2) SEARCH RESULTS
Nearest neighbor search results on the all-element Rico
dataset were compared with Rico, seq2seq, real and seman-
tic activity latent vectors, and two multimodals (fused real
and semantic activity latent vectors and fused Rico and
seq2seq latent vectors) which performed activity clustering
best according to the NMI and ARI evaluation metrics.
Figures 13–15 represent the top three search results for Rico,
seq2seq, fused Rico and seq2seq, real activity, semantic activ-
ity, and fused real and semantic activity latent vectors side-
by-side over the same set of queries. Figure 13, Figure 14,
and Figure 15 show the results for the cluster categories c5,
c9, and c17, which show different results for the same query.
As shown in Figure 13, Rico and seq2seq models gave worse
search results, with the fused Rico and seq2seq latent vectors
displaying better search results for c5 category. Figure 15
describes the search results for c17 category, where the real
activity model appeared better than the other single modals.
In this case, only one image was found, so semantic activity
performed poorly. In Figure 14 representing c9 category, the
real activity model missed all three images, but all others
searched satisfactorily.

Summary of search results. Generally, multimodal mod-
els exhibit better performances than a single-modal. Among
the single-modal, the results of the seq2seq and semantic
activity models were superior to those of the Rico and real
activity models.

3) LIMITATIONS
A limitation is that only 25 UI components are used to
represent activities in Section IV-D, while there are many UI
components provided by Android. For consistency, we used
the same 25 components extracted by Liu et al. [2]. Due to
differences between the actual UI component used in the
activities and the component that we used, the performance
of the model was lower than expected.

Difficulties may also occur in combining modalities in
multimodal deep learning. In this study, we used sum and
concatenation functions to fuse the two modalities. How-
ever, varying levels of noise and conflicts between modalities
remain a problem in multimodal deep learning. Therefore,
it is essential to explore the combination of different source
modalities to improve performance [54].

The last limitation is the choice of the clustering algo-
rithm. We experimented with only two clustering algorithms:
K-Means and GMM clustering. Traditional clustering algo-
rithms can often yield good results on general problems, but
this is not guaranteed, as in the case of activity clustering.
Finding a better clustering algorithm is an interesting future
research proposal.

E. EXAMPLE OF USING ACTIVITY CLUSTERING
We present a concept of applying activity clustering in app
testing. While the previous models set up an exploration
strategy and tested the app, our approach explores the testing
strategy based on activity.

Figure 16 shows the proposed example model using activ-
ity clustering. The application under test (AUT) is the input to
the model, and the example model uses activity clustering to
classify the activities of the AUT. UIAutomator or Android-
ViewClient is used to extract activity image and activity UI
information from activity, and the extracted image or UI
information is used as input to activity clustering. The activity
is classified through the learned activity clustering model and
is assigned to one of the categories of R34. This guarantees
that the model has the most suitable test method for each
category. Thus, when the activity is classified into categories,
the recommended testing method defined for each category is
initiated. The example model repetitively classifies activities
in this manner, one-by-one.

To find the most suitable test method for each category,
we can match the predefined classes of Rosenfeld et al. [19]
and Ardito et al. [35] to R34, then apply previously selected
testing methods on the classification result. For example, the
r1 class uses a random strategy, the r2 class uses an enhanced
random strategy, and the r5 class uses the DFS strategy.
It is also possible to extend the model by applying new test
methods for each activity.

53610 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 13. Comparison of the nearest neighbor search results on the all-element Rico dataset with Rico, seq2seq, real and semantic activity image
convolution, and two multimodals which performed best according to the NMI and ARI evaluation metrics. Rico and seq2seq models gave worse search
results, with the fused Rico and seq2seq latent vectors displaying better search results. Generally, the multimodal models performed better than
single-modals.

FIGURE 14. Comparison of the nearest neighbor search results on the all-element Rico dataset with Rico, seq2seq, real and semantic activity image
convolution, and two multimodals which performed best according to the NMI and ARI evaluation metrics. The real activity model missed all three
images, but all others searched satisfactorily.

VII. THREATS TO VALIDITY
This section distinguishes between threats to construct, exter-
nal, and internal validity as follows.

A potential threat to construct validity is related to CNN
and seq2seq autoencoder, which are representative models of
image and text, respectively. We adopt the CNN autoencoder
for activity images and the seq2seq autoencoder for activity
attributes. There may be models that are more suitable for
activity clustering. However, since we are the first to research
activity clustering, we consider the two representative models

as a starting point. Another threat to validity is based on the
metrics used to evaluate clustering. Purity, NMI, and ARI
have been widely used in clustering evaluation [16], [48],
giving confidence that they are suitable metrics. However,
it may be effective to measure clustering in another way such
as Normalized Variation of Information (NVI) [55], [56].
In addition, it is interesting to consider more fine-grained
metrics for each cluster.

Threats to external validity are related to generalization of
our findings. Our research uses publicly available datasets

VOLUME 11, 2023 53611



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

FIGURE 15. Comparison of the nearest neighbor search results on the all-element Rico dataset with Rico, seq2seq, real and semantic activity image
convolution, and two multimodals which performed best according to the NMI and ARI evaluation metrics. Unusually, the real activity model showed
better than other single modals. In this case, only one image was found, so semantic activity performed poorly.

FIGURE 16. The testing process.

and clustering techniques already validated works. However,
to extend the validity of our results, a wider sample of real
Android apps including apps for TVs, automotives, and wear-
able devices should be considered as well. Thus, we cannot
claim that our results generalize to other clustering algorithms
and models yet.

Another possible threat to the internal validity could have
been the construction of the test and validation dataset.
To evaluate this threat, two experts classified 2000 images
from 10,000 randomly selected images as mentioned in
Section V-B. Then five other researchers checked the results.
Note that we utilized common patterns, structures, and behav-
iors based on previous research [2], [19]. Although we have
double checked our datasets classified, there could still be
errors that we did not notice.

Finally, to minimize potential threats to validity, we chose
open-source datasets and provided two new datasets and
sources that contain our experiments [36].

VIII. CONCLUSION AND FUTURE WORK
In order to uncover the feasibility of using the Rico dataset for
activity clustering and the effects of activity attributes on clus-
tering, we proposed a new Android activity clustering model
based on deep learning. A seq2seq latent vector is constructed
based on properties of the activity and real and semantic
activity latent vectors are obtained from a CNN autoencoder.
The vectors are fused using sum and concatenation functions.
Finally, unsupervised clustering is performed on the fused
vectors to classify the activities. We conducted various exper-
iments, including comparing four single modals, six fusions

53612 VOLUME 11, 2023



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

with various weights across two fusion methods, and two
clustering approaches. Two types of labeled datasets (C23 &
R34) were constructed to analyze each approach. The results
show that good performance is achieved when fusing with a
semantic activity latent vector or seq2seq latent vector.

We presented the limitations of our study and suggested
ways to solve the limitations. For example, the accuracy of
the seq2seq latent vector may suffer due to varying sequence
lengths. To overcome this weakness, we constructed a CNN
model for real and semantic activity images, instead of the
Rico latent vector, and fused the latent vectors. Furthermore,
we plan to study multimodal deep learning models that learn
and cluster simultaneously [53].

Using our work as a cornerstone for activity clustering,
researchers can investigate other areas based on clustering,
such as GUI searching from hand-drawn sketches, GUI
implementation, or bug detection in UI. In particular, in the
case of automated testing, there are various areas to inves-
tigate such as applying different testing methods for each
screen, generating input sequences for the Login screen, or
detecting specific GUIs. We believe that our work is not
limited to activity clustering and that our work can act as
a foundation for further software engineering on Android
research.

REFERENCES
[1] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,

J. Nichols, and R. Kumar, ‘‘Rico: A mobile app dataset for building
data-driven design applications,’’ in Proc. 30th Annu. ACM Symp. User
Interface Softw. Technol., Oct. 2017, pp. 845–854.

[2] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar, ‘‘Learning
design semantics for mobile apps,’’ in Proc. 31st Annu. ACM Symp. User
Interface Softw. Technol., Oct. 2018, pp. 569–579.

[3] X. Ge, ‘‘Android GUI search using hand-drawn sketches,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng., Companion, May 2019,
pp. 141–143.

[4] C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, ‘‘From UI design image
to GUI skeleton: A neural machine translator to bootstrap mobile GUI
implementation,’’ in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng. (ICSE),
May 2018, pp. 665–676.

[5] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, ‘‘Mining energy-greedy API usage pat-
terns in Android apps: An empirical study,’’ in Proc. 11th Work. Conf.
Mining Softw. Repositories, May 2014, pp. 2–11.

[6] S. T. Ahmed Rumee, D. Liu, and Y. Lei, ‘‘MirrorDroid: A framework
to detect sensitive information leakage in Android by duplicate program
execution,’’ in Proc. 51st Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2017,
pp. 1–6.

[7] A. Zhang, Y. He, and Y. Jiang, ‘‘CrashFuzzer: Detecting input processing
related crash bugs in Android applications,’’ in Proc. IEEE 35th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016, pp. 1–8.

[8] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, ‘‘Automatically discovering, reporting and reproducing
Android application crashes,’’ in Proc. IEEE Int. Conf. Softw. Test., Ver-
ification Validation (ICST), Apr. 2016, pp. 33–44.

[9] W. Yang, M. R. Prasad, and T. Xie, ‘‘A grey-box approach for auto-
mated GUI-model generation of mobile applications,’’ in Fundamen-
tal Approaches to Software Engineering, vol. 7793, no. 19. Rome,
Italy: Springer, 2013, pp. 250–265.

[10] S. R. Choudhary, A. Gorla, and A. Orso, ‘‘Automated test input generation
for Android: Are we there yet? (E),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2015, pp. 429–440.

[11] N. S. M. Yusop, J. Grundy, and R. Vasa, ‘‘Reporting usability defects:
A systematic literature review,’’ IEEE Trans. Softw. Eng., vol. 43, no. 9,
pp. 848–867, Sep. 2017.

[12] H. Kim, M. Kang, S. Cho, and S. Choi, ‘‘Efficient deep learning network
with multi-streams for Android malware family classification,’’ IEEE
Access, vol. 10, pp. 5518–5532, 2022.

[13] J. Yang, D. Parikh, and D. Batra, ‘‘Joint unsupervised learning of deep
representations and image clusters,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 5147–5156.

[14] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, ‘‘Symmetric
graph convolutional autoencoder for unsupervised graph representation
learning,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6518–6527.

[15] D. Hu, F. Nie, and X. Li, ‘‘Deep multimodal clustering for unsupervised
audiovisual learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2019, pp. 9248–9257.

[16] M. Abavisani and V. M. Patel, ‘‘Deep multimodal subspace clustering net-
works,’’ IEEE J. Sel. Topics Signal Process., vol. 12, no. 6, pp. 1601–1614,
Dec. 2018.

[17] R. Zhou and Y. Shen, ‘‘End-to-end adversarial-attention network for multi-
modal clustering,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit. (CVPR), Jun. 2020, pp. 14607–14616.

[18] T. Baltrusaitis, C. Ahuja, and L.-P. Morency, ‘‘Multimodal machine learn-
ing: A survey and taxonomy,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 2, pp. 423–443, Feb. 2019.

[19] A. Rosenfeld, O. Kardashov, and O. Zang, ‘‘Automation of Android appli-
cations functional testing using machine learning activities classification,’’
in Proc. IEEE/ACM 5th Int. Conf. Mobile Softw. Eng. Syst. (MOBILESoft),
May 2018, pp. 122–132.

[20] G. John Cleary and E. Leonard Trigg, ‘‘K*: An instance-based learner
using and entropic distance measure,’’ in Proc. 12th Int. Conf. Mach.
Learn., 1995, pp. 108–114.

[21] D. Amalfitano, V. Riccio, N. Amatucci, V. D. Simone, and A. R. Fasolino,
‘‘Combining automated GUI exploration of Android apps with capture
and replay through machine learning,’’ Inf. Softw. Technol., vol. 105,
pp. 95–116, Jan. 2019.

[22] A. Sahami Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and
H. Schmauder, ‘‘Insights into layout patterns of mobile user interfaces by
an automatic analysis of Android apps,’’ in Proc. 5th ACM SIGCHI Symp.
Eng. Interact. Comput. Syst., Jun. 2013, pp. 275–284.

[23] T. A. Nguyen and C. Csallner, ‘‘Reverse engineering mobile application
user interfaces with REMAUI (T),’’ in Proc. 30th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2015, pp. 248–259.

[24] D. Bank, N. Koenigstein, and R. Giryes, ‘‘Autoencoders,’’ 2020,
arXiv:2003.05991.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[26] C. Lee, S. Kim, D. Han, H. Yang, Y.-W. Park, B. C. Kwon, and S. Ko,
‘‘GUIComp: A GUI design assistant with real-time, multi-faceted feed-
back,’’ in Proc. CHI Conf. Hum. Factors Comput. Syst., Apr. 2020,
pp. 1–13.

[27] K. Gupta, J. Lazarow, A. Achille, L. Davis, V. Mahadevan, and A. Shrivas-
tava, ‘‘LayoutTransformer: Layout generation and completion with self-
attention,’’ 2020, arXiv:2006.14615.

[28] V. P. S. Pandian, S. Suleri, and M. Jarke, ‘‘BLU: What GUIs are made
of,’’ in Proc. 25th Int. Conf. Intell. User Interface Companion, Mar. 2020,
pp. 81–82.

[29] D. M. Arroyo, J. Postels, and F. Tombari, ‘‘Variational transformer net-
works for layout generation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 13637–13647.

[30] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, ‘‘A novel dynamic Android
malware detection system with ensemble learning,’’ IEEE Access, vol. 6,
pp. 30996–31011, 2018.

[31] H. Zhou, X. Yang, H. Pan, and W. Guo, ‘‘An Android malware detection
approach based on SIMGRU,’’ IEEE Access, vol. 8, pp. 148404–148410,
2020.

[32] X. Zhang, J. Wang, J. Xu, and C. Gu, ‘‘Detection of Android malware
based on deep forest and feature enhancement,’’ IEEE Access, vol. 11,
pp. 29344–29359, 2023.

[33] J. Qin, H. Zhang, S.Wang, Z. Geng, and T. Chen, ‘‘Acteve++: An improved
Android application automatic tester based on acteve,’’ IEEE Access,
vol. 7, pp. 31358–31363, 2019.

[34] I. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, andA. Usman, ‘‘AMOGA:
A static-dynamicmodel generation strategy for mobile apps testing,’’ IEEE
Access, vol. 7, pp. 17158–17173, 2019.

VOLUME 11, 2023 53613



S. Choi et al.: Empirical Study on Multimodal Activity Clustering of Android Applications

[35] L. Ardito, R. Coppola, S. Leonardi, M. Morisio, and U. Buy, ‘‘Automated
test selection for Android apps based on APK and activity classification,’’
IEEE Access, vol. 8, pp. 187648–187670, 2020.

[36] Test Dataset and Source. Accessed: Feb. 23, 2023. [Online]. Available:
https://github.com/hopemini/activity-clustering-multimodal-ml

[37] M. Shtern and V. Tzerpos, ‘‘Clustering methodologies for software engi-
neering,’’ Adv. Softw. Eng., vol. 2012, pp. 1–18, May 2012.

[38] Q. Zhao, L. Zong, X. Zhang, Y. Li, and X. Tang, ‘‘A multimodal clustering
framework with cross reconstruction autoencoders,’’ IEEE Access, vol. 8,
pp. 218433–218443, 2020.

[39] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ 2014, arXiv:1409.3215.

[40] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart, ‘‘Variational
attention for sequence-to-sequence models,’’ 2017, arXiv:1712.08207.

[41] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[42] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078.

[43] J. Masci, U. Meier, D. C. Ciresan, and J. Schmidhuber, ‘‘Stacked convolu-
tional auto-encoders for hierarchical feature extraction,’’ in Proc. Int. Conf.
Artif. Neural Netw. (ICANN), 2011, vol. 6791, no. 4, pp. 52–59.

[44] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, ‘‘Deconvolutional
networks,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2010, pp. 2528–2535.

[45] D. Ciregan, U. Meier, and J. Schmidhuber, ‘‘Multi-column deep neural
networks for image classification,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 3642–3649.

[46] M.-T. Luong, H. Pham, and C. D. Manning, ‘‘Effective approaches to
attention-based neural machine translation,’’ 2015, arXiv:1508.04025.

[47] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[48] D. C. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[49] C. C. Aggarwal,DataMining: The Textbook. Cham, Switzerland: Springer,
2015.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, and L. Antiga, ‘‘PyTorch: An imperative style,
high-performance deep learning library,’’ inProc. Adv. Neural Inf. Process.
Syst., 32, 2019, pp. 1–15.

[51] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[52] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114.

[53] J. Xie, R. Girshick, and A. Farhadi, ‘‘Unsupervised deep embedding for
clustering analysis,’’ in Proc. Int. Conf. Mach. Learn., vol. 48, 2015,
pp. 478–487.

[54] K. Liu, Y. Li, N. Xu, and P. Natarajan, ‘‘Learn to combine modalities in
multimodal deep learning,’’ 2018, arXiv:1805.11730.

[55] R. Reichart and A. Rappoport, ‘‘The NVI clustering evaluation measure,’’
in Proc. 13th Conf. Comput. Natural Lang. Learn., 2009, pp. 165–173.

[56] P. S. A. Babu, C. S. R. Annavarapu, and A. Mohapatra, ‘‘A novel method
for next-generation sequence data analysis using PLSA topic modeling
technique,’’ in Proc. 2nd Int. Conf. Adv. Comput. Commun. Paradigms
(ICACCP), Feb. 2019, pp. 1–6.

SUNGMIN CHOI received the B.S. and M.S.
degrees in computer science and engineering from
the Pohang University of Science and Technol-
ogy (POSTECH), Pohang, Republic of Korea,
in 2002. He is currently pursuing the Ph.D. degree
in computer science with Yonsei University, Seoul,
Republic of Korea.

From 2002 to 2003, he was a Researcher with
ITM, Seoul. Since 2004, he has been a Chief
Researcher with LG Electronics, Seoul. He has

been developing Linux frameworks and Android frameworks. His research
interests include automated application testing, activity clustering, and
Android containers.

HYEON-TAE SEO received the M.S. degree in
computer science from Yonsei University, Seoul,
Republic of Korea, in 2022.

Since 2022, he has been a Researcher with
KT Research and Development Center, Seoul. His
research interests include clustering, code repair,
and code summarizations.

YO-SUB HAN received the Ph.D. degree in com-
puter science from The Hong Kong University
of Science and Technology, in 2006. He was a
Researcher with the Korea Institute of Science and
Technology until 2009. In 2009, he joined Yonsei
University, where he is currently a Professor with
the Department of Computer Science.

His research interests include formal lan-
guage theory, algorithm designs, and information
retrieval.

53614 VOLUME 11, 2023


