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ABSTRACT Finding connectivity in graphs has numerous applications, such as social network analysis,
data mining, intra-city or inter-cities connectivity, neural network, and many more. The deluge of graph
applications makes graph connectivity problems extremely important and worthwhile to explore. Currently,
there are many single-node algorithms for graph mining and analysis; however, those algorithms primarily
apply to small graphs and are implemented on a single machine node. Finding 2-edge connected components
(2-ECCs) in massive graphs (billions of edges and vertices) is impractical and time-consuming, even with
the best-known single-node algorithms. Processing a big graph in a parallel and distributed fashion saves
considerable time to finish processing. Moreover, it enables stream data processing by allowing quick results
for vast and continuous nature data sets. This research proposes a distributed and parallel algorithm for
finding 2-ECCs in big undirected graphs (subsequently called ‘‘BiECCA′′) and presents its time complexity
analysis. The proposed algorithm is implemented on aMapReduce framework and uses an existing algorithm
to find connected components (CCs) in a graph as a sub-step. Finally, we suggest a few novel ideas and
approaches as extensions to our work.

INDEX TERMS Graph, distributed, algorithm, connected component, big data, MapReduce, undirected,
small star, large star, analysis, serial algorithms, parallel, cascaded jobs, Hadoop, streaming, connectivity.

I. INTRODUCTION
Graphs [1], [2], [3] model data into objects (also called nodes
or vertices) and connections (also called edges) between
these objects. This simple concept of representation model
has tremendous applications in many fields. The field of
graph theory is dedicated to finding efficient solutions for
graph problems. There are many real-world applications that
we map to graph problems, such as physical models (cities
interconnected by roadways), social network models (users
and connections between them that may represent friend-
ship), neural networks (for both artificial intelligence and
human brain studies), etc. graph theory has been well stud-
ied. There are several efficient algorithms for graph analy-
sis for solving problems that can be represented as graphs.
However, as graphs are becoming complex and massive due
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to advances in the big data domain and other data-related
fields, processing large graphs efficiently is essential in real-
time applications. This research primarily focuses on the
problem of finding 2-ECCs [3] in big graphs in a paral-
lel and distributed fashion. The proposed algorithm uses an
existing graph convergence algorithm (also called a ‘‘Star
Algorithm’’) [4] as a foundation that is used for finding con-
nected components (considered 1-Edge by default) in a big
graph.

Connectivity [4], [5] in a graph is one of the essential con-
cepts in graph theory. The connectivity suggests theminimum
number of vertices or edges which need to be removed from a
graph to make that graph disconnected. Finding connectivity
in a graph is a fundamental step in any graph analysis or
mining problem. This work presents a new approach for find-
ing 2-ECCs in undirected graphs using the MapReduce [6]
framework. The term 2-edge connected implies at least two
distinct paths (both ways) between any pair of vertices in a
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FIGURE 1. 2 edge connected graph.

given graph; for example, the graph presented in figure 1 is a
2-edge connected graph.

A. CONNECTIVITY IN GRAPHS
Graph connectivity [3] is a well-studied problem. It is one of
the complex [5] problems of graph theory. Currently, there are
many serial algorithms [7] available to find various types of
connectivity relationships between vertices of a graph. The
most commonly used serial algorithms for finding Strongly
connected components [8], [9] (a type of connectivity rela-
tionship between vertices of a graph) in a graph are introduced
by Tarjan’s [10], Kosaraju’s [11] and Vitter’s [12]. Connec-
tivity is a good measure of the resilience of a network. One
way to measure connectivity is to find the minimum number
of edges that need removal to make the graph disconnected.
We leveraged this idea by dropping the edges step by step to
find 2-ECCs in the presented algorithm.

For a graph to be K-edge Connected [3], there should be
k distinct paths between any two vertices of that graph. For
example, considering pair of vertices < u, v >, there are k
different paths from u to v and the k distinct paths from v
to u. This study focuses on 2-edge connectivity in big graphs
and presents a parallel and distributed algorithm for finding
2-ECCs in huge undirected graphs.

B. IMPORTANCE OF FINDING 2-EDGE CONNECTED
COMPONENTS IN PARALLEL
In graph theory, a graph G is said to be K-edge Connected
graph when it remains connected after less than k edges are
removed from any path between any pair of vertices of the
graph G.

Finding 2-ECCs in small graphs is possible using the
best-known algorithms [13], which run serially on a given
input graph. However, using these serial algorithms to find
2-edge connected components for big graphs with millions
of edges and vertices is inefficient. This is mainly because
processing a graph with billions of edges or vertices becomes
practical or practically useful. Furthermore, analyzing or
mining big graphs, for example, Facebook Graph, Twitter,
Google Graph, Linkedin Graph, etc., using the best-known
serial algorithms will take considerable time to complete the
processing. Therefore, the result cannot be used in real-time
applications such asWeather Predictions, Prediction of Stock
Market Prices, Social Media feeds, etc. Moreover, real-time
targeted advertising would be failed with the batch processing
of data.

Processing big graphs efficiently and in real-time is a fun-
damental requirement for big data processing applications.
Finding connected components in a graph is an essential
step for clustering [4] related entities represented as nodes
or vertices in a graph. Processing big graphs in parallel and
distributed fashion reduces graph analysis time by a great
extent, which makes graph analysis applicable to solve more
problems, and thus it enables many more applications.

C. EXISTING ALGORITHMS AND MOTIVATION FOR
IMPROVEMENTS
Processing big graphs in parallel and distributed fashion helps
make the processing faster. It also enables many streaming
data applications, for example, analysis of tweet data in real-
time, processing stock market data (from stock exchanges
and social media), live events or sports data analysis, weather
forecasting, etc. However, there is a scope for efficiency
improvement in extracting critical information from graphs.
Finding connected components is one of the essential features
which helps in identifying Clusters or Stars [4], which is one
of the relationships between vertices of a graph. Our foun-
dational paper [4] gives a distributed algorithm to find con-
nected components (1-edge connected components; however,
1-edge is never stated explicitly, it is considered by default)
in big-size graphs and explains how it could be implemented
using Hadoop (one of the implementations of theMapReduce
framework). This paper presents an algorithm to find 2-ECCs
in big undirected graphs. Finding 2-ECCs has many vital
applications; for example, in a distributed network, paths
connecting two different sub-networks are critical paths, and
failure of such critical paths from the network can disconnect
many users from accessing some crucial resources over the
Internet. Therefore, avoiding such critical paths for network
reliability is always better. Similarly, finding connectivity in
the brain neurons would tell doctors a safe location on the
head for incision in cases of brain surgeries. In such scenarios,
we would require 2-edge connectivity or, in general, K-edge
connectivity between the networks (whether it is a critical
path in an Internet network or brain neurons); therefore,
finding 2-ECCs becomes crucial.

D. OUR CONTRIBUTION
This section presents our contributions to finding 2-edge
connected components (2-ECCs) in huge graphs. We propose
a novel distributed and parallel algorithm for finding 2-ECCs
in huge graphs. We also present a design and architecture
of our proposal. We implemented our new algorithm on top
of the Hadoop MapReduce framework. We designed and
implemented five differentMapReduce jobs and used them in
a cascaded fashion.We did a detailed analysis of the proposed
algorithm, which is mainly done in terms of time complexity.
Finally, we presented the results and evaluations for various
sizes of graphs. The results are presented in terms of the
number of vertices and edges vs. the time taken for finding
2-ECCs. We also suggested some novel ideas as extensions
to this work in the section Future Ideas. The readers are
welcome to explore those ideas further.
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As a prerequisite to testing our algorithm, we needed
to design and implement a robust solution for creating big
graphs. These big graphs are created with each vertex’s
degree equal or differ at most by 1. The degree of each
vertex is kept approximately the same to avoid skewing the
time required for processing a graph. Here are the specific
contributions of this manuscript:

1) We propose a novel distributed and parallel algo-
rithm for finding 2-ECCs in huge graphs. Furthermore,
we illustrated the algorithm using an example and using
diagrams.

2) We present a design and architecture of our proposal.
3) We implement our new algorithm on top of the Hadoop

MapReduce [14], [15] framework.
4) We do a detailed analysis of the proposed algorithm,

which is mainly done in terms of time complexity.
5) We present the results and evaluations for various sizes

of graphs.
6) We suggest some novel ideas as extensions to this work

in the section Future Ideas. The readers are welcome to
explore those ideas further.

7) We design and implement a robust solution for creating
big graphs.

This manuscript proposes a new distributed and paral-
lel processing approach for finding 2-ECCs using one of
the MapReduce [14] implementations. This new algorithm
is built on top of an existing algorithm (presented in the
paper [4]), which computes connected components in graphs.
The fundamental idea is to calculate 2-ECCs by finding all the
bridges [16] (Bridge is explained in the Background Survey
section of this paper) in a graph and dropping those bridges
one by one in each iteration until there are no more bridges
left in the original graph. This is explained in great detail in
the algorithm section of this manuscript.

Furthermore, we prove that our approach for finding
2-ECCs takes O(E ∗ log2V/P) MapReduce iterations (where
graph contains |E| number of edges, |V | is the number of
vertices and P is the number of edges checked for the bridge
property in parallel). Assuming we have enough computing
resources in a cluster to check all edges in parallel for the
bridge property (checking if an edge is a bridge or not), the
time complexity for our proposed algorithm comes down to
O(log2V ) as P will be equal to E in the earlier equation. This
manuscript is an enhanced version of my thesis from Pro-
Quest [17]. The primary enhancements include 1. The algo-
rithm made efficient, 2. Algorithm details are considerably
improved 3. Explanation with better examples, 4. Updated
the results and evaluation, and 5. Proposal of future ideas
as extensions to the existing work. We see many benefits of
incorporating ideas of distributed dynamic programming [18]
in our solution.

E. OUTLINE OF THE MANUSCRIPT
Hereafter, the manuscript is organized as follows: Section II
of this paper discusses the proposed idea’s background sur-
vey and related topics. Section III. presents the proposed

FIGURE 2. An example: directed graph.

algorithm and its illustration for finding 2-ECCs in a given
graph or forest. Section IV. is devoted to our design, archi-
tecture, and algorithm implementation. The time complexity
analysis is done in section V. Section VI presents our results
and their evaluations. The critical challenges that we faced
while designing and implementing the idea and how those
challenges are tackled are explained in section VII. Eventu-
ally, we stated a future scope and conclusion in sections VII.
and VIII. respectively.

II. BACKGROUND SURVEY
A. GRAPH
A graphG = (V ,E) is a structure that contains a set of nodes
called vertices (V ) and lines or arcs called edges (E). Vertices
represent objects. Edges represent the connection between
these objects. Graph G has |E| number of edges and |V |

number of vertices, for example, the figure 3 shows a graph
with five vertices: {1, 2, 3, 4, 5} and the five edges are (1, 3),
(2, 4), (3, 4), (3, 5) and (4, 5).

1) UNDIRECTED GRAPH
An undirected [19], [20] graph is a graph where all the edges
are bidirectional [21]. An undirected graph is sometimes
called an undirected network; for example, figure 3 shows
an undirected graph.

2) DIRECTED GRAPH OR DIGRAPH
In graph theory, a directed graph (or digraph) [22] is a graph
that ismade up of a set of vertices connected by directed edges
(the edges point in a direction), often called arcs, for example,
the figure 2 shows a directed graph.

B. DEGREE OF A VERTEX
The number of incident edges on the vertex vi where 1 <=

i <= |V | is called degree of the vertex vi. For example, in the
figure 3, the degree for the vertices with IDs {1, 2} is 1; the
degree for the vertices with IDs {3, 4} is 3; and the degree for
the vertex with ID {5} is 2.

C. VERTICES AND EDGES
Vertices, also called nodes, in a graph can be interpreted as
objects; vertices are usually representedwith circles, and each
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FIGURE 3. Graph with bridges.

vertex has a unique label. While preparing the input graph
for feeding it to the implemented algorithm in the research
work, all the vertices are labeled randomly to ensure that all
the labels are unique. Edges are connections between vertices
which are represented with lines or arcs. An undirected graph
contains set of verticesV = v1, v2, . . . , vn where n = |V | and
edges |E|, an undirected edge between vi and vj is represented
as (vi, vj) where 1 <= i, j <= |V |. For example, in the
figure 3, the vertices are {1, 2, 3, 4, 5} and the edges are (1, 3),
(2, 4), (3, 4), (3, 5) and (4, 5).

D. CONNECTED COMPONENTS IN GRAPHS
A Connected Component [4] is a subgraph G′(V ′,E ′) of
graph G(V ,E), where V ′

∈ V and E ′
∈ E and G′ each pair

of vertices should be connected at least by one path.
Finding connected components in graphs is fundamental

to clustering entities or finding new patterns among enti-
ties. Finding connected components using either breadth-first
search (BFS) or depth-first search (DFS) can be done in linear
time. By starting DFS or BFS search at each unvisited vertex
vi where 1 <= i <= |V |, we can find all directly or indirectly
connected vertices to vi, all such vertices connected to vi
belong to the same Connected Component of a graph.

Finding connected components in parallel and distributed
fashion using MapReduce can be done by alternatively and
repeatedly applying the large star and small star operations;
please refer to the primary reference for this work [4] for a
detailed understanding of these two operations and how they
are used to find connected components in a graph. We used
these two operations as sub-steps to calculate 2-ECCs in
a graph. This paper also explains the large and small star
operations in section IV.

E. 2-EDGE CONNECTED COMPONENTS IN GRAPHS
A connected graph is called 2-edge connected if it does not
have a bridge. A bridge (or cut arc) is an edge of a graph
whose deletion increases the number of connected compo-
nents, i.e., an edge whose removal disconnects the graph.

For example, figure 3 has two bridges 1. < 1, 3 > and 2.
< 2, 4 >. Because the graph has at least a bridge, it cannot
be called a 2-edge connected graph. However, figure 1 has no

bridges in it. Therefore, it is called a 2-edge connected Graph.
In other words, at least two distinct paths between the nodes
of any pair of vertices in the graph from figure 1.

F. BRIDGES IN A GRAPH
A bridge in a graph G(V ,E) is an edge e′ ∈ E when removed
from the graph, G(V ,E − e′) divides the graph into two
different connected components. A bridge is also said to be a
cut edge. A graph can be K-edge Connected where k > 1.

G. MapReduce
MapReduce [14] is a programming model or a theoretical
approach and an associated implementation developed by
Google for processing big data sets in a distributed and paral-
lel fashion. Mapreduce operates in two phases: a Map Phase,
in which input data is split into multiple chunks/splits, and
for processing each chunk/split, a mapper (a programming
thread) is spawned, which applies a user-defined function for
processing, called the Map Function; and a Reduce Phase,
which aggregates the data produced in the Map Phase to
generate the final output. The aggregator threads apply a
user-defined Reduce Function on the intermediate data; these
workers/threads are called Reducers.

There are many MapReduce implementations; however,
the most common and widely used is Hadoop. Hadoop
Online Prototype [23], [24] is a modification to the traditional
Hadoop. In conventional Hadoop, Map and Reduce Phases
run sequentially - first Map phase finishes, and then Reduce
phase starts. However, Hadoop Online Prototype, Map, and
Reduce phases run simultaneously. As Hadoop Online Pro-
totype is well-proven, the most popular, and efficient in pro-
cessing big data sets, we decided to use it for the proposed
algorithm for finding 2-ECCs in big graphs.

For example, the most famous word count example ele-
gantly illustrates the computing phases of MapReduce. The
task is to count occurrences of each word from an exten-
sive document. To make the example easy to understand,
consider the document to be processed contains the text as
‘‘Fear leads to anger; anger leads to hatred; hatred leads
to conflict; conflict leads to suffering.′′. The solution for
counting the words in the document using MapReduce goes
as follows (please refer the figure 4):

1) The document is divided into several chunks. The ID
of a split is the input key, and the actual split (or a
pointer to it) is the value corresponding to that key.
Thus, the document is divided into a number of chunks,
each containing a set of (key, value) pairs.

2) In the Map phase, the task scheduler (or the Primary
server) startsM mappers where each mapper is respon-
sible for processing one of the chunks from the input
data. The mappers will scan the document and emit
records (key and value pairs) for further processing.
According to the user-defined Map function, the Map-
pers will only map each word to value one here. For
example, this mapper will emit the following records

VOLUME 11, 2023 54989



D. Dahiphale: MapReduce for Graphs Processing: New Big Data Algorithm

FIGURE 4. Architecture: MapReduce framework.

TABLE 1. Word count example: first mapper thread/worker’s output.

TABLE 2. Word count example: final output - all words with their
frequency.

when aMapper has a chunk with a part of the document
as ‘‘Fear leads to anger ′′.

3) The set of intermediate (key, value) pairs is then
‘‘pulled’’ by the Reducers that the Mappers produced.
These intermediate records are kept in the local storage
where the mappers run.

4) The Map phase is now finished, and the Reduce phase
has started. The Reducers will now aggregate all the
records with the same keys. The final output will be as
follows:

This suggests that the word ‘‘anger’’ has occurred two
times in the input data, and the word ‘‘leads’’ has
occurred four times in the input data, and so on.

5) This item in the figure 4 shows the final output of
the MapReduce job. The final output is also stored in
HDFS.

6) This item in the figure 4 is the application program that
launched/started the word count MapReduce job.

7) This item is the primary server or the task tracker. This
is responsible for starting different workers from the
job and tracking their progress.

H. HADOOP
Hadoop [15] implements the MapReduce programming
model developed by Apache. The Hadoop framework is used
for batch and stream processing big data sets on a physical
cluster of machines. It incorporates a distributed file system
called Hadoop Distributed File System (HDFS), a common
set of commands, a scheduler, and theMapReduce evaluation
framework. Hadoop is famous for processing massive data
sets (also called big data), especially in social networking,
targeted advertisements, internet log processing, etc.

I. SPARK
Spark [25] MapReduce is a unified analytics engine for
large-scale data processing. It provides high-level APIs in
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FIGURE 5. Architecture: Hadoop distributed file system (HDFS).

Java, Scala, Python, and R and an optimized engine that
supports general execution graphs. It also supports a rich set
of higher-level tools, including Spark SQL for SQL and struc-
tured data processing, MLlib for machine learning, GraphX
for graph processing, and Spark Streaming. Spark MapRe-
duce is a powerful tool for processing large-scale data sets.
It is fast, scalable, and easy to use. It is a good choice for
various data processing applications, including batch pro-
cessing, streaming processing, machine learning, and graph
processing.

J. 2-EDGE CONNECTIVITY USING SERIAL ALGORITHMS
The 2-edge connectivity [26], [27] of an undirected graph
can be determined in linear time [27]. Many sub-problems
of the 2-Edge connectivity, like finding strong bridges and
articulation points, can be calculated in linear time based
on the dominator tree algorithm proposed in reference [28].
Determining the 2-Edge connectivity of a directed graph
efficiently is challenging. A naive algorithm for finding the
2-Edge connectivity can be visualized as removing strong
bridges from a graph one by one, repeating this procedure
until no bridges are left in the graph. Strong bridges from
a graph can be calculated in linear time, and this process
continues O(N ) times; thus, the running time of this algo-
rithm is O(N ∗ M ) where |N | is the number of vertices and
|M | is number edges in a graph. Jaberi [29] proposed an
algorithm that maps the problem of determining the 2-vertex
connected component of directed graphs to determine
2-Vertex connected components in undirected graphs (they
used a technique of reducing a new problem to an existing
problem first and then solve it). Still, they did not present the

running time analysis. Later Erusalimskii and Svetlov [30]
showed the algorithmwithO(N ∗M2) time complexity, which
is asymptotically more than the naive algorithm. Georgiadis
et al. presents a dominator tree-based algorithm with a run-
ning time of O(M ∗N ). 2-edge connectivity is a sub-problem
of the bigger problem of finding the K-edge connectivity
or k-vertex connectivity [3]. Matula [31] gave an algorithm
to determine the edge-connectivity in O(mn) time. He also
showed that given k in advance, testing whether a graph is k-
edge-connected could be done inO(K ∗N 2) time. Nagamochi
and Watanabe [32] gave an O(N ∗min(K ,N ,

√
M )∗M ) time

algorithm for finding all k-edge connected components in a
direct or undirected graph given k in advance.

K. HADOOP DISTRIBUTED FILE SYSTEM (HDFS)
HDFS [15] is a distributed file system that provides reliable
and scalable data storage. It is designed explicitly for span-
ning large clusters on the commodity hardware. Hadoop uses
a hadoop distributed file system for data storage. The input
data is pulled from the HDFS for processing, and results are
kept in HDFS by default. In addition, the HDFS also acts as
the intermediate staging area for the intermediate results of
multiple MapReduce jobs and in various phases of the same
MapReduce job.

The figure 5. shows a fundamental architecture of HDFS.
HDFS has a Primary/Secondary architecture. An HDFS clus-
ter consists of a single NameNode. The NameNode is a
Primary server that manages the file system namespace and
regulates access to files by clients. The DataNodes manage
storage attached to the nodes that they run on. HDFS exposes
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FIGURE 6. A star or cluster.

a file system namespace and allows user data to be stored
in files. The DataNodes are responsible for serving read
and write requests from the file system’s clients, and also
they perform block creation, deletion, and replication upon
instruction from the NameNode.

III. OUR ALGORITHM PROPOSAL AND ILLUSTRATION
An algorithm to find connected components in big graphs
in parallel [4] is extended to find 2-ECCs [3]. The fun-
damental idea behind the proposed approach is that a
2-edge connected component is also a connected component
without bridges. The proposed algorithm is implemented on
top of the Hadoop [6], [23] framework. First, all the bridges
are removed, one at a time, from a graph to be processed.
By eliminating all bridges, one by one, finding the 2-ECCs
problem is reduced to the problem of finding connected
components. Then, a distributed and parallel algorithm to
find connected components is repeated until the input graph
converges (no more bridges are left in the graph).

A. CONVERTING GRAPH INTO STARS OR CLUSTERS
Let G = (V ,E) be an undirected graph with |V | number of
vertices and |E| number of edges where each vertex v ∈ V
is labeled randomly to any integer number between 1 and |V |

inclusive and denoted as li; and each edge e ∈ E .

1) SIMPLEST VERSION OF THE STEPS OF THE DISTRIBUTED
ALGORITHMS
Note that the algorithms, in terms of Map and Reduce func-
tions, are presented later in the current section. The following
are the short steps to get a quick glimpse of the proposed
algorithm.

1) Take the graph G to find 2-ECCs.
2) Select an edge e from the Graph G to check if e is a

bridge.
3) Remove the edge e from the graphG to get the graphG′.
4) Find the number of connected components (C ′) in the

new graph G′.
5) Compare the number of connected components (C) in

the graphs G with that (C ′) in G′. If C ′ > C then the
edge e is a bridge in the graph G.

6) If the edge e is not a bridge, add the edge e back to the
G′ (i.e., henceforth process the graph G instead of the
generated graph G′).

7) Stop if the graph G and the graph G′ are the same and
all the bridges from the graph are eliminated.

8) If the edge e is a bridge, then do G = G′.
9) Go to step 2 if the graph is not converged yet.
10) Get the final Stars or Clusters from the latest version of

the Graph. Those are the 2-ECCs.

Figure 6 shows a Star or Cluster where all the nodes are
connected to a single node (the star’s center). For converting
the graph G into a Star or Stars, where each star represents a
connected component, the large star and small star operations
are applied on graph nodes. These two operations are referred
from the foundational paper [4]. The large star and small star
operations are explained in our manuscript in section IV-C.
The large and small star operations are alternatively and
repeatedly applied until the input graph converges (i.e., the
graph no longer changes after using any large Star and small
star operations).

B. FINDING BRIDGES IN A GRAPH
In a graphG(V ,E), to verify whether an edge e, where e ∈ E ,
is a bridge, stars are counted in that graph with and without
the edge e. If the number of stars or clusters (computed using
the hadoop framework in a distributed fashion) counted after
removing the edge e from the graph G is one more than
the stars counted before removing the edge e from graph G
implies that the edge e is a bridge in the input graph. There-
fore, the bridges from the original graphs are eliminated, one
at a time.
The Map and Reduce functions for removing an edge from

the graph are as follows (presented in Algorithm 1. below).
The removed edge will be under examination for the bridge
property. In an edge list, u and v are the endpoints of an edge
where u > v. In the map function, all edges are reversed,
which will be used to find the degree of the vertices in the
Reduce Phase. 0(u) represents all neighbours of vertex u.

1) ALGORITHM 1: AN EDGE REMOVER FROM AN INPUT
GRAPH

01: Input : Edge list
02: Input : EDGE_COUNTER in the context of the MR
job
03: Input : TARGET_EDGE_NUMBER in the context
of the MR job
04: Map ⟨u; v⟩:
05: Emit ⟨v; u⟩.
06: Reduce ⟨u; 0(u)⟩:
07: For ∀ m ∈ 0(u)
08: If EDGE_COUNTER != TARGET_EDGE_
NUMBER
09: Emit ⟨v;m⟩ for all v where lv > lu.
10: increment(EDGE_COUNTER)
11: Else
12: If degree(m) = 1
13: Emit(m, -1)
14: If degree(u) = 1
15: Emit(u, -1)
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FIGURE 7. Input graph.

FIGURE 8. Adjacency list.

C. COMPUTING CONNECTED COMPONENTS IN GRAPHS
Each star/cluster that we get after converting the input graph
by applying the large star and small star operations repre-
sents a connected component. The number of stars denotes
the number of connected components in the graph. More-
over, all vertices from a star belong to the same connected
component.

D. COMPUTING 2-EDGE CONNECTED COMPONENTS IN A
GRAPH
After checking if an edge is a bridge or not; and removing
all the bridges from the edge list for the input graph (the
original graph), the small star and sarge star operations are
performed alternatively and repeatedly until the input graph
converges [4]. The converge means any of the Large or the
Small star operations on the results graph become ‘‘No Oper-
ation’’ - Noop (no edges can be dropped anymore to preserve
the 1-edge connectivity of the graph - to keep the graph con-
nected). The stars are the output of the last step representing
all the 2-ECCs in the graph, where one star/cluster represents
one 2-edge connected component. The format of input given
to the BiECCA algorithm is a file organized as an Adjacency
List [33] in which the first column of each line contains
NodeId/VertexId, and all neighbors will be on the same line
after NodeId followed by a Tab space. Furthermore, all the
neighboring nodes are separated by a comma for parsing
purposes.

The output of the BiECCA algorithm is clusters of nodes
where one cluster corresponds to one 2-ECCs. The output
file is created at user defined folder location (on HDFS),

FIGURE 9. Final output for the given input.

which contains the following format (assuming the input
graph contains N number of 2-ECCs).

⟨Cluster1⟩
⟨Cluster2⟩
⟨Cluster3⟩

. . .

. . .

. . .
⟨ClusterN ⟩

The final output for the input graph from figure 7 contains
two clusters/stars as shown below:

The output from the figure 9 consists of 2 different stars or
clusters, nothing but the two 2-ECCs. The vertices {1, 2, 3}
belong to the first 2-ECC and a vertex {4} belongs to the
second 2-ECC. The output implies two distinct paths between
any pair of nodes in the sub-graph with vertices {1, 2, 3}.
However, let’s look back at the original input graph. There
are no two distinct paths between any node from the first
cluster to vertex ID 4 or vertex ID 4 to any node from cluster 1,
implying that the overall graph is not 2-edge connected, but
the two output stars individually are.

E. ALGORITHM TO FIND 2-ECCs

1) ALGORITHM 2: USING TWO-PHASE ALGORITHM

01: Input : Graph G(V, E) as an adjacency list
02: Convert Adjacency List to Edge List
03: For each edge e from graph G
04: Apply Algorithm 1 (an edge remover) on G
to get G′

05: G′(V ′,E ′) = G(V ,E − {e})
06: Repeat
07: Repeat
08: Large-star
09: until Converges
10: Small-star
11: until G Convergence
12: C = Connected Components (Stars) in G.
13: C ′ = Connected Components (Stars) in G′

14: If C ′ > C
15: The e is a bridge.
16: G = G′

17: End if
18: End for
19: Convert edge list of G to clusters or stars.
Note : Lines 06 to 11 are referred from [1].
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FIGURE 10. Input graph for illustration.

2) ALGORITHM 3: USING AN ALTERNATE ALGORITHM
01: Input : Graph G(V, E) as an adjacency list
02: Convert Adjacency List to Edge List
03: For each edge e from graph G
04: Apply Algorithm 1 (an edge remover) on G
to get G′

05: G′(V ′,E ′) = G(V ,E − {e})
06: Repeat
07: Large-star
08: Small-star
09: until G Converges
10: C = Connected Components (Stars) in G.
11: C ′ = Connected Components (Stars) in G′

12: If C ′ > C
13: The e is a bridge.
14: G = G′

15: End if
16: End for
17: Convert edge list of G to clusters or stars
Note : Lines 06 to 09 are referred from [1]

F. ALGORITHM ILLUSTRATION WITH AN EXAMPLE
The following example shows one iteration of the outer for
loop from the algorithm presented above for dropping one
edge between vertex with label 2 and vertex with label 4, i.e.,
to verify whether the dropped edge ⟨2, 4⟩ is a bridge.
Step 1: The graph shown in figure 10 is given as the input.

Figure 8 shows the corresponding adjacency list.
Step 2: Next, the adjacency list (figure 8) is converted into

the edge list as follows. Note that we picked emitting only
⟨v, u⟩ edges where node ID for v is greater than that of u to
avoid redundancy.

⟨2, 1⟩
⟨3, 1⟩
⟨3, 2⟩
⟨4, 2⟩

Step 3: Next, compute the connected components for the
given input graph. For example, suppose C is the number of
connected components; therefore, C = 1 because there is
only one connected component in the input graph.
Step 4: Select an edge randomly and remove it from the input
graph to check if it is a bridge. For example, pick an edge

FIGURE 11. Dropping an edge ⟨4, 2⟩ - iteration #1.

FIGURE 12. Applying large star operation on every node - iteration #1.

FIGURE 13. Applying small star operation on every node - iteration #1.

⟨4, 2⟩ randomly and remove it. After removing the selected
edge, the resulting graph is shown in figure 11.
Step 5: Apply the large and small star Operations (please
refer figure 12 and 13) alternatively and repeatedly until the
input graph does not change further, i.e., the graph converses.
After this step, the final graph is shown in figure 12. Finally,
please refer to an example of a more complex graph from ref-
erence [17], section Appendix-B.3, and step by step process
about how the Large and Small operation reduces the input
graph to the convergent point.
Note: The final graph will not change further by applying any
of the large star or small star operations.

Step 6: Compute the number of connected components in
the new converged graph. C ′ denotes the new commented
components. Therefore, C ′

= 2. In the first iteration of the
proposed algorithm, we can conclude that an edge ⟨4, 2⟩ is a
bridge because when it is removed,C ′

= C+1, and therefore,
this Edge will be removed permanently from the graph for
further iterations of the algorithm.
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Finally, after finding and removing all the bridges from
the original graph, the remaining connected components are
nothing but the 2-ECCs in the original graph.
OutputOutput of this example will have two lines/stars/clus-
ters, each corresponding to one 2-edge connected component.
The BiECCA algorithm’s output for the input graph (please
refer to figure 7) is as follows:

{1, 2, 3}
{4}

IV. DESIGN, ARCHITECTURE AND ALGORITHM
IMPLEMENTATION USING MapReduce
Figure 14 shows the various components (or MapReduce
jobs) used for processing. This section explains our design
and architecture, and illustrates all the components of the
diagram.

A. INPUT GRAPH GENERATION
First, we developed a program (subsequently called ‘‘Ran-
dom Graph Generator’’) for generating massive graphs.
These graphs will be used as inputs by the proposed algorithm
for testing. The ‘‘Random Graph Generator’’ is a program
written in C++ language to generate graphs with random
connectivity (however, the degree of each vertex is tried
to keep the same using an equal probability function. The
maximum difference between the degree of any two vertices
is kept 1) for testing and evaluating algorithm extensively.
The ‘‘Random Graph Generator’’ program takes a number
of vertices and a number of edges as inputs and generates a
graph as an output. Based on the user’s input about a number
of edges and a number of vertices, this program generates
a random graph as an Adjacency List [33]. The generated
Adjacency List is stored in the Local File System as a text
file. This file is then up-streamed to the hadoop distributed
file system for sourcing it as an input to the proposedBiECCA
algorithm.

B. GRAPH STAGING AREAS IN MapReduce JOBS
Once input is uploaded from a Local File System to a hadoop
distributed file system, all the intermediate and final graph
files generated for theMapReduce Jobs are stored in a hadoop
distributed file system. Therefore, the initial staging area for
the graph is Local File System (before uploading it to the
HDFS); however, input (just before starting an MR job),
intermediate output, and final output staging areas for all the
MapReduce jobs are HDFS.

C. ALL IMPLEMENTED MapReduce JOBS
1) ADJACENCY LIST TO EDGE LIST CONVERTER (MapReduce
JOB-1)
There are many approaches to partition [34] graphs. Because
the output of the MapReduce Job-1 is an edge list, it can
be split into multiple chunks, where each chunk can have
a set of edges. The MapReduce Job-1 only has the Map
phase (no Reduce phase). Therefore, it has all task-managing

workers/trackers and Mappers only. The MapReduce Job-1
takes an Adjacency List as an input graph to be processed
(in a file format) and produces an Edge List where each row
contains a ⟨key, value⟩ pair. This pair ⟨key, value⟩ represents
the endpoints of an edge from the input graph. To deal with
each edge only once, we emit one record out of ⟨u, v⟩, and
⟨v, u⟩. For further requirements in the jobs’ pipeline and
simplicity, only records ⟨key, value⟩ where key > value are
emitted, mainly to encounter an undirected or bi-directional
edge only one time instead of two times.

Adjacency List to Edge List
01:Map ⟨u⟩:
02: For all neighbors of u:
03: Emit ⟨u; n⟩ n where lu > ln.

2) LARGE STAR OPERATOR (Mapreduce JOB-2)
The MapReduce Job-2 contains Mappers, Combiners, and
Reducers, along with the other job managing and tracking
workers. The MapReduce Job-2 takes the Edge List as the
input generated by the MapReduce Job-1 and applies the
large star [4] operations on it. Please refer to figure 15 for one
large star [4] operation on NodeId 3 (this is a minimal step in
the algorithm). For a detailed description of this operation
and the below algorithm, please refer to the foundation
paper [4], [17].

The Large Star Operation
01:Map ⟨u; v⟩:
02: Emit ⟨u; v⟩ and ⟨v; u⟩.
03: Reduce ⟨u; 0(u)⟩:
04: Let m = arg minv∈0+(u)lv.
05: Emit ⟨v;m⟩ for all v where lv > lu.

3) SMALL STAR OPERATOR (Mapreduce JOB-3)
The MapReduce Job-3 also contains Mappers, Combiners,
and Reducers, alongwith the other jobmanaging and tracking
workers. The MapReduce Job-3 applies the small star opera-
tions on the output ofMapReduce Job-2. Please refer to figure
16 [4] for one small star operation on one node (this is another
minimal step in the algorithm). For a detailed description of
this operation and the below algorithm, please refer to the
foundational paper [4], [17].

The Small Star Operation
1: Map ⟨u; v⟩:
2: if lv ≤ lu then
3: Emit ⟨u; v⟩.
4: else
5: Emit ⟨v; u⟩.
6: end if
7: Reduce ⟨u;N ⊆ 0(u)⟩:
8: Let m = arg minv∈N∪{u}lv.
9: Emit ⟨v;m⟩ for all v ∈ N .
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FIGURE 14. Architecture: component diagram.

FIGURE 15. Large star operation on node 3.

4) THE GRAPH CONVERGENCE CHECKER(MapReduce
JOB-4)
After alternatively and repeatedly applying the large and
small star operations on the input graph, the graph eventually
must converge. This MapReduce job converts the new graph
to clusters of nodes for computing the number of stars/-
clusters at the end of each iteration. When the input graph
converges, the number of connected components calculated
in the earlier step should equal the number of connected
components calculated now. If the graph has converged, then
the clusters (Stars) [4] are nothing but the 2-ECCs in the
original graph. If the graph has not converged, the dropped

edge is again added back to the previous graph (the graph
before feeding it to the MapReduce Job-2) and sent to the
MapReduce Job-5 for further processing.

5) ONE EDGE REMOVER - BRIDGE PROPERTY CHECKER
(MapReduce JOB-5)
The MapReduce Job-5 takes the output of the MapReduce
Job-4 and removes a specified (a random edge from the most
recent version of the graph) edge from the given edge list.
MapReduce Job-5 handles all cases when a specified edge is
dropped from the graph and creates a correct new edge list
as a new graph or a Forest. The new graph is called a Forest
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FIGURE 16. Small star operation on node 3.

because the removed edge might disconnect the graph and
make some vertices disconnected.Whether the removed edge
is a bridge is verified by checking if a number of connected
components [4] are increased after removing the edge from
an input graph. The basic idea is when a specified edge is
dropped from a connected graph, if the number of connected
components in the new graph is increased by 1, it implies that
the dropped edge was indeed a bridge in the original graph.

6) INTERPRETING OUTPUT AS 2-EDGE CONNECTED
COMPONENTS
After finding and removing all the bridges from the input
graph (by alternatively and repeatedly applying the large star
and small star [4] operations until no other bridges exist
in the input graph, i.e., the input graph converges. Then,
the remaining edge list is given to MapReduce Job-4. This
MapReduce job is responsible for converting the final edge
list into the clusters of connected components. The number
of clusters or groups [4] formed represents the number of
2-ECCs where a group of vertices represents a 2-ECC.

V. ALGORITHM ANALYSIS: NUMBER OF MapReduce
ITERATIONS
Theorem: The number of MapReduce iterations for finding
2-ECCs required is in order ofO(E ∗ log2V )/Pwhere E is the
number of edges, V is the number of vertices and P are the
number of edges that are removed and processed in parallel
for finding bridges in the given input graph. MapReduce iter-
ations and rounds refer to the same term used interchangeably
throughout the paper.

In Algorithm 2 presented before, a two-phase algorithm
from [4] is executed for every edge in a graph. An edge is
removed and repeated for each iteration of the outer loop
until all the edges are done checking for the bridge property.
Therefore, the outer loop runs E iterations, where E is the
number of edges in the graph.We know from theorem 1 of [4]
the number of MapReduce rounds to execute the two-phase
algorithm is O(log2V ).
Therefore, the number of MapReduce rounds for this algo-

rithm is the number of edges times the number of MapRe-
duce rounds for the two-phase algorithm. Therefore, the
number of MapReduce rounds required for the algorithm is

O(E ∗ log2v/P) where P number of edges are processed in
parallel for checking the bridge property.

VI. RESULTS AND EVALUATION
A. INPUT DATA AND SIZES
Input graphs are generated using a program that takes a num-
ber of edges and vertices as input parameters and generates
graphs as an Adjacency List [33] in a file. This file is given as
input for finding 2-ECCs. Testing is done on different sizes of
graphs generated by the Random Graph Generator that was
developed as a pre-requisite to this work. For example, the
smallest graph used has four vertices and four edges; how-
ever, the most extensive graph tested has more than 1 million
vertices and more than 2 million edges.

B. HADOOP FRAMEWORK
The proposed algorithm is well fit for large-size graphs. It is
meant to be executed in a parallel and distributed fashion.
Hadoop is one of the MapReduce implementations for pro-
cessing big data sets distributedly. This is possible because
the problem of finding 2-ECCs fits into the MapReduce
model withmultipleMapReduce jobs in the pipelinedmanner
(cascaded MapReduce jobs [6]) for processing.

C. RESULTS FOR DIFFERENT SIZES OF RANDOM GRAPHS
The figures 17 and 19 show that when the inputs are small
graphs, the time required to find 2-ECCs does not change
notably. This observation is because the initialization/setup
time for the MapReduce jobs is much more than the actual
processing time. In other words, if the setup time is relatively
more than the actual graph processing time and also process-
ing time itself is significantly less, the overall difference in the
performance for small graphs is not expected to be noticeable
(this is because the setup time for all the job is going to be
approximately the same). This is because the setup divides
the graph into multiple chunks, initializes resources, spawn-
ingmanager/tracker/processing threads, etc. Furthermore, the
input graphs size should be large to get the initial setup
time amortized [35]. This makes sense because the proposed
approach is for processing big data sets on distributed pro-
cessing frameworks. In line with these observations, when
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FIGURE 17. Number of vertices vs. time in seconds.

large-size graphs are used, the setup and initialization time
gets amortized over a long period. Therefore, we can see
noticeable differences in the processing time.

When large graphs are fed as inputs to the BiECCA algo-
rithm implementation, we can observe that the time required
to find 2-ECCs increases as the number of vertices and edges
in the graph increases, keeping all other configurations the
same, this is demonstrated by the figures 18 and 20. The
configurations include the number of Mappers [14], the num-
ber of Reducers [14], the approximate degree of each vertex
(structure of connectivity in the graph), and other computing
resources such as CPU, Memory, Processor type.

Figure 21 compares the number of MapReduce iterations
calculated theoretically using worst-case analysis and the
number of MapReduce iterations calculated practically for
different randomly generated graphs. The worst-case analysis
for MapReduce considers the graph to be a single line where
the end vertices of the line have degree one, and the middle
vertices have degree two, where the depth of the graph will be
equal to a number of vertices. However, in real-world scenar-
ios, graph structure could be anything. Also, while generating
random graphs, the degree of all vertices in a graph is kept
constant using equal probability distribution while generating
edges in a graph. The number of MapReduce iterations is a
function of the depth of a graph where the depth of a graph is
max of all min distances of all pair of vertices in the graph.
The worst-case depth of a graph G and the real-world graph
depth of G′ can have a considerable difference even if G and
G′ have the same number of vertices and edges. Therefore
the number of MapReduce rounds practically calculated and
calculated theoretically differ considerably - in short, the
algorithm performs much better in real-world use cases.

Tables 3 and 4 show the statistics for different graph
sizes, given the graph as an input to the proposed BiECCA
algorithm. Here, the number of records implies the size of
the edge list to be processed. The time is given for one
iteration of the algorithm; however, it will be increased by
a factor of the number of edges to be checked for the bridge
property. Assuming P edges can be checked in parallel, the

TABLE 3. Run time for different sizes of Input graphs with 1 Mapper
and 1 Reducer.

TABLE 4. Run time for different sizes of input graphs with 5 Mappers and
5 reducers.

time column in tables 3 and 4 will be multiplied by m ÷ P
where m is the number of edges in the input graph.

The table 3 shows the time required for processing
small-size graphs with one Mapper thread and one Reducer
thread (we chose one Mapper and one Reducer because
the graphs are small). As mentioned in figures 17 and 19
illustration, because the setup time of the MR jobs is more
than the actual processing time (finding 2-ECCs), all jobs
take approximately the same time to finish. However, table 4
shows the time for one iteration of the proposed algorithm of
finding 2-ECCs increases with an increase in the graph size.
This happens because workers’ setup and initialization time
from MR jobs is amortized over time.

D. VERIFICATION OF THE RESULTS, PRACTICALLY
The generated files are compared with the output generated
for the same graph using well-known serial algorithms to
practically check for the BiECCA algorithm’s correctness.
Although the serial algorithms take a considerable amount of
time to solve the same problem, they are used for checking
the correctness of the distributed algorithm only (though we
could not run a massive graph with the serial algorithms
because the wait time to finish jobs was in terms of days). Pro-
cessing big graphs using a serial algorithm becomes impos-
sible and difficult (beyond a certain number of vertices or
edges).

VII. CHALLENGES AND SOLUTIONS
A. CHALLENGES
One of the algorithm’s steps is to drop an edge from the graph
and repeat the process for every edge. Therefore, removing
edges one at a time was challenging for the following reasons.

1) Dropping an edge from an edge list that connects ver-
tices with a degree more than one:
In this case, we can drop the key and the associated
value (i.e., the edge between the node ID ‘‘key’’ and
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FIGURE 18. Input records/edges vs. time in seconds for large graphs.

FIGURE 19. Number of records (intermediate key-value pairs) vs. time.

FIGURE 20. Vertices vs. time for large graph (max vertices 2 Million).

the node ID ‘‘value’’). This approach works because
the vertices represented by the key and value are still
connected to some other vertices and remain in the

FIGURE 21. Number of vertices vs. MapReduce iterations (worst case).

graph. Therefore, we won’t lose the endpoint vertices
in this case, even if we drop a selected edge.

2) Dropping an edge from the edge list which connects
vertices with degree one:
This is applicable when one of the vertices or both the
vertices (end points a selected edge for dropping) have
degree one. This case is not straightforward because
the vertices involved in the process have degree one.
By dropping the corresponding key-value pair of an
edge, we will lose either one or both vertices from the
graph’s edge list (the vertex or vertices with degree one
will be lost by dropping the corresponding ⟨key, value⟩
pair).

3) A bidirectional edge ⟨u, v⟩ can also be represented as
⟨v, u⟩. While generating an edge list from an adjacency
list, such bidirectional edges create redundancy in the
edge list. The redundancy causes the input graph size
to be doubled because we work with undirected graphs.
Removing the edge redundancy from the input graph
reduced processing time dramatically.
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For Figure 7 the edge list will be :
⟨2, 1⟩
⟨3, 1⟩
⟨3, 2⟩
⟨4, 2⟩

From the above edge list, if we drop an edge ⟨3, 1⟩,
simply removing that entry from the edge list is a
sufficient task. However, if we drop an edge ⟨4, 2⟩ from
the above edge, we will lose vertex four from the new
edge list. It will be like, vertex 4 was never in the given
input graph.

B. SOLUTIONS
An additional MapReduce job is written for dropping an
edge from the edge list, which will handle all the scenarios
presented above while dropping an edge. For the vertices
with degree one, an extra pair of keys and values is emitted
with the key as vertex label and value as -1, showing it is
a disconnected vertex from the rest of the input graph. For
the example given in figure 7, while dropping an edge entry
⟨4, 2⟩, a new entry in the new edge list is created with the
record as ⟨4, −1⟩. This shows that node Id 4 is disconnected
in the new graph that is being generated.

VIII. FUTURE SCOPE
As an enhancement to this work, it would be an exciting topic
of study to check how much time complexity differs after
running the proposed algorithm separately on two different
versions of the same graphs, 1. Dividing the original graph
by a known bridge edge vs. 2. Removing a random edge
(assuming it is a bridge) from the original graph. We expect
some improvement in the performance on average in the
former case, considering the graph gets divided into two
halves which will reduce graph convergence time by half (the
approximate best-case scenario).

Furthermore, we keep it as an open question whether it is
possible to use distributed dynamic programming approach to
improve performance considerably. In other words, to reuse
computation done for checking if an edge is a bridge or not
while checking the next edge for bridge property. Some of the
calculations are repeated while finding bridges in the graph.
The concept of Distributed Hash Table (DHT) [36] service
can be utilized for storing possible repeated sub-computation.
However, the question becomes challenging when we think
that large and small star operations deal with one edge at a
time. We cannot see beyond its neighbor in the distributed
and parallel processing world (data chunks should be pro-
cessed independently until the aggregation phase). Moreover,
the large and small star Operations can add new edges and
remove the original edges from the graph.

The proposed algorithm uses graphs generated by a graph
generator. There are many open real-world graphs; for exam-
ple, A semantic network [37], Twitter [38] etc., can be
used as benchmarks. It would be an excellent enhance-
ment to the results to do experiments with real-world

graphs. The graph can be downloaded on the SNAP site
(https://snap.stanford.edu/data/index.html).

Furthermore, the previous work for graph generation with
real-world properties can be leveraged using synthetic graphs.
There are many graph generators based on the MapReduce
framework, for example, Power-Law Distributed Graph Gen-
eration With MapReduce [39], A Rapid and Robust Graph
Generator [40], TrillionG: A trillion-scale synthetic graph
generator using a recursive vector model [41], Distributed
Tera-Scale Graph Generation and Visualization [42] etc.

IX. CONCLUSION
In this research, we proposed a new approach, BiECCA, for
finding 2-edge connected components (2-ECCs) in parallel
and distributed fashion for big-size graphs. Our work touches
upon both graph theory and big data domains. We success-
fully solved one of the essential graph mining and analyzing
problems on a big data analytics framework, HadoopMapRe-
duce.

We implemented the new distributed algorithm and show-
cased the correctness of the results, both theoretically and
practically.We also analyzed the algorithm’s time complexity
and presented a lemma.

We then stated new ideas as a part of our work’s future
scope and enhancements. We encourage readers to explore
these suggested ideas and open questions.

Finally, after comparing the practical and theoretical com-
plexities of the proposed approach for finding 2-ECCs, it is
evident that the proposed algorithm performs much better in
real-world scenarios than predicted in the theoretical analy-
sis. The proposed algorithm performs much better than the
worst-case theoretical analysis.
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